| author | traytel | 
| Fri, 02 Aug 2013 12:08:55 +0200 | |
| changeset 52839 | 2c0e1a84dcc7 | 
| parent 52729 | 412c9e0381a1 | 
| child 53215 | 5e47c31c6f7c | 
| permissions | -rw-r--r-- | 
| 52265 | 1 | (* Title: HOL/Topological_Spaces.thy | 
| 51471 | 2 | Author: Brian Huffman | 
| 3 | Author: Johannes Hölzl | |
| 4 | *) | |
| 5 | ||
| 6 | header {* Topological Spaces *}
 | |
| 7 | ||
| 8 | theory Topological_Spaces | |
| 51773 | 9 | imports Main Conditionally_Complete_Lattices | 
| 51471 | 10 | begin | 
| 11 | ||
| 12 | subsection {* Topological space *}
 | |
| 13 | ||
| 14 | class "open" = | |
| 15 | fixes "open" :: "'a set \<Rightarrow> bool" | |
| 16 | ||
| 17 | class topological_space = "open" + | |
| 18 | assumes open_UNIV [simp, intro]: "open UNIV" | |
| 19 | assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" | |
| 20 | assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union> K)" | |
| 21 | begin | |
| 22 | ||
| 23 | definition | |
| 24 | closed :: "'a set \<Rightarrow> bool" where | |
| 25 | "closed S \<longleftrightarrow> open (- S)" | |
| 26 | ||
| 27 | lemma open_empty [intro, simp]: "open {}"
 | |
| 28 |   using open_Union [of "{}"] by simp
 | |
| 29 | ||
| 30 | lemma open_Un [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<union> T)" | |
| 31 |   using open_Union [of "{S, T}"] by simp
 | |
| 32 | ||
| 33 | lemma open_UN [intro]: "\<forall>x\<in>A. open (B x) \<Longrightarrow> open (\<Union>x\<in>A. B x)" | |
| 34 | unfolding SUP_def by (rule open_Union) auto | |
| 35 | ||
| 36 | lemma open_Inter [intro]: "finite S \<Longrightarrow> \<forall>T\<in>S. open T \<Longrightarrow> open (\<Inter>S)" | |
| 37 | by (induct set: finite) auto | |
| 38 | ||
| 39 | lemma open_INT [intro]: "finite A \<Longrightarrow> \<forall>x\<in>A. open (B x) \<Longrightarrow> open (\<Inter>x\<in>A. B x)" | |
| 40 | unfolding INF_def by (rule open_Inter) auto | |
| 41 | ||
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 42 | lemma openI: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 43 | assumes "\<And>x. x \<in> S \<Longrightarrow> \<exists>T. open T \<and> x \<in> T \<and> T \<subseteq> S" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 44 | shows "open S" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 45 | proof - | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 46 |   have "open (\<Union>{T. open T \<and> T \<subseteq> S})" by auto
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 47 |   moreover have "\<Union>{T. open T \<and> T \<subseteq> S} = S" by (auto dest!: assms)
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 48 | ultimately show "open S" by simp | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 49 | qed | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 50 | |
| 51471 | 51 | lemma closed_empty [intro, simp]:  "closed {}"
 | 
| 52 | unfolding closed_def by simp | |
| 53 | ||
| 54 | lemma closed_Un [intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<union> T)" | |
| 55 | unfolding closed_def by auto | |
| 56 | ||
| 57 | lemma closed_UNIV [intro, simp]: "closed UNIV" | |
| 58 | unfolding closed_def by simp | |
| 59 | ||
| 60 | lemma closed_Int [intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<inter> T)" | |
| 61 | unfolding closed_def by auto | |
| 62 | ||
| 63 | lemma closed_INT [intro]: "\<forall>x\<in>A. closed (B x) \<Longrightarrow> closed (\<Inter>x\<in>A. B x)" | |
| 64 | unfolding closed_def by auto | |
| 65 | ||
| 66 | lemma closed_Inter [intro]: "\<forall>S\<in>K. closed S \<Longrightarrow> closed (\<Inter> K)" | |
| 67 | unfolding closed_def uminus_Inf by auto | |
| 68 | ||
| 69 | lemma closed_Union [intro]: "finite S \<Longrightarrow> \<forall>T\<in>S. closed T \<Longrightarrow> closed (\<Union>S)" | |
| 70 | by (induct set: finite) auto | |
| 71 | ||
| 72 | lemma closed_UN [intro]: "finite A \<Longrightarrow> \<forall>x\<in>A. closed (B x) \<Longrightarrow> closed (\<Union>x\<in>A. B x)" | |
| 73 | unfolding SUP_def by (rule closed_Union) auto | |
| 74 | ||
| 75 | lemma open_closed: "open S \<longleftrightarrow> closed (- S)" | |
| 76 | unfolding closed_def by simp | |
| 77 | ||
| 78 | lemma closed_open: "closed S \<longleftrightarrow> open (- S)" | |
| 79 | unfolding closed_def by simp | |
| 80 | ||
| 81 | lemma open_Diff [intro]: "open S \<Longrightarrow> closed T \<Longrightarrow> open (S - T)" | |
| 82 | unfolding closed_open Diff_eq by (rule open_Int) | |
| 83 | ||
| 84 | lemma closed_Diff [intro]: "closed S \<Longrightarrow> open T \<Longrightarrow> closed (S - T)" | |
| 85 | unfolding open_closed Diff_eq by (rule closed_Int) | |
| 86 | ||
| 87 | lemma open_Compl [intro]: "closed S \<Longrightarrow> open (- S)" | |
| 88 | unfolding closed_open . | |
| 89 | ||
| 90 | lemma closed_Compl [intro]: "open S \<Longrightarrow> closed (- S)" | |
| 91 | unfolding open_closed . | |
| 92 | ||
| 93 | end | |
| 94 | ||
| 95 | subsection{* Hausdorff and other separation properties *}
 | |
| 96 | ||
| 97 | class t0_space = topological_space + | |
| 98 | assumes t0_space: "x \<noteq> y \<Longrightarrow> \<exists>U. open U \<and> \<not> (x \<in> U \<longleftrightarrow> y \<in> U)" | |
| 99 | ||
| 100 | class t1_space = topological_space + | |
| 101 | assumes t1_space: "x \<noteq> y \<Longrightarrow> \<exists>U. open U \<and> x \<in> U \<and> y \<notin> U" | |
| 102 | ||
| 103 | instance t1_space \<subseteq> t0_space | |
| 104 | proof qed (fast dest: t1_space) | |
| 105 | ||
| 106 | lemma separation_t1: | |
| 107 | fixes x y :: "'a::t1_space" | |
| 108 | shows "x \<noteq> y \<longleftrightarrow> (\<exists>U. open U \<and> x \<in> U \<and> y \<notin> U)" | |
| 109 | using t1_space[of x y] by blast | |
| 110 | ||
| 111 | lemma closed_singleton: | |
| 112 | fixes a :: "'a::t1_space" | |
| 113 |   shows "closed {a}"
 | |
| 114 | proof - | |
| 115 |   let ?T = "\<Union>{S. open S \<and> a \<notin> S}"
 | |
| 116 | have "open ?T" by (simp add: open_Union) | |
| 117 |   also have "?T = - {a}"
 | |
| 118 | by (simp add: set_eq_iff separation_t1, auto) | |
| 119 |   finally show "closed {a}" unfolding closed_def .
 | |
| 120 | qed | |
| 121 | ||
| 122 | lemma closed_insert [simp]: | |
| 123 | fixes a :: "'a::t1_space" | |
| 124 | assumes "closed S" shows "closed (insert a S)" | |
| 125 | proof - | |
| 126 | from closed_singleton assms | |
| 127 |   have "closed ({a} \<union> S)" by (rule closed_Un)
 | |
| 128 | thus "closed (insert a S)" by simp | |
| 129 | qed | |
| 130 | ||
| 131 | lemma finite_imp_closed: | |
| 132 | fixes S :: "'a::t1_space set" | |
| 133 | shows "finite S \<Longrightarrow> closed S" | |
| 134 | by (induct set: finite, simp_all) | |
| 135 | ||
| 136 | text {* T2 spaces are also known as Hausdorff spaces. *}
 | |
| 137 | ||
| 138 | class t2_space = topological_space + | |
| 139 |   assumes hausdorff: "x \<noteq> y \<Longrightarrow> \<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
 | |
| 140 | ||
| 141 | instance t2_space \<subseteq> t1_space | |
| 142 | proof qed (fast dest: hausdorff) | |
| 143 | ||
| 144 | lemma separation_t2: | |
| 145 | fixes x y :: "'a::t2_space" | |
| 146 |   shows "x \<noteq> y \<longleftrightarrow> (\<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {})"
 | |
| 147 | using hausdorff[of x y] by blast | |
| 148 | ||
| 149 | lemma separation_t0: | |
| 150 | fixes x y :: "'a::t0_space" | |
| 151 | shows "x \<noteq> y \<longleftrightarrow> (\<exists>U. open U \<and> ~(x\<in>U \<longleftrightarrow> y\<in>U))" | |
| 152 | using t0_space[of x y] by blast | |
| 153 | ||
| 154 | text {* A perfect space is a topological space with no isolated points. *}
 | |
| 155 | ||
| 156 | class perfect_space = topological_space + | |
| 157 |   assumes not_open_singleton: "\<not> open {x}"
 | |
| 158 | ||
| 159 | ||
| 160 | subsection {* Generators for toplogies *}
 | |
| 161 | ||
| 162 | inductive generate_topology for S where | |
| 163 | UNIV: "generate_topology S UNIV" | |
| 164 | | Int: "generate_topology S a \<Longrightarrow> generate_topology S b \<Longrightarrow> generate_topology S (a \<inter> b)" | |
| 165 | | UN: "(\<And>k. k \<in> K \<Longrightarrow> generate_topology S k) \<Longrightarrow> generate_topology S (\<Union>K)" | |
| 166 | | Basis: "s \<in> S \<Longrightarrow> generate_topology S s" | |
| 167 | ||
| 168 | hide_fact (open) UNIV Int UN Basis | |
| 169 | ||
| 170 | lemma generate_topology_Union: | |
| 171 | "(\<And>k. k \<in> I \<Longrightarrow> generate_topology S (K k)) \<Longrightarrow> generate_topology S (\<Union>k\<in>I. K k)" | |
| 172 | unfolding SUP_def by (intro generate_topology.UN) auto | |
| 173 | ||
| 174 | lemma topological_space_generate_topology: | |
| 175 | "class.topological_space (generate_topology S)" | |
| 176 | by default (auto intro: generate_topology.intros) | |
| 177 | ||
| 178 | subsection {* Order topologies *}
 | |
| 179 | ||
| 180 | class order_topology = order + "open" + | |
| 181 |   assumes open_generated_order: "open = generate_topology (range (\<lambda>a. {..< a}) \<union> range (\<lambda>a. {a <..}))"
 | |
| 182 | begin | |
| 183 | ||
| 184 | subclass topological_space | |
| 185 | unfolding open_generated_order | |
| 186 | by (rule topological_space_generate_topology) | |
| 187 | ||
| 188 | lemma open_greaterThan [simp]: "open {a <..}"
 | |
| 189 | unfolding open_generated_order by (auto intro: generate_topology.Basis) | |
| 190 | ||
| 191 | lemma open_lessThan [simp]: "open {..< a}"
 | |
| 192 | unfolding open_generated_order by (auto intro: generate_topology.Basis) | |
| 193 | ||
| 194 | lemma open_greaterThanLessThan [simp]: "open {a <..< b}"
 | |
| 195 | unfolding greaterThanLessThan_eq by (simp add: open_Int) | |
| 196 | ||
| 197 | end | |
| 198 | ||
| 199 | class linorder_topology = linorder + order_topology | |
| 200 | ||
| 201 | lemma closed_atMost [simp]: "closed {.. a::'a::linorder_topology}"
 | |
| 202 | by (simp add: closed_open) | |
| 203 | ||
| 204 | lemma closed_atLeast [simp]: "closed {a::'a::linorder_topology ..}"
 | |
| 205 | by (simp add: closed_open) | |
| 206 | ||
| 207 | lemma closed_atLeastAtMost [simp]: "closed {a::'a::linorder_topology .. b}"
 | |
| 208 | proof - | |
| 209 |   have "{a .. b} = {a ..} \<inter> {.. b}"
 | |
| 210 | by auto | |
| 211 | then show ?thesis | |
| 212 | by (simp add: closed_Int) | |
| 213 | qed | |
| 214 | ||
| 215 | lemma (in linorder) less_separate: | |
| 216 | assumes "x < y" | |
| 217 |   shows "\<exists>a b. x \<in> {..< a} \<and> y \<in> {b <..} \<and> {..< a} \<inter> {b <..} = {}"
 | |
| 218 | proof cases | |
| 219 | assume "\<exists>z. x < z \<and> z < y" | |
| 220 | then guess z .. | |
| 221 |   then have "x \<in> {..< z} \<and> y \<in> {z <..} \<and> {z <..} \<inter> {..< z} = {}"
 | |
| 222 | by auto | |
| 223 | then show ?thesis by blast | |
| 224 | next | |
| 225 | assume "\<not> (\<exists>z. x < z \<and> z < y)" | |
| 226 |   with `x < y` have "x \<in> {..< y} \<and> y \<in> {x <..} \<and> {x <..} \<inter> {..< y} = {}"
 | |
| 227 | by auto | |
| 228 | then show ?thesis by blast | |
| 229 | qed | |
| 230 | ||
| 231 | instance linorder_topology \<subseteq> t2_space | |
| 232 | proof | |
| 233 | fix x y :: 'a | |
| 234 | from less_separate[of x y] less_separate[of y x] | |
| 235 |   show "x \<noteq> y \<Longrightarrow> \<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
 | |
| 236 | by (elim neqE) (metis open_lessThan open_greaterThan Int_commute)+ | |
| 237 | qed | |
| 238 | ||
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 239 | lemma (in linorder_topology) open_right: | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 240 |   assumes "open S" "x \<in> S" and gt_ex: "x < y" shows "\<exists>b>x. {x ..< b} \<subseteq> S"
 | 
| 51471 | 241 | using assms unfolding open_generated_order | 
| 242 | proof induction | |
| 243 | case (Int A B) | |
| 244 |   then obtain a b where "a > x" "{x ..< a} \<subseteq> A"  "b > x" "{x ..< b} \<subseteq> B" by auto
 | |
| 245 | then show ?case by (auto intro!: exI[of _ "min a b"]) | |
| 246 | next | |
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 247 | case (Basis S) then show ?case by (fastforce intro: exI[of _ y] gt_ex) | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 248 | qed blast+ | 
| 51471 | 249 | |
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 250 | lemma (in linorder_topology) open_left: | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 251 |   assumes "open S" "x \<in> S" and lt_ex: "y < x" shows "\<exists>b<x. {b <.. x} \<subseteq> S"
 | 
| 51471 | 252 | using assms unfolding open_generated_order | 
| 253 | proof induction | |
| 254 | case (Int A B) | |
| 255 |   then obtain a b where "a < x" "{a <.. x} \<subseteq> A"  "b < x" "{b <.. x} \<subseteq> B" by auto
 | |
| 256 | then show ?case by (auto intro!: exI[of _ "max a b"]) | |
| 257 | next | |
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 258 | case (Basis S) then show ?case by (fastforce intro: exI[of _ y] lt_ex) | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 259 | qed blast+ | 
| 51471 | 260 | |
| 261 | subsection {* Filters *}
 | |
| 262 | ||
| 263 | text {*
 | |
| 264 | This definition also allows non-proper filters. | |
| 265 | *} | |
| 266 | ||
| 267 | locale is_filter = | |
| 268 |   fixes F :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
 | |
| 269 | assumes True: "F (\<lambda>x. True)" | |
| 270 | assumes conj: "F (\<lambda>x. P x) \<Longrightarrow> F (\<lambda>x. Q x) \<Longrightarrow> F (\<lambda>x. P x \<and> Q x)" | |
| 271 | assumes mono: "\<forall>x. P x \<longrightarrow> Q x \<Longrightarrow> F (\<lambda>x. P x) \<Longrightarrow> F (\<lambda>x. Q x)" | |
| 272 | ||
| 273 | typedef 'a filter = "{F :: ('a \<Rightarrow> bool) \<Rightarrow> bool. is_filter F}"
 | |
| 274 | proof | |
| 275 | show "(\<lambda>x. True) \<in> ?filter" by (auto intro: is_filter.intro) | |
| 276 | qed | |
| 277 | ||
| 278 | lemma is_filter_Rep_filter: "is_filter (Rep_filter F)" | |
| 279 | using Rep_filter [of F] by simp | |
| 280 | ||
| 281 | lemma Abs_filter_inverse': | |
| 282 | assumes "is_filter F" shows "Rep_filter (Abs_filter F) = F" | |
| 283 | using assms by (simp add: Abs_filter_inverse) | |
| 284 | ||
| 285 | ||
| 286 | subsubsection {* Eventually *}
 | |
| 287 | ||
| 288 | definition eventually :: "('a \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> bool"
 | |
| 289 | where "eventually P F \<longleftrightarrow> Rep_filter F P" | |
| 290 | ||
| 291 | lemma eventually_Abs_filter: | |
| 292 | assumes "is_filter F" shows "eventually P (Abs_filter F) = F P" | |
| 293 | unfolding eventually_def using assms by (simp add: Abs_filter_inverse) | |
| 294 | ||
| 295 | lemma filter_eq_iff: | |
| 296 | shows "F = F' \<longleftrightarrow> (\<forall>P. eventually P F = eventually P F')" | |
| 297 | unfolding Rep_filter_inject [symmetric] fun_eq_iff eventually_def .. | |
| 298 | ||
| 299 | lemma eventually_True [simp]: "eventually (\<lambda>x. True) F" | |
| 300 | unfolding eventually_def | |
| 301 | by (rule is_filter.True [OF is_filter_Rep_filter]) | |
| 302 | ||
| 303 | lemma always_eventually: "\<forall>x. P x \<Longrightarrow> eventually P F" | |
| 304 | proof - | |
| 305 | assume "\<forall>x. P x" hence "P = (\<lambda>x. True)" by (simp add: ext) | |
| 306 | thus "eventually P F" by simp | |
| 307 | qed | |
| 308 | ||
| 309 | lemma eventually_mono: | |
| 310 | "(\<forall>x. P x \<longrightarrow> Q x) \<Longrightarrow> eventually P F \<Longrightarrow> eventually Q F" | |
| 311 | unfolding eventually_def | |
| 312 | by (rule is_filter.mono [OF is_filter_Rep_filter]) | |
| 313 | ||
| 314 | lemma eventually_conj: | |
| 315 | assumes P: "eventually (\<lambda>x. P x) F" | |
| 316 | assumes Q: "eventually (\<lambda>x. Q x) F" | |
| 317 | shows "eventually (\<lambda>x. P x \<and> Q x) F" | |
| 318 | using assms unfolding eventually_def | |
| 319 | by (rule is_filter.conj [OF is_filter_Rep_filter]) | |
| 320 | ||
| 321 | lemma eventually_Ball_finite: | |
| 322 | assumes "finite A" and "\<forall>y\<in>A. eventually (\<lambda>x. P x y) net" | |
| 323 | shows "eventually (\<lambda>x. \<forall>y\<in>A. P x y) net" | |
| 324 | using assms by (induct set: finite, simp, simp add: eventually_conj) | |
| 325 | ||
| 326 | lemma eventually_all_finite: | |
| 327 | fixes P :: "'a \<Rightarrow> 'b::finite \<Rightarrow> bool" | |
| 328 | assumes "\<And>y. eventually (\<lambda>x. P x y) net" | |
| 329 | shows "eventually (\<lambda>x. \<forall>y. P x y) net" | |
| 330 | using eventually_Ball_finite [of UNIV P] assms by simp | |
| 331 | ||
| 332 | lemma eventually_mp: | |
| 333 | assumes "eventually (\<lambda>x. P x \<longrightarrow> Q x) F" | |
| 334 | assumes "eventually (\<lambda>x. P x) F" | |
| 335 | shows "eventually (\<lambda>x. Q x) F" | |
| 336 | proof (rule eventually_mono) | |
| 337 | show "\<forall>x. (P x \<longrightarrow> Q x) \<and> P x \<longrightarrow> Q x" by simp | |
| 338 | show "eventually (\<lambda>x. (P x \<longrightarrow> Q x) \<and> P x) F" | |
| 339 | using assms by (rule eventually_conj) | |
| 340 | qed | |
| 341 | ||
| 342 | lemma eventually_rev_mp: | |
| 343 | assumes "eventually (\<lambda>x. P x) F" | |
| 344 | assumes "eventually (\<lambda>x. P x \<longrightarrow> Q x) F" | |
| 345 | shows "eventually (\<lambda>x. Q x) F" | |
| 346 | using assms(2) assms(1) by (rule eventually_mp) | |
| 347 | ||
| 348 | lemma eventually_conj_iff: | |
| 349 | "eventually (\<lambda>x. P x \<and> Q x) F \<longleftrightarrow> eventually P F \<and> eventually Q F" | |
| 350 | by (auto intro: eventually_conj elim: eventually_rev_mp) | |
| 351 | ||
| 352 | lemma eventually_elim1: | |
| 353 | assumes "eventually (\<lambda>i. P i) F" | |
| 354 | assumes "\<And>i. P i \<Longrightarrow> Q i" | |
| 355 | shows "eventually (\<lambda>i. Q i) F" | |
| 356 | using assms by (auto elim!: eventually_rev_mp) | |
| 357 | ||
| 358 | lemma eventually_elim2: | |
| 359 | assumes "eventually (\<lambda>i. P i) F" | |
| 360 | assumes "eventually (\<lambda>i. Q i) F" | |
| 361 | assumes "\<And>i. P i \<Longrightarrow> Q i \<Longrightarrow> R i" | |
| 362 | shows "eventually (\<lambda>i. R i) F" | |
| 363 | using assms by (auto elim!: eventually_rev_mp) | |
| 364 | ||
| 365 | lemma eventually_subst: | |
| 366 | assumes "eventually (\<lambda>n. P n = Q n) F" | |
| 367 | shows "eventually P F = eventually Q F" (is "?L = ?R") | |
| 368 | proof - | |
| 369 | from assms have "eventually (\<lambda>x. P x \<longrightarrow> Q x) F" | |
| 370 | and "eventually (\<lambda>x. Q x \<longrightarrow> P x) F" | |
| 371 | by (auto elim: eventually_elim1) | |
| 372 | then show ?thesis by (auto elim: eventually_elim2) | |
| 373 | qed | |
| 374 | ||
| 375 | ML {*
 | |
| 376 | fun eventually_elim_tac ctxt thms thm = | |
| 377 | let | |
| 378 | val thy = Proof_Context.theory_of ctxt | |
| 379 |       val mp_thms = thms RL [@{thm eventually_rev_mp}]
 | |
| 380 | val raw_elim_thm = | |
| 381 |         (@{thm allI} RS @{thm always_eventually})
 | |
| 382 | |> fold (fn thm1 => fn thm2 => thm2 RS thm1) mp_thms | |
| 383 |         |> fold (fn _ => fn thm => @{thm impI} RS thm) thms
 | |
| 384 | val cases_prop = prop_of (raw_elim_thm RS thm) | |
| 385 |       val cases = (Rule_Cases.make_common (thy, cases_prop) [(("elim", []), [])])
 | |
| 386 | in | |
| 387 | CASES cases (rtac raw_elim_thm 1) thm | |
| 388 | end | |
| 389 | *} | |
| 390 | ||
| 391 | method_setup eventually_elim = {*
 | |
| 392 | Scan.succeed (fn ctxt => METHOD_CASES (eventually_elim_tac ctxt)) | |
| 393 | *} "elimination of eventually quantifiers" | |
| 394 | ||
| 395 | ||
| 396 | subsubsection {* Finer-than relation *}
 | |
| 397 | ||
| 398 | text {* @{term "F \<le> F'"} means that filter @{term F} is finer than
 | |
| 399 | filter @{term F'}. *}
 | |
| 400 | ||
| 401 | instantiation filter :: (type) complete_lattice | |
| 402 | begin | |
| 403 | ||
| 404 | definition le_filter_def: | |
| 405 | "F \<le> F' \<longleftrightarrow> (\<forall>P. eventually P F' \<longrightarrow> eventually P F)" | |
| 406 | ||
| 407 | definition | |
| 408 | "(F :: 'a filter) < F' \<longleftrightarrow> F \<le> F' \<and> \<not> F' \<le> F" | |
| 409 | ||
| 410 | definition | |
| 411 | "top = Abs_filter (\<lambda>P. \<forall>x. P x)" | |
| 412 | ||
| 413 | definition | |
| 414 | "bot = Abs_filter (\<lambda>P. True)" | |
| 415 | ||
| 416 | definition | |
| 417 | "sup F F' = Abs_filter (\<lambda>P. eventually P F \<and> eventually P F')" | |
| 418 | ||
| 419 | definition | |
| 420 | "inf F F' = Abs_filter | |
| 421 | (\<lambda>P. \<exists>Q R. eventually Q F \<and> eventually R F' \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x))" | |
| 422 | ||
| 423 | definition | |
| 424 | "Sup S = Abs_filter (\<lambda>P. \<forall>F\<in>S. eventually P F)" | |
| 425 | ||
| 426 | definition | |
| 427 |   "Inf S = Sup {F::'a filter. \<forall>F'\<in>S. F \<le> F'}"
 | |
| 428 | ||
| 429 | lemma eventually_top [simp]: "eventually P top \<longleftrightarrow> (\<forall>x. P x)" | |
| 430 | unfolding top_filter_def | |
| 431 | by (rule eventually_Abs_filter, rule is_filter.intro, auto) | |
| 432 | ||
| 433 | lemma eventually_bot [simp]: "eventually P bot" | |
| 434 | unfolding bot_filter_def | |
| 435 | by (subst eventually_Abs_filter, rule is_filter.intro, auto) | |
| 436 | ||
| 437 | lemma eventually_sup: | |
| 438 | "eventually P (sup F F') \<longleftrightarrow> eventually P F \<and> eventually P F'" | |
| 439 | unfolding sup_filter_def | |
| 440 | by (rule eventually_Abs_filter, rule is_filter.intro) | |
| 441 | (auto elim!: eventually_rev_mp) | |
| 442 | ||
| 443 | lemma eventually_inf: | |
| 444 | "eventually P (inf F F') \<longleftrightarrow> | |
| 445 | (\<exists>Q R. eventually Q F \<and> eventually R F' \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x))" | |
| 446 | unfolding inf_filter_def | |
| 447 | apply (rule eventually_Abs_filter, rule is_filter.intro) | |
| 448 | apply (fast intro: eventually_True) | |
| 449 | apply clarify | |
| 450 | apply (intro exI conjI) | |
| 451 | apply (erule (1) eventually_conj) | |
| 452 | apply (erule (1) eventually_conj) | |
| 453 | apply simp | |
| 454 | apply auto | |
| 455 | done | |
| 456 | ||
| 457 | lemma eventually_Sup: | |
| 458 | "eventually P (Sup S) \<longleftrightarrow> (\<forall>F\<in>S. eventually P F)" | |
| 459 | unfolding Sup_filter_def | |
| 460 | apply (rule eventually_Abs_filter, rule is_filter.intro) | |
| 461 | apply (auto intro: eventually_conj elim!: eventually_rev_mp) | |
| 462 | done | |
| 463 | ||
| 464 | instance proof | |
| 465 | fix F F' F'' :: "'a filter" and S :: "'a filter set" | |
| 466 |   { show "F < F' \<longleftrightarrow> F \<le> F' \<and> \<not> F' \<le> F"
 | |
| 467 | by (rule less_filter_def) } | |
| 468 |   { show "F \<le> F"
 | |
| 469 | unfolding le_filter_def by simp } | |
| 470 |   { assume "F \<le> F'" and "F' \<le> F''" thus "F \<le> F''"
 | |
| 471 | unfolding le_filter_def by simp } | |
| 472 |   { assume "F \<le> F'" and "F' \<le> F" thus "F = F'"
 | |
| 473 | unfolding le_filter_def filter_eq_iff by fast } | |
| 474 |   { show "inf F F' \<le> F" and "inf F F' \<le> F'"
 | |
| 475 | unfolding le_filter_def eventually_inf by (auto intro: eventually_True) } | |
| 476 |   { assume "F \<le> F'" and "F \<le> F''" thus "F \<le> inf F' F''"
 | |
| 477 | unfolding le_filter_def eventually_inf | |
| 478 | by (auto elim!: eventually_mono intro: eventually_conj) } | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52265diff
changeset | 479 |   { show "F \<le> sup F F'" and "F' \<le> sup F F'"
 | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52265diff
changeset | 480 | unfolding le_filter_def eventually_sup by simp_all } | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52265diff
changeset | 481 |   { assume "F \<le> F''" and "F' \<le> F''" thus "sup F F' \<le> F''"
 | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52265diff
changeset | 482 | unfolding le_filter_def eventually_sup by simp } | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52265diff
changeset | 483 |   { assume "F'' \<in> S" thus "Inf S \<le> F''"
 | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52265diff
changeset | 484 | unfolding le_filter_def Inf_filter_def eventually_Sup Ball_def by simp } | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52265diff
changeset | 485 |   { assume "\<And>F'. F' \<in> S \<Longrightarrow> F \<le> F'" thus "F \<le> Inf S"
 | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52265diff
changeset | 486 | unfolding le_filter_def Inf_filter_def eventually_Sup Ball_def by simp } | 
| 51471 | 487 |   { assume "F \<in> S" thus "F \<le> Sup S"
 | 
| 488 | unfolding le_filter_def eventually_Sup by simp } | |
| 489 |   { assume "\<And>F. F \<in> S \<Longrightarrow> F \<le> F'" thus "Sup S \<le> F'"
 | |
| 490 | unfolding le_filter_def eventually_Sup by simp } | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52265diff
changeset | 491 |   { show "Inf {} = (top::'a filter)"
 | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52265diff
changeset | 492 | by (auto simp: top_filter_def Inf_filter_def Sup_filter_def) | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52265diff
changeset | 493 | (metis (full_types) Topological_Spaces.top_filter_def always_eventually eventually_top) } | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52265diff
changeset | 494 |   { show "Sup {} = (bot::'a filter)"
 | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52265diff
changeset | 495 | by (auto simp: bot_filter_def Sup_filter_def) } | 
| 51471 | 496 | qed | 
| 497 | ||
| 498 | end | |
| 499 | ||
| 500 | lemma filter_leD: | |
| 501 | "F \<le> F' \<Longrightarrow> eventually P F' \<Longrightarrow> eventually P F" | |
| 502 | unfolding le_filter_def by simp | |
| 503 | ||
| 504 | lemma filter_leI: | |
| 505 | "(\<And>P. eventually P F' \<Longrightarrow> eventually P F) \<Longrightarrow> F \<le> F'" | |
| 506 | unfolding le_filter_def by simp | |
| 507 | ||
| 508 | lemma eventually_False: | |
| 509 | "eventually (\<lambda>x. False) F \<longleftrightarrow> F = bot" | |
| 510 | unfolding filter_eq_iff by (auto elim: eventually_rev_mp) | |
| 511 | ||
| 512 | abbreviation (input) trivial_limit :: "'a filter \<Rightarrow> bool" | |
| 513 | where "trivial_limit F \<equiv> F = bot" | |
| 514 | ||
| 515 | lemma trivial_limit_def: "trivial_limit F \<longleftrightarrow> eventually (\<lambda>x. False) F" | |
| 516 | by (rule eventually_False [symmetric]) | |
| 517 | ||
| 518 | lemma eventually_const: "\<not> trivial_limit net \<Longrightarrow> eventually (\<lambda>x. P) net \<longleftrightarrow> P" | |
| 519 | by (cases P) (simp_all add: eventually_False) | |
| 520 | ||
| 521 | ||
| 522 | subsubsection {* Map function for filters *}
 | |
| 523 | ||
| 524 | definition filtermap :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> 'b filter"
 | |
| 525 | where "filtermap f F = Abs_filter (\<lambda>P. eventually (\<lambda>x. P (f x)) F)" | |
| 526 | ||
| 527 | lemma eventually_filtermap: | |
| 528 | "eventually P (filtermap f F) = eventually (\<lambda>x. P (f x)) F" | |
| 529 | unfolding filtermap_def | |
| 530 | apply (rule eventually_Abs_filter) | |
| 531 | apply (rule is_filter.intro) | |
| 532 | apply (auto elim!: eventually_rev_mp) | |
| 533 | done | |
| 534 | ||
| 535 | lemma filtermap_ident: "filtermap (\<lambda>x. x) F = F" | |
| 536 | by (simp add: filter_eq_iff eventually_filtermap) | |
| 537 | ||
| 538 | lemma filtermap_filtermap: | |
| 539 | "filtermap f (filtermap g F) = filtermap (\<lambda>x. f (g x)) F" | |
| 540 | by (simp add: filter_eq_iff eventually_filtermap) | |
| 541 | ||
| 542 | lemma filtermap_mono: "F \<le> F' \<Longrightarrow> filtermap f F \<le> filtermap f F'" | |
| 543 | unfolding le_filter_def eventually_filtermap by simp | |
| 544 | ||
| 545 | lemma filtermap_bot [simp]: "filtermap f bot = bot" | |
| 546 | by (simp add: filter_eq_iff eventually_filtermap) | |
| 547 | ||
| 548 | lemma filtermap_sup: "filtermap f (sup F1 F2) = sup (filtermap f F1) (filtermap f F2)" | |
| 549 | by (auto simp: filter_eq_iff eventually_filtermap eventually_sup) | |
| 550 | ||
| 551 | subsubsection {* Order filters *}
 | |
| 552 | ||
| 553 | definition at_top :: "('a::order) filter"
 | |
| 554 | where "at_top = Abs_filter (\<lambda>P. \<exists>k. \<forall>n\<ge>k. P n)" | |
| 555 | ||
| 556 | lemma eventually_at_top_linorder: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::linorder. \<forall>n\<ge>N. P n)" | |
| 557 | unfolding at_top_def | |
| 558 | proof (rule eventually_Abs_filter, rule is_filter.intro) | |
| 559 | fix P Q :: "'a \<Rightarrow> bool" | |
| 560 | assume "\<exists>i. \<forall>n\<ge>i. P n" and "\<exists>j. \<forall>n\<ge>j. Q n" | |
| 561 | then obtain i j where "\<forall>n\<ge>i. P n" and "\<forall>n\<ge>j. Q n" by auto | |
| 562 | then have "\<forall>n\<ge>max i j. P n \<and> Q n" by simp | |
| 563 | then show "\<exists>k. \<forall>n\<ge>k. P n \<and> Q n" .. | |
| 564 | qed auto | |
| 565 | ||
| 566 | lemma eventually_ge_at_top: | |
| 567 | "eventually (\<lambda>x. (c::_::linorder) \<le> x) at_top" | |
| 568 | unfolding eventually_at_top_linorder by auto | |
| 569 | ||
| 570 | lemma eventually_at_top_dense: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::dense_linorder. \<forall>n>N. P n)" | |
| 571 | unfolding eventually_at_top_linorder | |
| 572 | proof safe | |
| 573 | fix N assume "\<forall>n\<ge>N. P n" then show "\<exists>N. \<forall>n>N. P n" by (auto intro!: exI[of _ N]) | |
| 574 | next | |
| 575 | fix N assume "\<forall>n>N. P n" | |
| 576 | moreover from gt_ex[of N] guess y .. | |
| 577 | ultimately show "\<exists>N. \<forall>n\<ge>N. P n" by (auto intro!: exI[of _ y]) | |
| 578 | qed | |
| 579 | ||
| 580 | lemma eventually_gt_at_top: | |
| 581 | "eventually (\<lambda>x. (c::_::dense_linorder) < x) at_top" | |
| 582 | unfolding eventually_at_top_dense by auto | |
| 583 | ||
| 584 | definition at_bot :: "('a::order) filter"
 | |
| 585 | where "at_bot = Abs_filter (\<lambda>P. \<exists>k. \<forall>n\<le>k. P n)" | |
| 586 | ||
| 587 | lemma eventually_at_bot_linorder: | |
| 588 | fixes P :: "'a::linorder \<Rightarrow> bool" shows "eventually P at_bot \<longleftrightarrow> (\<exists>N. \<forall>n\<le>N. P n)" | |
| 589 | unfolding at_bot_def | |
| 590 | proof (rule eventually_Abs_filter, rule is_filter.intro) | |
| 591 | fix P Q :: "'a \<Rightarrow> bool" | |
| 592 | assume "\<exists>i. \<forall>n\<le>i. P n" and "\<exists>j. \<forall>n\<le>j. Q n" | |
| 593 | then obtain i j where "\<forall>n\<le>i. P n" and "\<forall>n\<le>j. Q n" by auto | |
| 594 | then have "\<forall>n\<le>min i j. P n \<and> Q n" by simp | |
| 595 | then show "\<exists>k. \<forall>n\<le>k. P n \<and> Q n" .. | |
| 596 | qed auto | |
| 597 | ||
| 598 | lemma eventually_le_at_bot: | |
| 599 | "eventually (\<lambda>x. x \<le> (c::_::linorder)) at_bot" | |
| 600 | unfolding eventually_at_bot_linorder by auto | |
| 601 | ||
| 602 | lemma eventually_at_bot_dense: | |
| 603 | fixes P :: "'a::dense_linorder \<Rightarrow> bool" shows "eventually P at_bot \<longleftrightarrow> (\<exists>N. \<forall>n<N. P n)" | |
| 604 | unfolding eventually_at_bot_linorder | |
| 605 | proof safe | |
| 606 | fix N assume "\<forall>n\<le>N. P n" then show "\<exists>N. \<forall>n<N. P n" by (auto intro!: exI[of _ N]) | |
| 607 | next | |
| 608 | fix N assume "\<forall>n<N. P n" | |
| 609 | moreover from lt_ex[of N] guess y .. | |
| 610 | ultimately show "\<exists>N. \<forall>n\<le>N. P n" by (auto intro!: exI[of _ y]) | |
| 611 | qed | |
| 612 | ||
| 613 | lemma eventually_gt_at_bot: | |
| 614 | "eventually (\<lambda>x. x < (c::_::dense_linorder)) at_bot" | |
| 615 | unfolding eventually_at_bot_dense by auto | |
| 616 | ||
| 617 | subsection {* Sequentially *}
 | |
| 618 | ||
| 619 | abbreviation sequentially :: "nat filter" | |
| 620 | where "sequentially == at_top" | |
| 621 | ||
| 622 | lemma sequentially_def: "sequentially = Abs_filter (\<lambda>P. \<exists>k. \<forall>n\<ge>k. P n)" | |
| 623 | unfolding at_top_def by simp | |
| 624 | ||
| 625 | lemma eventually_sequentially: | |
| 626 | "eventually P sequentially \<longleftrightarrow> (\<exists>N. \<forall>n\<ge>N. P n)" | |
| 627 | by (rule eventually_at_top_linorder) | |
| 628 | ||
| 629 | lemma sequentially_bot [simp, intro]: "sequentially \<noteq> bot" | |
| 630 | unfolding filter_eq_iff eventually_sequentially by auto | |
| 631 | ||
| 632 | lemmas trivial_limit_sequentially = sequentially_bot | |
| 633 | ||
| 634 | lemma eventually_False_sequentially [simp]: | |
| 635 | "\<not> eventually (\<lambda>n. False) sequentially" | |
| 636 | by (simp add: eventually_False) | |
| 637 | ||
| 638 | lemma le_sequentially: | |
| 639 | "F \<le> sequentially \<longleftrightarrow> (\<forall>N. eventually (\<lambda>n. N \<le> n) F)" | |
| 640 | unfolding le_filter_def eventually_sequentially | |
| 641 | by (safe, fast, drule_tac x=N in spec, auto elim: eventually_rev_mp) | |
| 642 | ||
| 643 | lemma eventually_sequentiallyI: | |
| 644 | assumes "\<And>x. c \<le> x \<Longrightarrow> P x" | |
| 645 | shows "eventually P sequentially" | |
| 646 | using assms by (auto simp: eventually_sequentially) | |
| 647 | ||
| 51474 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51473diff
changeset | 648 | lemma eventually_sequentially_seg: | 
| 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51473diff
changeset | 649 | "eventually (\<lambda>n. P (n + k)) sequentially \<longleftrightarrow> eventually P sequentially" | 
| 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51473diff
changeset | 650 | unfolding eventually_sequentially | 
| 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51473diff
changeset | 651 | apply safe | 
| 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51473diff
changeset | 652 | apply (rule_tac x="N + k" in exI) | 
| 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51473diff
changeset | 653 | apply rule | 
| 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51473diff
changeset | 654 | apply (erule_tac x="n - k" in allE) | 
| 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51473diff
changeset | 655 | apply auto [] | 
| 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51473diff
changeset | 656 | apply (rule_tac x=N in exI) | 
| 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51473diff
changeset | 657 | apply auto [] | 
| 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51473diff
changeset | 658 | done | 
| 51471 | 659 | |
| 660 | subsubsection {* Standard filters *}
 | |
| 661 | ||
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 662 | definition principal :: "'a set \<Rightarrow> 'a filter" where | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 663 | "principal S = Abs_filter (\<lambda>P. \<forall>x\<in>S. P x)" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 664 | |
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 665 | lemma eventually_principal: "eventually P (principal S) \<longleftrightarrow> (\<forall>x\<in>S. P x)" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 666 | unfolding principal_def | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 667 | by (rule eventually_Abs_filter, rule is_filter.intro) auto | 
| 51471 | 668 | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 669 | lemma eventually_inf_principal: "eventually P (inf F (principal s)) \<longleftrightarrow> eventually (\<lambda>x. x \<in> s \<longrightarrow> P x) F" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 670 | unfolding eventually_inf eventually_principal by (auto elim: eventually_elim1) | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 671 | |
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 672 | lemma principal_UNIV[simp]: "principal UNIV = top" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 673 | by (auto simp: filter_eq_iff eventually_principal) | 
| 51471 | 674 | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 675 | lemma principal_empty[simp]: "principal {} = bot"
 | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 676 | by (auto simp: filter_eq_iff eventually_principal) | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 677 | |
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 678 | lemma principal_le_iff[iff]: "principal A \<le> principal B \<longleftrightarrow> A \<subseteq> B" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 679 | by (auto simp: le_filter_def eventually_principal) | 
| 51471 | 680 | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 681 | lemma le_principal: "F \<le> principal A \<longleftrightarrow> eventually (\<lambda>x. x \<in> A) F" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 682 | unfolding le_filter_def eventually_principal | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 683 | apply safe | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 684 | apply (erule_tac x="\<lambda>x. x \<in> A" in allE) | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 685 | apply (auto elim: eventually_elim1) | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 686 | done | 
| 51471 | 687 | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 688 | lemma principal_inject[iff]: "principal A = principal B \<longleftrightarrow> A = B" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 689 | unfolding eq_iff by simp | 
| 51471 | 690 | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 691 | lemma sup_principal[simp]: "sup (principal A) (principal B) = principal (A \<union> B)" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 692 | unfolding filter_eq_iff eventually_sup eventually_principal by auto | 
| 51471 | 693 | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 694 | lemma inf_principal[simp]: "inf (principal A) (principal B) = principal (A \<inter> B)" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 695 | unfolding filter_eq_iff eventually_inf eventually_principal | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 696 | by (auto intro: exI[of _ "\<lambda>x. x \<in> A"] exI[of _ "\<lambda>x. x \<in> B"]) | 
| 51471 | 697 | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 698 | lemma SUP_principal[simp]: "(SUP i : I. principal (A i)) = principal (\<Union>i\<in>I. A i)" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 699 | unfolding filter_eq_iff eventually_Sup SUP_def by (auto simp: eventually_principal) | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 700 | |
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 701 | lemma filtermap_principal[simp]: "filtermap f (principal A) = principal (f ` A)" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 702 | unfolding filter_eq_iff eventually_filtermap eventually_principal by simp | 
| 51471 | 703 | |
| 704 | subsubsection {* Topological filters *}
 | |
| 705 | ||
| 706 | definition (in topological_space) nhds :: "'a \<Rightarrow> 'a filter" | |
| 707 | where "nhds a = Abs_filter (\<lambda>P. \<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. P x))" | |
| 708 | ||
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 709 | definition (in topological_space) at_within :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a filter" ("at (_) within (_)" [1000, 60] 60)
 | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 710 |   where "at a within s = inf (nhds a) (principal (s - {a}))"
 | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 711 | |
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 712 | abbreviation (in topological_space) at :: "'a \<Rightarrow> 'a filter" ("at") where
 | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 713 | "at x \<equiv> at x within (CONST UNIV)" | 
| 51471 | 714 | |
| 51473 | 715 | abbreviation (in order_topology) at_right :: "'a \<Rightarrow> 'a filter" where | 
| 51471 | 716 |   "at_right x \<equiv> at x within {x <..}"
 | 
| 717 | ||
| 51473 | 718 | abbreviation (in order_topology) at_left :: "'a \<Rightarrow> 'a filter" where | 
| 51471 | 719 |   "at_left x \<equiv> at x within {..< x}"
 | 
| 720 | ||
| 51473 | 721 | lemma (in topological_space) eventually_nhds: | 
| 51471 | 722 | "eventually P (nhds a) \<longleftrightarrow> (\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. P x))" | 
| 723 | unfolding nhds_def | |
| 724 | proof (rule eventually_Abs_filter, rule is_filter.intro) | |
| 51473 | 725 | have "open UNIV \<and> a \<in> UNIV \<and> (\<forall>x\<in>UNIV. True)" by simp | 
| 51471 | 726 | thus "\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. True)" .. | 
| 727 | next | |
| 728 | fix P Q | |
| 729 | assume "\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. P x)" | |
| 730 | and "\<exists>T. open T \<and> a \<in> T \<and> (\<forall>x\<in>T. Q x)" | |
| 731 | then obtain S T where | |
| 732 | "open S \<and> a \<in> S \<and> (\<forall>x\<in>S. P x)" | |
| 733 | "open T \<and> a \<in> T \<and> (\<forall>x\<in>T. Q x)" by auto | |
| 734 | hence "open (S \<inter> T) \<and> a \<in> S \<inter> T \<and> (\<forall>x\<in>(S \<inter> T). P x \<and> Q x)" | |
| 735 | by (simp add: open_Int) | |
| 736 | thus "\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. P x \<and> Q x)" .. | |
| 737 | qed auto | |
| 738 | ||
| 739 | lemma nhds_neq_bot [simp]: "nhds a \<noteq> bot" | |
| 740 | unfolding trivial_limit_def eventually_nhds by simp | |
| 741 | ||
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 742 | lemma eventually_at_filter: | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 743 | "eventually P (at a within s) \<longleftrightarrow> eventually (\<lambda>x. x \<noteq> a \<longrightarrow> x \<in> s \<longrightarrow> P x) (nhds a)" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 744 | unfolding at_within_def eventually_inf_principal by (simp add: imp_conjL[symmetric] conj_commute) | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 745 | |
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 746 | lemma at_le: "s \<subseteq> t \<Longrightarrow> at x within s \<le> at x within t" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 747 | unfolding at_within_def by (intro inf_mono) auto | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 748 | |
| 51471 | 749 | lemma eventually_at_topological: | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 750 | "eventually P (at a within s) \<longleftrightarrow> (\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. x \<noteq> a \<longrightarrow> x \<in> s \<longrightarrow> P x))" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 751 | unfolding eventually_nhds eventually_at_filter by simp | 
| 51471 | 752 | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 753 | lemma at_within_open: "a \<in> S \<Longrightarrow> open S \<Longrightarrow> at a within S = at a" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 754 | unfolding filter_eq_iff eventually_at_topological by (metis open_Int Int_iff UNIV_I) | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 755 | |
| 51471 | 756 | lemma at_eq_bot_iff: "at a = bot \<longleftrightarrow> open {a}"
 | 
| 757 | unfolding trivial_limit_def eventually_at_topological | |
| 758 |   by (safe, case_tac "S = {a}", simp, fast, fast)
 | |
| 759 | ||
| 760 | lemma at_neq_bot [simp]: "at (a::'a::perfect_space) \<noteq> bot" | |
| 761 | by (simp add: at_eq_bot_iff not_open_singleton) | |
| 762 | ||
| 763 | lemma eventually_at_right: | |
| 764 |   fixes x :: "'a :: {no_top, linorder_topology}"
 | |
| 765 | shows "eventually P (at_right x) \<longleftrightarrow> (\<exists>b. x < b \<and> (\<forall>z. x < z \<and> z < b \<longrightarrow> P z))" | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 766 | unfolding eventually_at_topological | 
| 51471 | 767 | proof safe | 
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 768 | from gt_ex[of x] guess y .. | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 769 | moreover fix S assume "open S" "x \<in> S" note open_right[OF this, of y] | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 770 | moreover note gt_ex[of x] | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 771 |   moreover assume "\<forall>s\<in>S. s \<noteq> x \<longrightarrow> s \<in> {x<..} \<longrightarrow> P s"
 | 
| 51471 | 772 | ultimately show "\<exists>b>x. \<forall>z. x < z \<and> z < b \<longrightarrow> P z" | 
| 773 | by (auto simp: subset_eq Ball_def) | |
| 774 | next | |
| 775 | fix b assume "x < b" "\<forall>z. x < z \<and> z < b \<longrightarrow> P z" | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 776 |   then show "\<exists>S. open S \<and> x \<in> S \<and> (\<forall>xa\<in>S. xa \<noteq> x \<longrightarrow> xa \<in> {x<..} \<longrightarrow> P xa)"
 | 
| 51471 | 777 |     by (intro exI[of _ "{..< b}"]) auto
 | 
| 778 | qed | |
| 779 | ||
| 780 | lemma eventually_at_left: | |
| 781 |   fixes x :: "'a :: {no_bot, linorder_topology}"
 | |
| 782 | shows "eventually P (at_left x) \<longleftrightarrow> (\<exists>b. x > b \<and> (\<forall>z. b < z \<and> z < x \<longrightarrow> P z))" | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 783 | unfolding eventually_at_topological | 
| 51471 | 784 | proof safe | 
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 785 | from lt_ex[of x] guess y .. | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 786 | moreover fix S assume "open S" "x \<in> S" note open_left[OF this, of y] | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 787 |   moreover assume "\<forall>s\<in>S. s \<noteq> x \<longrightarrow> s \<in> {..<x} \<longrightarrow> P s"
 | 
| 51471 | 788 | ultimately show "\<exists>b<x. \<forall>z. b < z \<and> z < x \<longrightarrow> P z" | 
| 789 | by (auto simp: subset_eq Ball_def) | |
| 790 | next | |
| 791 | fix b assume "b < x" "\<forall>z. b < z \<and> z < x \<longrightarrow> P z" | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 792 |   then show "\<exists>S. open S \<and> x \<in> S \<and> (\<forall>s\<in>S. s \<noteq> x \<longrightarrow> s \<in> {..<x} \<longrightarrow> P s)"
 | 
| 51471 | 793 |     by (intro exI[of _ "{b <..}"]) auto
 | 
| 794 | qed | |
| 795 | ||
| 796 | lemma trivial_limit_at_left_real [simp]: | |
| 797 |   "\<not> trivial_limit (at_left (x::'a::{no_bot, dense_linorder, linorder_topology}))"
 | |
| 798 | unfolding trivial_limit_def eventually_at_left by (auto dest: dense) | |
| 799 | ||
| 800 | lemma trivial_limit_at_right_real [simp]: | |
| 801 |   "\<not> trivial_limit (at_right (x::'a::{no_top, dense_linorder, linorder_topology}))"
 | |
| 802 | unfolding trivial_limit_def eventually_at_right by (auto dest: dense) | |
| 803 | ||
| 804 | lemma at_eq_sup_left_right: "at (x::'a::linorder_topology) = sup (at_left x) (at_right x)" | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 805 | by (auto simp: eventually_at_filter filter_eq_iff eventually_sup | 
| 51471 | 806 | elim: eventually_elim2 eventually_elim1) | 
| 807 | ||
| 808 | lemma eventually_at_split: | |
| 809 | "eventually P (at (x::'a::linorder_topology)) \<longleftrightarrow> eventually P (at_left x) \<and> eventually P (at_right x)" | |
| 810 | by (subst at_eq_sup_left_right) (simp add: eventually_sup) | |
| 811 | ||
| 812 | subsection {* Limits *}
 | |
| 813 | ||
| 814 | definition filterlim :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b filter \<Rightarrow> 'a filter \<Rightarrow> bool" where
 | |
| 815 | "filterlim f F2 F1 \<longleftrightarrow> filtermap f F1 \<le> F2" | |
| 816 | ||
| 817 | syntax | |
| 818 |   "_LIM" :: "pttrns \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> bool" ("(3LIM (_)/ (_)./ (_) :> (_))" [1000, 10, 0, 10] 10)
 | |
| 819 | ||
| 820 | translations | |
| 821 | "LIM x F1. f :> F2" == "CONST filterlim (%x. f) F2 F1" | |
| 822 | ||
| 823 | lemma filterlim_iff: | |
| 824 | "(LIM x F1. f x :> F2) \<longleftrightarrow> (\<forall>P. eventually P F2 \<longrightarrow> eventually (\<lambda>x. P (f x)) F1)" | |
| 825 | unfolding filterlim_def le_filter_def eventually_filtermap .. | |
| 826 | ||
| 827 | lemma filterlim_compose: | |
| 828 | "filterlim g F3 F2 \<Longrightarrow> filterlim f F2 F1 \<Longrightarrow> filterlim (\<lambda>x. g (f x)) F3 F1" | |
| 829 | unfolding filterlim_def filtermap_filtermap[symmetric] by (metis filtermap_mono order_trans) | |
| 830 | ||
| 831 | lemma filterlim_mono: | |
| 832 | "filterlim f F2 F1 \<Longrightarrow> F2 \<le> F2' \<Longrightarrow> F1' \<le> F1 \<Longrightarrow> filterlim f F2' F1'" | |
| 833 | unfolding filterlim_def by (metis filtermap_mono order_trans) | |
| 834 | ||
| 835 | lemma filterlim_ident: "LIM x F. x :> F" | |
| 836 | by (simp add: filterlim_def filtermap_ident) | |
| 837 | ||
| 838 | lemma filterlim_cong: | |
| 839 | "F1 = F1' \<Longrightarrow> F2 = F2' \<Longrightarrow> eventually (\<lambda>x. f x = g x) F2 \<Longrightarrow> filterlim f F1 F2 = filterlim g F1' F2'" | |
| 840 | by (auto simp: filterlim_def le_filter_def eventually_filtermap elim: eventually_elim2) | |
| 841 | ||
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 842 | lemma filterlim_principal: | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 843 | "(LIM x F. f x :> principal S) \<longleftrightarrow> (eventually (\<lambda>x. f x \<in> S) F)" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 844 | unfolding filterlim_def eventually_filtermap le_principal .. | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 845 | |
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 846 | lemma filterlim_inf: | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 847 | "(LIM x F1. f x :> inf F2 F3) \<longleftrightarrow> ((LIM x F1. f x :> F2) \<and> (LIM x F1. f x :> F3))" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 848 | unfolding filterlim_def by simp | 
| 51471 | 849 | |
| 850 | lemma filterlim_filtermap: "filterlim f F1 (filtermap g F2) = filterlim (\<lambda>x. f (g x)) F1 F2" | |
| 851 | unfolding filterlim_def filtermap_filtermap .. | |
| 852 | ||
| 853 | lemma filterlim_sup: | |
| 854 | "filterlim f F F1 \<Longrightarrow> filterlim f F F2 \<Longrightarrow> filterlim f F (sup F1 F2)" | |
| 855 | unfolding filterlim_def filtermap_sup by auto | |
| 856 | ||
| 857 | lemma filterlim_Suc: "filterlim Suc sequentially sequentially" | |
| 858 | by (simp add: filterlim_iff eventually_sequentially) (metis le_Suc_eq) | |
| 859 | ||
| 860 | subsubsection {* Tendsto *}
 | |
| 861 | ||
| 862 | abbreviation (in topological_space) | |
| 863 |   tendsto :: "('b \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'b filter \<Rightarrow> bool" (infixr "--->" 55) where
 | |
| 864 | "(f ---> l) F \<equiv> filterlim f (nhds l) F" | |
| 865 | ||
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 866 | definition (in t2_space) Lim :: "'f filter \<Rightarrow> ('f \<Rightarrow> 'a) \<Rightarrow> 'a" where
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 867 | "Lim A f = (THE l. (f ---> l) A)" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 868 | |
| 51471 | 869 | lemma tendsto_eq_rhs: "(f ---> x) F \<Longrightarrow> x = y \<Longrightarrow> (f ---> y) F" | 
| 870 | by simp | |
| 871 | ||
| 872 | ML {*
 | |
| 873 | ||
| 874 | structure Tendsto_Intros = Named_Thms | |
| 875 | ( | |
| 876 |   val name = @{binding tendsto_intros}
 | |
| 877 | val description = "introduction rules for tendsto" | |
| 878 | ) | |
| 879 | ||
| 880 | *} | |
| 881 | ||
| 882 | setup {*
 | |
| 883 | Tendsto_Intros.setup #> | |
| 884 |   Global_Theory.add_thms_dynamic (@{binding tendsto_eq_intros},
 | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 885 |     map_filter (try (fn thm => @{thm tendsto_eq_rhs} OF [thm])) o Tendsto_Intros.get o Context.proof_of);
 | 
| 51471 | 886 | *} | 
| 887 | ||
| 51473 | 888 | lemma (in topological_space) tendsto_def: | 
| 889 | "(f ---> l) F \<longleftrightarrow> (\<forall>S. open S \<longrightarrow> l \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) F)" | |
| 51471 | 890 | unfolding filterlim_def | 
| 891 | proof safe | |
| 892 | fix S assume "open S" "l \<in> S" "filtermap f F \<le> nhds l" | |
| 893 | then show "eventually (\<lambda>x. f x \<in> S) F" | |
| 894 | unfolding eventually_nhds eventually_filtermap le_filter_def | |
| 895 | by (auto elim!: allE[of _ "\<lambda>x. x \<in> S"] eventually_rev_mp) | |
| 896 | qed (auto elim!: eventually_rev_mp simp: eventually_nhds eventually_filtermap le_filter_def) | |
| 897 | ||
| 898 | lemma tendsto_mono: "F \<le> F' \<Longrightarrow> (f ---> l) F' \<Longrightarrow> (f ---> l) F" | |
| 899 | unfolding tendsto_def le_filter_def by fast | |
| 900 | ||
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 901 | lemma tendsto_within_subset: "(f ---> l) (at x within S) \<Longrightarrow> T \<subseteq> S \<Longrightarrow> (f ---> l) (at x within T)" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 902 | by (blast intro: tendsto_mono at_le) | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 903 | |
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 904 | lemma filterlim_at: | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 905 | "(LIM x F. f x :> at b within s) \<longleftrightarrow> (eventually (\<lambda>x. f x \<in> s \<and> f x \<noteq> b) F \<and> (f ---> b) F)" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 906 | by (simp add: at_within_def filterlim_inf filterlim_principal conj_commute) | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 907 | |
| 51473 | 908 | lemma (in topological_space) topological_tendstoI: | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 909 | "(\<And>S. open S \<Longrightarrow> l \<in> S \<Longrightarrow> eventually (\<lambda>x. f x \<in> S) F) \<Longrightarrow> (f ---> l) F" | 
| 51471 | 910 | unfolding tendsto_def by auto | 
| 911 | ||
| 51473 | 912 | lemma (in topological_space) topological_tendstoD: | 
| 51471 | 913 | "(f ---> l) F \<Longrightarrow> open S \<Longrightarrow> l \<in> S \<Longrightarrow> eventually (\<lambda>x. f x \<in> S) F" | 
| 914 | unfolding tendsto_def by auto | |
| 915 | ||
| 916 | lemma order_tendstoI: | |
| 917 | fixes y :: "_ :: order_topology" | |
| 918 | assumes "\<And>a. a < y \<Longrightarrow> eventually (\<lambda>x. a < f x) F" | |
| 919 | assumes "\<And>a. y < a \<Longrightarrow> eventually (\<lambda>x. f x < a) F" | |
| 920 | shows "(f ---> y) F" | |
| 921 | proof (rule topological_tendstoI) | |
| 922 | fix S assume "open S" "y \<in> S" | |
| 923 | then show "eventually (\<lambda>x. f x \<in> S) F" | |
| 924 | unfolding open_generated_order | |
| 925 | proof induct | |
| 926 | case (UN K) | |
| 927 | then obtain k where "y \<in> k" "k \<in> K" by auto | |
| 928 | with UN(2)[of k] show ?case | |
| 929 | by (auto elim: eventually_elim1) | |
| 930 | qed (insert assms, auto elim: eventually_elim2) | |
| 931 | qed | |
| 932 | ||
| 933 | lemma order_tendstoD: | |
| 934 | fixes y :: "_ :: order_topology" | |
| 935 | assumes y: "(f ---> y) F" | |
| 936 | shows "a < y \<Longrightarrow> eventually (\<lambda>x. a < f x) F" | |
| 937 | and "y < a \<Longrightarrow> eventually (\<lambda>x. f x < a) F" | |
| 938 |   using topological_tendstoD[OF y, of "{..< a}"] topological_tendstoD[OF y, of "{a <..}"] by auto
 | |
| 939 | ||
| 940 | lemma order_tendsto_iff: | |
| 941 | fixes f :: "_ \<Rightarrow> 'a :: order_topology" | |
| 942 | shows "(f ---> x) F \<longleftrightarrow>(\<forall>l<x. eventually (\<lambda>x. l < f x) F) \<and> (\<forall>u>x. eventually (\<lambda>x. f x < u) F)" | |
| 943 | by (metis order_tendstoI order_tendstoD) | |
| 944 | ||
| 945 | lemma tendsto_bot [simp]: "(f ---> a) bot" | |
| 946 | unfolding tendsto_def by simp | |
| 947 | ||
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 948 | lemma tendsto_ident_at [tendsto_intros]: "((\<lambda>x. x) ---> a) (at a within s)" | 
| 51471 | 949 | unfolding tendsto_def eventually_at_topological by auto | 
| 950 | ||
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 951 | lemma (in topological_space) tendsto_const [tendsto_intros]: "((\<lambda>x. k) ---> k) F" | 
| 51471 | 952 | by (simp add: tendsto_def) | 
| 953 | ||
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 954 | lemma (in t2_space) tendsto_unique: | 
| 51471 | 955 | assumes "\<not> trivial_limit F" and "(f ---> a) F" and "(f ---> b) F" | 
| 956 | shows "a = b" | |
| 957 | proof (rule ccontr) | |
| 958 | assume "a \<noteq> b" | |
| 959 |   obtain U V where "open U" "open V" "a \<in> U" "b \<in> V" "U \<inter> V = {}"
 | |
| 960 | using hausdorff [OF `a \<noteq> b`] by fast | |
| 961 | have "eventually (\<lambda>x. f x \<in> U) F" | |
| 962 | using `(f ---> a) F` `open U` `a \<in> U` by (rule topological_tendstoD) | |
| 963 | moreover | |
| 964 | have "eventually (\<lambda>x. f x \<in> V) F" | |
| 965 | using `(f ---> b) F` `open V` `b \<in> V` by (rule topological_tendstoD) | |
| 966 | ultimately | |
| 967 | have "eventually (\<lambda>x. False) F" | |
| 968 | proof eventually_elim | |
| 969 | case (elim x) | |
| 970 | hence "f x \<in> U \<inter> V" by simp | |
| 971 |     with `U \<inter> V = {}` show ?case by simp
 | |
| 972 | qed | |
| 973 | with `\<not> trivial_limit F` show "False" | |
| 974 | by (simp add: trivial_limit_def) | |
| 975 | qed | |
| 976 | ||
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 977 | lemma (in t2_space) tendsto_const_iff: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 978 | assumes "\<not> trivial_limit F" shows "((\<lambda>x. a :: 'a) ---> b) F \<longleftrightarrow> a = b" | 
| 51471 | 979 | by (safe intro!: tendsto_const tendsto_unique [OF assms tendsto_const]) | 
| 980 | ||
| 981 | lemma increasing_tendsto: | |
| 982 | fixes f :: "_ \<Rightarrow> 'a::order_topology" | |
| 983 | assumes bdd: "eventually (\<lambda>n. f n \<le> l) F" | |
| 984 | and en: "\<And>x. x < l \<Longrightarrow> eventually (\<lambda>n. x < f n) F" | |
| 985 | shows "(f ---> l) F" | |
| 986 | using assms by (intro order_tendstoI) (auto elim!: eventually_elim1) | |
| 987 | ||
| 988 | lemma decreasing_tendsto: | |
| 989 | fixes f :: "_ \<Rightarrow> 'a::order_topology" | |
| 990 | assumes bdd: "eventually (\<lambda>n. l \<le> f n) F" | |
| 991 | and en: "\<And>x. l < x \<Longrightarrow> eventually (\<lambda>n. f n < x) F" | |
| 992 | shows "(f ---> l) F" | |
| 993 | using assms by (intro order_tendstoI) (auto elim!: eventually_elim1) | |
| 994 | ||
| 995 | lemma tendsto_sandwich: | |
| 996 | fixes f g h :: "'a \<Rightarrow> 'b::order_topology" | |
| 997 | assumes ev: "eventually (\<lambda>n. f n \<le> g n) net" "eventually (\<lambda>n. g n \<le> h n) net" | |
| 998 | assumes lim: "(f ---> c) net" "(h ---> c) net" | |
| 999 | shows "(g ---> c) net" | |
| 1000 | proof (rule order_tendstoI) | |
| 1001 | fix a show "a < c \<Longrightarrow> eventually (\<lambda>x. a < g x) net" | |
| 1002 | using order_tendstoD[OF lim(1), of a] ev by (auto elim: eventually_elim2) | |
| 1003 | next | |
| 1004 | fix a show "c < a \<Longrightarrow> eventually (\<lambda>x. g x < a) net" | |
| 1005 | using order_tendstoD[OF lim(2), of a] ev by (auto elim: eventually_elim2) | |
| 1006 | qed | |
| 1007 | ||
| 1008 | lemma tendsto_le: | |
| 1009 | fixes f g :: "'a \<Rightarrow> 'b::linorder_topology" | |
| 1010 | assumes F: "\<not> trivial_limit F" | |
| 1011 | assumes x: "(f ---> x) F" and y: "(g ---> y) F" | |
| 1012 | assumes ev: "eventually (\<lambda>x. g x \<le> f x) F" | |
| 1013 | shows "y \<le> x" | |
| 1014 | proof (rule ccontr) | |
| 1015 | assume "\<not> y \<le> x" | |
| 1016 |   with less_separate[of x y] obtain a b where xy: "x < a" "b < y" "{..<a} \<inter> {b<..} = {}"
 | |
| 1017 | by (auto simp: not_le) | |
| 1018 | then have "eventually (\<lambda>x. f x < a) F" "eventually (\<lambda>x. b < g x) F" | |
| 1019 | using x y by (auto intro: order_tendstoD) | |
| 1020 | with ev have "eventually (\<lambda>x. False) F" | |
| 1021 | by eventually_elim (insert xy, fastforce) | |
| 1022 | with F show False | |
| 1023 | by (simp add: eventually_False) | |
| 1024 | qed | |
| 1025 | ||
| 1026 | lemma tendsto_le_const: | |
| 1027 | fixes f :: "'a \<Rightarrow> 'b::linorder_topology" | |
| 1028 | assumes F: "\<not> trivial_limit F" | |
| 1029 | assumes x: "(f ---> x) F" and a: "eventually (\<lambda>x. a \<le> f x) F" | |
| 1030 | shows "a \<le> x" | |
| 1031 | using F x tendsto_const a by (rule tendsto_le) | |
| 1032 | ||
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1033 | subsubsection {* Rules about @{const Lim} *}
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1034 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1035 | lemma (in t2_space) tendsto_Lim: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1036 | "\<not>(trivial_limit net) \<Longrightarrow> (f ---> l) net \<Longrightarrow> Lim net f = l" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1037 | unfolding Lim_def using tendsto_unique[of net f] by auto | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1038 | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1039 | lemma Lim_ident_at: "\<not> trivial_limit (at x within s) \<Longrightarrow> Lim (at x within s) (\<lambda>x. x) = x" | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1040 | by (rule tendsto_Lim[OF _ tendsto_ident_at]) auto | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1041 | |
| 51471 | 1042 | subsection {* Limits to @{const at_top} and @{const at_bot} *}
 | 
| 1043 | ||
| 1044 | lemma filterlim_at_top: | |
| 1045 |   fixes f :: "'a \<Rightarrow> ('b::linorder)"
 | |
| 1046 | shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. Z \<le> f x) F)" | |
| 1047 | by (auto simp: filterlim_iff eventually_at_top_linorder elim!: eventually_elim1) | |
| 1048 | ||
| 1049 | lemma filterlim_at_top_dense: | |
| 1050 |   fixes f :: "'a \<Rightarrow> ('b::dense_linorder)"
 | |
| 1051 | shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. Z < f x) F)" | |
| 1052 | by (metis eventually_elim1[of _ F] eventually_gt_at_top order_less_imp_le | |
| 1053 | filterlim_at_top[of f F] filterlim_iff[of f at_top F]) | |
| 1054 | ||
| 1055 | lemma filterlim_at_top_ge: | |
| 1056 |   fixes f :: "'a \<Rightarrow> ('b::linorder)" and c :: "'b"
 | |
| 1057 | shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z\<ge>c. eventually (\<lambda>x. Z \<le> f x) F)" | |
| 1058 | unfolding filterlim_at_top | |
| 1059 | proof safe | |
| 1060 | fix Z assume *: "\<forall>Z\<ge>c. eventually (\<lambda>x. Z \<le> f x) F" | |
| 1061 | with *[THEN spec, of "max Z c"] show "eventually (\<lambda>x. Z \<le> f x) F" | |
| 1062 | by (auto elim!: eventually_elim1) | |
| 1063 | qed simp | |
| 1064 | ||
| 1065 | lemma filterlim_at_top_at_top: | |
| 1066 | fixes f :: "'a::linorder \<Rightarrow> 'b::linorder" | |
| 1067 | assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" | |
| 1068 | assumes bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)" | |
| 1069 | assumes Q: "eventually Q at_top" | |
| 1070 | assumes P: "eventually P at_top" | |
| 1071 | shows "filterlim f at_top at_top" | |
| 1072 | proof - | |
| 1073 | from P obtain x where x: "\<And>y. x \<le> y \<Longrightarrow> P y" | |
| 1074 | unfolding eventually_at_top_linorder by auto | |
| 1075 | show ?thesis | |
| 1076 | proof (intro filterlim_at_top_ge[THEN iffD2] allI impI) | |
| 1077 | fix z assume "x \<le> z" | |
| 1078 | with x have "P z" by auto | |
| 1079 | have "eventually (\<lambda>x. g z \<le> x) at_top" | |
| 1080 | by (rule eventually_ge_at_top) | |
| 1081 | with Q show "eventually (\<lambda>x. z \<le> f x) at_top" | |
| 1082 | by eventually_elim (metis mono bij `P z`) | |
| 1083 | qed | |
| 1084 | qed | |
| 1085 | ||
| 1086 | lemma filterlim_at_top_gt: | |
| 1087 |   fixes f :: "'a \<Rightarrow> ('b::dense_linorder)" and c :: "'b"
 | |
| 1088 | shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z>c. eventually (\<lambda>x. Z \<le> f x) F)" | |
| 1089 | by (metis filterlim_at_top order_less_le_trans gt_ex filterlim_at_top_ge) | |
| 1090 | ||
| 1091 | lemma filterlim_at_bot: | |
| 1092 |   fixes f :: "'a \<Rightarrow> ('b::linorder)"
 | |
| 1093 | shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. f x \<le> Z) F)" | |
| 1094 | by (auto simp: filterlim_iff eventually_at_bot_linorder elim!: eventually_elim1) | |
| 1095 | ||
| 1096 | lemma filterlim_at_bot_le: | |
| 1097 |   fixes f :: "'a \<Rightarrow> ('b::linorder)" and c :: "'b"
 | |
| 1098 | shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z\<le>c. eventually (\<lambda>x. Z \<ge> f x) F)" | |
| 1099 | unfolding filterlim_at_bot | |
| 1100 | proof safe | |
| 1101 | fix Z assume *: "\<forall>Z\<le>c. eventually (\<lambda>x. Z \<ge> f x) F" | |
| 1102 | with *[THEN spec, of "min Z c"] show "eventually (\<lambda>x. Z \<ge> f x) F" | |
| 1103 | by (auto elim!: eventually_elim1) | |
| 1104 | qed simp | |
| 1105 | ||
| 1106 | lemma filterlim_at_bot_lt: | |
| 1107 |   fixes f :: "'a \<Rightarrow> ('b::dense_linorder)" and c :: "'b"
 | |
| 1108 | shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z<c. eventually (\<lambda>x. Z \<ge> f x) F)" | |
| 1109 | by (metis filterlim_at_bot filterlim_at_bot_le lt_ex order_le_less_trans) | |
| 1110 | ||
| 1111 | lemma filterlim_at_bot_at_right: | |
| 1112 |   fixes f :: "'a::{no_top, linorder_topology} \<Rightarrow> 'b::linorder"
 | |
| 1113 | assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" | |
| 1114 | assumes bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)" | |
| 1115 | assumes Q: "eventually Q (at_right a)" and bound: "\<And>b. Q b \<Longrightarrow> a < b" | |
| 1116 | assumes P: "eventually P at_bot" | |
| 1117 | shows "filterlim f at_bot (at_right a)" | |
| 1118 | proof - | |
| 1119 | from P obtain x where x: "\<And>y. y \<le> x \<Longrightarrow> P y" | |
| 1120 | unfolding eventually_at_bot_linorder by auto | |
| 1121 | show ?thesis | |
| 1122 | proof (intro filterlim_at_bot_le[THEN iffD2] allI impI) | |
| 1123 | fix z assume "z \<le> x" | |
| 1124 | with x have "P z" by auto | |
| 1125 | have "eventually (\<lambda>x. x \<le> g z) (at_right a)" | |
| 1126 | using bound[OF bij(2)[OF `P z`]] | |
| 1127 | unfolding eventually_at_right by (auto intro!: exI[of _ "g z"]) | |
| 1128 | with Q show "eventually (\<lambda>x. f x \<le> z) (at_right a)" | |
| 1129 | by eventually_elim (metis bij `P z` mono) | |
| 1130 | qed | |
| 1131 | qed | |
| 1132 | ||
| 1133 | lemma filterlim_at_top_at_left: | |
| 1134 |   fixes f :: "'a::{no_bot, linorder_topology} \<Rightarrow> 'b::linorder"
 | |
| 1135 | assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" | |
| 1136 | assumes bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)" | |
| 1137 | assumes Q: "eventually Q (at_left a)" and bound: "\<And>b. Q b \<Longrightarrow> b < a" | |
| 1138 | assumes P: "eventually P at_top" | |
| 1139 | shows "filterlim f at_top (at_left a)" | |
| 1140 | proof - | |
| 1141 | from P obtain x where x: "\<And>y. x \<le> y \<Longrightarrow> P y" | |
| 1142 | unfolding eventually_at_top_linorder by auto | |
| 1143 | show ?thesis | |
| 1144 | proof (intro filterlim_at_top_ge[THEN iffD2] allI impI) | |
| 1145 | fix z assume "x \<le> z" | |
| 1146 | with x have "P z" by auto | |
| 1147 | have "eventually (\<lambda>x. g z \<le> x) (at_left a)" | |
| 1148 | using bound[OF bij(2)[OF `P z`]] | |
| 1149 | unfolding eventually_at_left by (auto intro!: exI[of _ "g z"]) | |
| 1150 | with Q show "eventually (\<lambda>x. z \<le> f x) (at_left a)" | |
| 1151 | by eventually_elim (metis bij `P z` mono) | |
| 1152 | qed | |
| 1153 | qed | |
| 1154 | ||
| 1155 | lemma filterlim_split_at: | |
| 1156 | "filterlim f F (at_left x) \<Longrightarrow> filterlim f F (at_right x) \<Longrightarrow> filterlim f F (at (x::'a::linorder_topology))" | |
| 1157 | by (subst at_eq_sup_left_right) (rule filterlim_sup) | |
| 1158 | ||
| 1159 | lemma filterlim_at_split: | |
| 1160 | "filterlim f F (at (x::'a::linorder_topology)) \<longleftrightarrow> filterlim f F (at_left x) \<and> filterlim f F (at_right x)" | |
| 1161 | by (subst at_eq_sup_left_right) (simp add: filterlim_def filtermap_sup) | |
| 1162 | ||
| 1163 | ||
| 1164 | subsection {* Limits on sequences *}
 | |
| 1165 | ||
| 1166 | abbreviation (in topological_space) | |
| 1167 | LIMSEQ :: "[nat \<Rightarrow> 'a, 'a] \<Rightarrow> bool" | |
| 1168 |     ("((_)/ ----> (_))" [60, 60] 60) where
 | |
| 1169 | "X ----> L \<equiv> (X ---> L) sequentially" | |
| 1170 | ||
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1171 | abbreviation (in t2_space) lim :: "(nat \<Rightarrow> 'a) \<Rightarrow> 'a" where | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1172 | "lim X \<equiv> Lim sequentially X" | 
| 51471 | 1173 | |
| 1174 | definition (in topological_space) convergent :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool" where | |
| 1175 | "convergent X = (\<exists>L. X ----> L)" | |
| 1176 | ||
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1177 | lemma lim_def: "lim X = (THE L. X ----> L)" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1178 | unfolding Lim_def .. | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1179 | |
| 51471 | 1180 | subsubsection {* Monotone sequences and subsequences *}
 | 
| 1181 | ||
| 1182 | definition | |
| 1183 | monoseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" where | |
| 1184 |     --{*Definition of monotonicity.
 | |
| 1185 | The use of disjunction here complicates proofs considerably. | |
| 1186 | One alternative is to add a Boolean argument to indicate the direction. | |
| 1187 | Another is to develop the notions of increasing and decreasing first.*} | |
| 1188 | "monoseq X = ((\<forall>m. \<forall>n\<ge>m. X m \<le> X n) | (\<forall>m. \<forall>n\<ge>m. X n \<le> X m))" | |
| 1189 | ||
| 1190 | definition | |
| 1191 | incseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" where | |
| 1192 |     --{*Increasing sequence*}
 | |
| 1193 | "incseq X \<longleftrightarrow> (\<forall>m. \<forall>n\<ge>m. X m \<le> X n)" | |
| 1194 | ||
| 1195 | definition | |
| 1196 | decseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" where | |
| 1197 |     --{*Decreasing sequence*}
 | |
| 1198 | "decseq X \<longleftrightarrow> (\<forall>m. \<forall>n\<ge>m. X n \<le> X m)" | |
| 1199 | ||
| 1200 | definition | |
| 1201 | subseq :: "(nat \<Rightarrow> nat) \<Rightarrow> bool" where | |
| 1202 |     --{*Definition of subsequence*}
 | |
| 1203 | "subseq f \<longleftrightarrow> (\<forall>m. \<forall>n>m. f m < f n)" | |
| 1204 | ||
| 1205 | lemma incseq_mono: "mono f \<longleftrightarrow> incseq f" | |
| 1206 | unfolding mono_def incseq_def by auto | |
| 1207 | ||
| 1208 | lemma incseq_SucI: | |
| 1209 | "(\<And>n. X n \<le> X (Suc n)) \<Longrightarrow> incseq X" | |
| 1210 | using lift_Suc_mono_le[of X] | |
| 1211 | by (auto simp: incseq_def) | |
| 1212 | ||
| 1213 | lemma incseqD: "\<And>i j. incseq f \<Longrightarrow> i \<le> j \<Longrightarrow> f i \<le> f j" | |
| 1214 | by (auto simp: incseq_def) | |
| 1215 | ||
| 1216 | lemma incseq_SucD: "incseq A \<Longrightarrow> A i \<le> A (Suc i)" | |
| 1217 | using incseqD[of A i "Suc i"] by auto | |
| 1218 | ||
| 1219 | lemma incseq_Suc_iff: "incseq f \<longleftrightarrow> (\<forall>n. f n \<le> f (Suc n))" | |
| 1220 | by (auto intro: incseq_SucI dest: incseq_SucD) | |
| 1221 | ||
| 1222 | lemma incseq_const[simp, intro]: "incseq (\<lambda>x. k)" | |
| 1223 | unfolding incseq_def by auto | |
| 1224 | ||
| 1225 | lemma decseq_SucI: | |
| 1226 | "(\<And>n. X (Suc n) \<le> X n) \<Longrightarrow> decseq X" | |
| 1227 | using order.lift_Suc_mono_le[OF dual_order, of X] | |
| 1228 | by (auto simp: decseq_def) | |
| 1229 | ||
| 1230 | lemma decseqD: "\<And>i j. decseq f \<Longrightarrow> i \<le> j \<Longrightarrow> f j \<le> f i" | |
| 1231 | by (auto simp: decseq_def) | |
| 1232 | ||
| 1233 | lemma decseq_SucD: "decseq A \<Longrightarrow> A (Suc i) \<le> A i" | |
| 1234 | using decseqD[of A i "Suc i"] by auto | |
| 1235 | ||
| 1236 | lemma decseq_Suc_iff: "decseq f \<longleftrightarrow> (\<forall>n. f (Suc n) \<le> f n)" | |
| 1237 | by (auto intro: decseq_SucI dest: decseq_SucD) | |
| 1238 | ||
| 1239 | lemma decseq_const[simp, intro]: "decseq (\<lambda>x. k)" | |
| 1240 | unfolding decseq_def by auto | |
| 1241 | ||
| 1242 | lemma monoseq_iff: "monoseq X \<longleftrightarrow> incseq X \<or> decseq X" | |
| 1243 | unfolding monoseq_def incseq_def decseq_def .. | |
| 1244 | ||
| 1245 | lemma monoseq_Suc: | |
| 1246 | "monoseq X \<longleftrightarrow> (\<forall>n. X n \<le> X (Suc n)) \<or> (\<forall>n. X (Suc n) \<le> X n)" | |
| 1247 | unfolding monoseq_iff incseq_Suc_iff decseq_Suc_iff .. | |
| 1248 | ||
| 1249 | lemma monoI1: "\<forall>m. \<forall> n \<ge> m. X m \<le> X n ==> monoseq X" | |
| 1250 | by (simp add: monoseq_def) | |
| 1251 | ||
| 1252 | lemma monoI2: "\<forall>m. \<forall> n \<ge> m. X n \<le> X m ==> monoseq X" | |
| 1253 | by (simp add: monoseq_def) | |
| 1254 | ||
| 1255 | lemma mono_SucI1: "\<forall>n. X n \<le> X (Suc n) ==> monoseq X" | |
| 1256 | by (simp add: monoseq_Suc) | |
| 1257 | ||
| 1258 | lemma mono_SucI2: "\<forall>n. X (Suc n) \<le> X n ==> monoseq X" | |
| 1259 | by (simp add: monoseq_Suc) | |
| 1260 | ||
| 1261 | lemma monoseq_minus: | |
| 1262 | fixes a :: "nat \<Rightarrow> 'a::ordered_ab_group_add" | |
| 1263 | assumes "monoseq a" | |
| 1264 | shows "monoseq (\<lambda> n. - a n)" | |
| 1265 | proof (cases "\<forall> m. \<forall> n \<ge> m. a m \<le> a n") | |
| 1266 | case True | |
| 1267 | hence "\<forall> m. \<forall> n \<ge> m. - a n \<le> - a m" by auto | |
| 1268 | thus ?thesis by (rule monoI2) | |
| 1269 | next | |
| 1270 | case False | |
| 1271 | hence "\<forall> m. \<forall> n \<ge> m. - a m \<le> - a n" using `monoseq a`[unfolded monoseq_def] by auto | |
| 1272 | thus ?thesis by (rule monoI1) | |
| 1273 | qed | |
| 1274 | ||
| 1275 | text{*Subsequence (alternative definition, (e.g. Hoskins)*}
 | |
| 1276 | ||
| 1277 | lemma subseq_Suc_iff: "subseq f = (\<forall>n. (f n) < (f (Suc n)))" | |
| 1278 | apply (simp add: subseq_def) | |
| 1279 | apply (auto dest!: less_imp_Suc_add) | |
| 1280 | apply (induct_tac k) | |
| 1281 | apply (auto intro: less_trans) | |
| 1282 | done | |
| 1283 | ||
| 1284 | text{* for any sequence, there is a monotonic subsequence *}
 | |
| 1285 | lemma seq_monosub: | |
| 1286 | fixes s :: "nat => 'a::linorder" | |
| 1287 | shows "\<exists>f. subseq f \<and> monoseq (\<lambda> n. (s (f n)))" | |
| 1288 | proof cases | |
| 1289 | let "?P p n" = "p > n \<and> (\<forall>m\<ge>p. s m \<le> s p)" | |
| 1290 | assume *: "\<forall>n. \<exists>p. ?P p n" | |
| 1291 | def f \<equiv> "nat_rec (SOME p. ?P p 0) (\<lambda>_ n. SOME p. ?P p n)" | |
| 1292 | have f_0: "f 0 = (SOME p. ?P p 0)" unfolding f_def by simp | |
| 1293 | have f_Suc: "\<And>i. f (Suc i) = (SOME p. ?P p (f i))" unfolding f_def nat_rec_Suc .. | |
| 1294 | have P_0: "?P (f 0) 0" unfolding f_0 using *[rule_format] by (rule someI2_ex) auto | |
| 1295 | have P_Suc: "\<And>i. ?P (f (Suc i)) (f i)" unfolding f_Suc using *[rule_format] by (rule someI2_ex) auto | |
| 1296 | then have "subseq f" unfolding subseq_Suc_iff by auto | |
| 1297 | moreover have "monoseq (\<lambda>n. s (f n))" unfolding monoseq_Suc | |
| 1298 | proof (intro disjI2 allI) | |
| 1299 | fix n show "s (f (Suc n)) \<le> s (f n)" | |
| 1300 | proof (cases n) | |
| 1301 | case 0 with P_Suc[of 0] P_0 show ?thesis by auto | |
| 1302 | next | |
| 1303 | case (Suc m) | |
| 1304 | from P_Suc[of n] Suc have "f (Suc m) \<le> f (Suc (Suc m))" by simp | |
| 1305 | with P_Suc Suc show ?thesis by simp | |
| 1306 | qed | |
| 1307 | qed | |
| 1308 | ultimately show ?thesis by auto | |
| 1309 | next | |
| 1310 | let "?P p m" = "m < p \<and> s m < s p" | |
| 1311 | assume "\<not> (\<forall>n. \<exists>p>n. (\<forall>m\<ge>p. s m \<le> s p))" | |
| 1312 | then obtain N where N: "\<And>p. p > N \<Longrightarrow> \<exists>m>p. s p < s m" by (force simp: not_le le_less) | |
| 1313 | def f \<equiv> "nat_rec (SOME p. ?P p (Suc N)) (\<lambda>_ n. SOME p. ?P p n)" | |
| 1314 | have f_0: "f 0 = (SOME p. ?P p (Suc N))" unfolding f_def by simp | |
| 1315 | have f_Suc: "\<And>i. f (Suc i) = (SOME p. ?P p (f i))" unfolding f_def nat_rec_Suc .. | |
| 1316 | have P_0: "?P (f 0) (Suc N)" | |
| 1317 | unfolding f_0 some_eq_ex[of "\<lambda>p. ?P p (Suc N)"] using N[of "Suc N"] by auto | |
| 1318 |   { fix i have "N < f i \<Longrightarrow> ?P (f (Suc i)) (f i)"
 | |
| 1319 | unfolding f_Suc some_eq_ex[of "\<lambda>p. ?P p (f i)"] using N[of "f i"] . } | |
| 1320 | note P' = this | |
| 1321 |   { fix i have "N < f i \<and> ?P (f (Suc i)) (f i)"
 | |
| 1322 | by (induct i) (insert P_0 P', auto) } | |
| 1323 | then have "subseq f" "monoseq (\<lambda>x. s (f x))" | |
| 1324 | unfolding subseq_Suc_iff monoseq_Suc by (auto simp: not_le intro: less_imp_le) | |
| 1325 | then show ?thesis by auto | |
| 1326 | qed | |
| 1327 | ||
| 1328 | lemma seq_suble: assumes sf: "subseq f" shows "n \<le> f n" | |
| 1329 | proof(induct n) | |
| 1330 | case 0 thus ?case by simp | |
| 1331 | next | |
| 1332 | case (Suc n) | |
| 1333 | from sf[unfolded subseq_Suc_iff, rule_format, of n] Suc.hyps | |
| 1334 | have "n < f (Suc n)" by arith | |
| 1335 | thus ?case by arith | |
| 1336 | qed | |
| 1337 | ||
| 1338 | lemma eventually_subseq: | |
| 1339 | "subseq r \<Longrightarrow> eventually P sequentially \<Longrightarrow> eventually (\<lambda>n. P (r n)) sequentially" | |
| 1340 | unfolding eventually_sequentially by (metis seq_suble le_trans) | |
| 1341 | ||
| 51473 | 1342 | lemma not_eventually_sequentiallyD: | 
| 1343 | assumes P: "\<not> eventually P sequentially" | |
| 1344 | shows "\<exists>r. subseq r \<and> (\<forall>n. \<not> P (r n))" | |
| 1345 | proof - | |
| 1346 | from P have "\<forall>n. \<exists>m\<ge>n. \<not> P m" | |
| 1347 | unfolding eventually_sequentially by (simp add: not_less) | |
| 1348 | then obtain r where "\<And>n. r n \<ge> n" "\<And>n. \<not> P (r n)" | |
| 1349 | by (auto simp: choice_iff) | |
| 1350 | then show ?thesis | |
| 1351 | by (auto intro!: exI[of _ "\<lambda>n. r (((Suc \<circ> r) ^^ Suc n) 0)"] | |
| 1352 | simp: less_eq_Suc_le subseq_Suc_iff) | |
| 1353 | qed | |
| 1354 | ||
| 51471 | 1355 | lemma filterlim_subseq: "subseq f \<Longrightarrow> filterlim f sequentially sequentially" | 
| 1356 | unfolding filterlim_iff by (metis eventually_subseq) | |
| 1357 | ||
| 1358 | lemma subseq_o: "subseq r \<Longrightarrow> subseq s \<Longrightarrow> subseq (r \<circ> s)" | |
| 1359 | unfolding subseq_def by simp | |
| 1360 | ||
| 1361 | lemma subseq_mono: assumes "subseq r" "m < n" shows "r m < r n" | |
| 1362 | using assms by (auto simp: subseq_def) | |
| 1363 | ||
| 1364 | lemma incseq_imp_monoseq: "incseq X \<Longrightarrow> monoseq X" | |
| 1365 | by (simp add: incseq_def monoseq_def) | |
| 1366 | ||
| 1367 | lemma decseq_imp_monoseq: "decseq X \<Longrightarrow> monoseq X" | |
| 1368 | by (simp add: decseq_def monoseq_def) | |
| 1369 | ||
| 1370 | lemma decseq_eq_incseq: | |
| 1371 | fixes X :: "nat \<Rightarrow> 'a::ordered_ab_group_add" shows "decseq X = incseq (\<lambda>n. - X n)" | |
| 1372 | by (simp add: decseq_def incseq_def) | |
| 1373 | ||
| 1374 | lemma INT_decseq_offset: | |
| 1375 | assumes "decseq F" | |
| 1376 |   shows "(\<Inter>i. F i) = (\<Inter>i\<in>{n..}. F i)"
 | |
| 1377 | proof safe | |
| 1378 |   fix x i assume x: "x \<in> (\<Inter>i\<in>{n..}. F i)"
 | |
| 1379 | show "x \<in> F i" | |
| 1380 | proof cases | |
| 1381 | from x have "x \<in> F n" by auto | |
| 1382 | also assume "i \<le> n" with `decseq F` have "F n \<subseteq> F i" | |
| 1383 | unfolding decseq_def by simp | |
| 1384 | finally show ?thesis . | |
| 1385 | qed (insert x, simp) | |
| 1386 | qed auto | |
| 1387 | ||
| 1388 | lemma LIMSEQ_const_iff: | |
| 1389 | fixes k l :: "'a::t2_space" | |
| 1390 | shows "(\<lambda>n. k) ----> l \<longleftrightarrow> k = l" | |
| 1391 | using trivial_limit_sequentially by (rule tendsto_const_iff) | |
| 1392 | ||
| 1393 | lemma LIMSEQ_SUP: | |
| 1394 |   "incseq X \<Longrightarrow> X ----> (SUP i. X i :: 'a :: {complete_linorder, linorder_topology})"
 | |
| 1395 | by (intro increasing_tendsto) | |
| 1396 | (auto simp: SUP_upper less_SUP_iff incseq_def eventually_sequentially intro: less_le_trans) | |
| 1397 | ||
| 1398 | lemma LIMSEQ_INF: | |
| 1399 |   "decseq X \<Longrightarrow> X ----> (INF i. X i :: 'a :: {complete_linorder, linorder_topology})"
 | |
| 1400 | by (intro decreasing_tendsto) | |
| 1401 | (auto simp: INF_lower INF_less_iff decseq_def eventually_sequentially intro: le_less_trans) | |
| 1402 | ||
| 1403 | lemma LIMSEQ_ignore_initial_segment: | |
| 1404 | "f ----> a \<Longrightarrow> (\<lambda>n. f (n + k)) ----> a" | |
| 51474 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51473diff
changeset | 1405 | unfolding tendsto_def | 
| 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51473diff
changeset | 1406 | by (subst eventually_sequentially_seg[where k=k]) | 
| 51471 | 1407 | |
| 1408 | lemma LIMSEQ_offset: | |
| 1409 | "(\<lambda>n. f (n + k)) ----> a \<Longrightarrow> f ----> a" | |
| 51474 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51473diff
changeset | 1410 | unfolding tendsto_def | 
| 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51473diff
changeset | 1411 | by (subst (asm) eventually_sequentially_seg[where k=k]) | 
| 51471 | 1412 | |
| 1413 | lemma LIMSEQ_Suc: "f ----> l \<Longrightarrow> (\<lambda>n. f (Suc n)) ----> l" | |
| 1414 | by (drule_tac k="Suc 0" in LIMSEQ_ignore_initial_segment, simp) | |
| 1415 | ||
| 1416 | lemma LIMSEQ_imp_Suc: "(\<lambda>n. f (Suc n)) ----> l \<Longrightarrow> f ----> l" | |
| 1417 | by (rule_tac k="Suc 0" in LIMSEQ_offset, simp) | |
| 1418 | ||
| 1419 | lemma LIMSEQ_Suc_iff: "(\<lambda>n. f (Suc n)) ----> l = f ----> l" | |
| 1420 | by (blast intro: LIMSEQ_imp_Suc LIMSEQ_Suc) | |
| 1421 | ||
| 1422 | lemma LIMSEQ_unique: | |
| 1423 | fixes a b :: "'a::t2_space" | |
| 1424 | shows "\<lbrakk>X ----> a; X ----> b\<rbrakk> \<Longrightarrow> a = b" | |
| 1425 | using trivial_limit_sequentially by (rule tendsto_unique) | |
| 1426 | ||
| 1427 | lemma LIMSEQ_le_const: | |
| 1428 | "\<lbrakk>X ----> (x::'a::linorder_topology); \<exists>N. \<forall>n\<ge>N. a \<le> X n\<rbrakk> \<Longrightarrow> a \<le> x" | |
| 1429 | using tendsto_le_const[of sequentially X x a] by (simp add: eventually_sequentially) | |
| 1430 | ||
| 1431 | lemma LIMSEQ_le: | |
| 1432 | "\<lbrakk>X ----> x; Y ----> y; \<exists>N. \<forall>n\<ge>N. X n \<le> Y n\<rbrakk> \<Longrightarrow> x \<le> (y::'a::linorder_topology)" | |
| 1433 | using tendsto_le[of sequentially Y y X x] by (simp add: eventually_sequentially) | |
| 1434 | ||
| 1435 | lemma LIMSEQ_le_const2: | |
| 1436 | "\<lbrakk>X ----> (x::'a::linorder_topology); \<exists>N. \<forall>n\<ge>N. X n \<le> a\<rbrakk> \<Longrightarrow> x \<le> a" | |
| 1437 | by (rule LIMSEQ_le[of X x "\<lambda>n. a"]) (auto simp: tendsto_const) | |
| 1438 | ||
| 1439 | lemma convergentD: "convergent X ==> \<exists>L. (X ----> L)" | |
| 1440 | by (simp add: convergent_def) | |
| 1441 | ||
| 1442 | lemma convergentI: "(X ----> L) ==> convergent X" | |
| 1443 | by (auto simp add: convergent_def) | |
| 1444 | ||
| 1445 | lemma convergent_LIMSEQ_iff: "convergent X = (X ----> lim X)" | |
| 1446 | by (auto intro: theI LIMSEQ_unique simp add: convergent_def lim_def) | |
| 1447 | ||
| 1448 | lemma convergent_const: "convergent (\<lambda>n. c)" | |
| 1449 | by (rule convergentI, rule tendsto_const) | |
| 1450 | ||
| 1451 | lemma monoseq_le: | |
| 1452 | "monoseq a \<Longrightarrow> a ----> (x::'a::linorder_topology) \<Longrightarrow> | |
| 1453 | ((\<forall> n. a n \<le> x) \<and> (\<forall>m. \<forall>n\<ge>m. a m \<le> a n)) \<or> ((\<forall> n. x \<le> a n) \<and> (\<forall>m. \<forall>n\<ge>m. a n \<le> a m))" | |
| 1454 | by (metis LIMSEQ_le_const LIMSEQ_le_const2 decseq_def incseq_def monoseq_iff) | |
| 1455 | ||
| 1456 | lemma LIMSEQ_subseq_LIMSEQ: | |
| 1457 | "\<lbrakk> X ----> L; subseq f \<rbrakk> \<Longrightarrow> (X o f) ----> L" | |
| 1458 | unfolding comp_def by (rule filterlim_compose[of X, OF _ filterlim_subseq]) | |
| 1459 | ||
| 1460 | lemma convergent_subseq_convergent: | |
| 1461 | "\<lbrakk>convergent X; subseq f\<rbrakk> \<Longrightarrow> convergent (X o f)" | |
| 1462 | unfolding convergent_def by (auto intro: LIMSEQ_subseq_LIMSEQ) | |
| 1463 | ||
| 1464 | lemma limI: "X ----> L ==> lim X = L" | |
| 1465 | apply (simp add: lim_def) | |
| 1466 | apply (blast intro: LIMSEQ_unique) | |
| 1467 | done | |
| 1468 | ||
| 1469 | lemma lim_le: "convergent f \<Longrightarrow> (\<And>n. f n \<le> (x::'a::linorder_topology)) \<Longrightarrow> lim f \<le> x" | |
| 1470 | using LIMSEQ_le_const2[of f "lim f" x] by (simp add: convergent_LIMSEQ_iff) | |
| 1471 | ||
| 1472 | subsubsection{*Increasing and Decreasing Series*}
 | |
| 1473 | ||
| 1474 | lemma incseq_le: "incseq X \<Longrightarrow> X ----> L \<Longrightarrow> X n \<le> (L::'a::linorder_topology)" | |
| 1475 | by (metis incseq_def LIMSEQ_le_const) | |
| 1476 | ||
| 1477 | lemma decseq_le: "decseq X \<Longrightarrow> X ----> L \<Longrightarrow> (L::'a::linorder_topology) \<le> X n" | |
| 1478 | by (metis decseq_def LIMSEQ_le_const2) | |
| 1479 | ||
| 51473 | 1480 | subsection {* First countable topologies *}
 | 
| 1481 | ||
| 1482 | class first_countable_topology = topological_space + | |
| 1483 | assumes first_countable_basis: | |
| 1484 | "\<exists>A::nat \<Rightarrow> 'a set. (\<forall>i. x \<in> A i \<and> open (A i)) \<and> (\<forall>S. open S \<and> x \<in> S \<longrightarrow> (\<exists>i. A i \<subseteq> S))" | |
| 1485 | ||
| 1486 | lemma (in first_countable_topology) countable_basis_at_decseq: | |
| 1487 | obtains A :: "nat \<Rightarrow> 'a set" where | |
| 1488 | "\<And>i. open (A i)" "\<And>i. x \<in> (A i)" | |
| 1489 | "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> eventually (\<lambda>i. A i \<subseteq> S) sequentially" | |
| 1490 | proof atomize_elim | |
| 1491 | from first_countable_basis[of x] obtain A :: "nat \<Rightarrow> 'a set" where | |
| 1492 | nhds: "\<And>i. open (A i)" "\<And>i. x \<in> A i" | |
| 1493 | and incl: "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> \<exists>i. A i \<subseteq> S" by auto | |
| 1494 | def F \<equiv> "\<lambda>n. \<Inter>i\<le>n. A i" | |
| 1495 | show "\<exists>A. (\<forall>i. open (A i)) \<and> (\<forall>i. x \<in> A i) \<and> | |
| 1496 | (\<forall>S. open S \<longrightarrow> x \<in> S \<longrightarrow> eventually (\<lambda>i. A i \<subseteq> S) sequentially)" | |
| 1497 | proof (safe intro!: exI[of _ F]) | |
| 1498 | fix i | |
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 1499 | show "open (F i)" using nhds(1) by (auto simp: F_def) | 
| 51473 | 1500 | show "x \<in> F i" using nhds(2) by (auto simp: F_def) | 
| 1501 | next | |
| 1502 | fix S assume "open S" "x \<in> S" | |
| 1503 | from incl[OF this] obtain i where "F i \<subseteq> S" unfolding F_def by auto | |
| 1504 | moreover have "\<And>j. i \<le> j \<Longrightarrow> F j \<subseteq> F i" | |
| 1505 | by (auto simp: F_def) | |
| 1506 | ultimately show "eventually (\<lambda>i. F i \<subseteq> S) sequentially" | |
| 1507 | by (auto simp: eventually_sequentially) | |
| 1508 | qed | |
| 1509 | qed | |
| 1510 | ||
| 1511 | lemma (in first_countable_topology) countable_basis: | |
| 1512 | obtains A :: "nat \<Rightarrow> 'a set" where | |
| 1513 | "\<And>i. open (A i)" "\<And>i. x \<in> A i" | |
| 1514 | "\<And>F. (\<forall>n. F n \<in> A n) \<Longrightarrow> F ----> x" | |
| 1515 | proof atomize_elim | |
| 1516 | from countable_basis_at_decseq[of x] guess A . note A = this | |
| 1517 |   { fix F S assume "\<forall>n. F n \<in> A n" "open S" "x \<in> S"
 | |
| 1518 | with A(3)[of S] have "eventually (\<lambda>n. F n \<in> S) sequentially" | |
| 1519 | by (auto elim: eventually_elim1 simp: subset_eq) } | |
| 1520 | with A show "\<exists>A. (\<forall>i. open (A i)) \<and> (\<forall>i. x \<in> A i) \<and> (\<forall>F. (\<forall>n. F n \<in> A n) \<longrightarrow> F ----> x)" | |
| 1521 | by (intro exI[of _ A]) (auto simp: tendsto_def) | |
| 1522 | qed | |
| 1523 | ||
| 1524 | lemma (in first_countable_topology) sequentially_imp_eventually_nhds_within: | |
| 1525 | assumes "\<forall>f. (\<forall>n. f n \<in> s) \<and> f ----> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially" | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1526 | shows "eventually P (inf (nhds a) (principal s))" | 
| 51473 | 1527 | proof (rule ccontr) | 
| 1528 | from countable_basis[of a] guess A . note A = this | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1529 | assume "\<not> eventually P (inf (nhds a) (principal s))" | 
| 51473 | 1530 | with A have P: "\<exists>F. \<forall>n. F n \<in> s \<and> F n \<in> A n \<and> \<not> P (F n)" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1531 | unfolding eventually_inf_principal eventually_nhds by (intro choice) fastforce | 
| 51473 | 1532 | then guess F .. | 
| 1533 | hence F0: "\<forall>n. F n \<in> s" and F2: "\<forall>n. F n \<in> A n" and F3: "\<forall>n. \<not> P (F n)" | |
| 1534 | by fast+ | |
| 1535 | with A have "F ----> a" by auto | |
| 1536 | hence "eventually (\<lambda>n. P (F n)) sequentially" | |
| 1537 | using assms F0 by simp | |
| 1538 | thus "False" by (simp add: F3) | |
| 1539 | qed | |
| 1540 | ||
| 1541 | lemma (in first_countable_topology) eventually_nhds_within_iff_sequentially: | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1542 | "eventually P (inf (nhds a) (principal s)) \<longleftrightarrow> | 
| 51473 | 1543 | (\<forall>f. (\<forall>n. f n \<in> s) \<and> f ----> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially)" | 
| 1544 | proof (safe intro!: sequentially_imp_eventually_nhds_within) | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1545 | assume "eventually P (inf (nhds a) (principal s))" | 
| 51473 | 1546 | then obtain S where "open S" "a \<in> S" "\<forall>x\<in>S. x \<in> s \<longrightarrow> P x" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1547 | by (auto simp: eventually_inf_principal eventually_nhds) | 
| 51473 | 1548 | moreover fix f assume "\<forall>n. f n \<in> s" "f ----> a" | 
| 1549 | ultimately show "eventually (\<lambda>n. P (f n)) sequentially" | |
| 1550 | by (auto dest!: topological_tendstoD elim: eventually_elim1) | |
| 1551 | qed | |
| 1552 | ||
| 1553 | lemma (in first_countable_topology) eventually_nhds_iff_sequentially: | |
| 1554 | "eventually P (nhds a) \<longleftrightarrow> (\<forall>f. f ----> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially)" | |
| 1555 | using eventually_nhds_within_iff_sequentially[of P a UNIV] by simp | |
| 1556 | ||
| 51471 | 1557 | subsection {* Function limit at a point *}
 | 
| 1558 | ||
| 1559 | abbreviation | |
| 1560 |   LIM :: "('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
 | |
| 1561 |         ("((_)/ -- (_)/ --> (_))" [60, 0, 60] 60) where
 | |
| 1562 | "f -- a --> L \<equiv> (f ---> L) (at a)" | |
| 1563 | ||
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1564 | lemma tendsto_within_open: "a \<in> S \<Longrightarrow> open S \<Longrightarrow> (f ---> l) (at a within S) \<longleftrightarrow> (f -- a --> l)" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1565 | unfolding tendsto_def by (simp add: at_within_open[where S=S]) | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1566 | |
| 51471 | 1567 | lemma LIM_const_not_eq[tendsto_intros]: | 
| 1568 | fixes a :: "'a::perfect_space" | |
| 1569 | fixes k L :: "'b::t2_space" | |
| 1570 | shows "k \<noteq> L \<Longrightarrow> \<not> (\<lambda>x. k) -- a --> L" | |
| 1571 | by (simp add: tendsto_const_iff) | |
| 1572 | ||
| 1573 | lemmas LIM_not_zero = LIM_const_not_eq [where L = 0] | |
| 1574 | ||
| 1575 | lemma LIM_const_eq: | |
| 1576 | fixes a :: "'a::perfect_space" | |
| 1577 | fixes k L :: "'b::t2_space" | |
| 1578 | shows "(\<lambda>x. k) -- a --> L \<Longrightarrow> k = L" | |
| 1579 | by (simp add: tendsto_const_iff) | |
| 1580 | ||
| 1581 | lemma LIM_unique: | |
| 1582 | fixes a :: "'a::perfect_space" and L M :: "'b::t2_space" | |
| 1583 | shows "f -- a --> L \<Longrightarrow> f -- a --> M \<Longrightarrow> L = M" | |
| 1584 | using at_neq_bot by (rule tendsto_unique) | |
| 1585 | ||
| 1586 | text {* Limits are equal for functions equal except at limit point *}
 | |
| 1587 | ||
| 1588 | lemma LIM_equal: "\<forall>x. x \<noteq> a --> (f x = g x) \<Longrightarrow> (f -- a --> l) \<longleftrightarrow> (g -- a --> l)" | |
| 1589 | unfolding tendsto_def eventually_at_topological by simp | |
| 1590 | ||
| 1591 | lemma LIM_cong: "a = b \<Longrightarrow> (\<And>x. x \<noteq> b \<Longrightarrow> f x = g x) \<Longrightarrow> l = m \<Longrightarrow> (f -- a --> l) \<longleftrightarrow> (g -- b --> m)" | |
| 1592 | by (simp add: LIM_equal) | |
| 1593 | ||
| 1594 | lemma LIM_cong_limit: "f -- x --> L \<Longrightarrow> K = L \<Longrightarrow> f -- x --> K" | |
| 1595 | by simp | |
| 1596 | ||
| 1597 | lemma tendsto_at_iff_tendsto_nhds: | |
| 1598 | "g -- l --> g l \<longleftrightarrow> (g ---> g l) (nhds l)" | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1599 | unfolding tendsto_def eventually_at_filter | 
| 51471 | 1600 | by (intro ext all_cong imp_cong) (auto elim!: eventually_elim1) | 
| 1601 | ||
| 1602 | lemma tendsto_compose: | |
| 1603 | "g -- l --> g l \<Longrightarrow> (f ---> l) F \<Longrightarrow> ((\<lambda>x. g (f x)) ---> g l) F" | |
| 1604 | unfolding tendsto_at_iff_tendsto_nhds by (rule filterlim_compose[of g]) | |
| 1605 | ||
| 1606 | lemma LIM_o: "\<lbrakk>g -- l --> g l; f -- a --> l\<rbrakk> \<Longrightarrow> (g \<circ> f) -- a --> g l" | |
| 1607 | unfolding o_def by (rule tendsto_compose) | |
| 1608 | ||
| 1609 | lemma tendsto_compose_eventually: | |
| 1610 | "g -- l --> m \<Longrightarrow> (f ---> l) F \<Longrightarrow> eventually (\<lambda>x. f x \<noteq> l) F \<Longrightarrow> ((\<lambda>x. g (f x)) ---> m) F" | |
| 1611 | by (rule filterlim_compose[of g _ "at l"]) (auto simp add: filterlim_at) | |
| 1612 | ||
| 1613 | lemma LIM_compose_eventually: | |
| 1614 | assumes f: "f -- a --> b" | |
| 1615 | assumes g: "g -- b --> c" | |
| 1616 | assumes inj: "eventually (\<lambda>x. f x \<noteq> b) (at a)" | |
| 1617 | shows "(\<lambda>x. g (f x)) -- a --> c" | |
| 1618 | using g f inj by (rule tendsto_compose_eventually) | |
| 1619 | ||
| 51473 | 1620 | subsubsection {* Relation of LIM and LIMSEQ *}
 | 
| 1621 | ||
| 1622 | lemma (in first_countable_topology) sequentially_imp_eventually_within: | |
| 1623 | "(\<forall>f. (\<forall>n. f n \<in> s \<and> f n \<noteq> a) \<and> f ----> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially) \<Longrightarrow> | |
| 1624 | eventually P (at a within s)" | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1625 | unfolding at_within_def | 
| 51473 | 1626 | by (intro sequentially_imp_eventually_nhds_within) auto | 
| 1627 | ||
| 1628 | lemma (in first_countable_topology) sequentially_imp_eventually_at: | |
| 1629 | "(\<forall>f. (\<forall>n. f n \<noteq> a) \<and> f ----> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially) \<Longrightarrow> eventually P (at a)" | |
| 1630 | using assms sequentially_imp_eventually_within [where s=UNIV] by simp | |
| 1631 | ||
| 1632 | lemma LIMSEQ_SEQ_conv1: | |
| 1633 | fixes f :: "'a::topological_space \<Rightarrow> 'b::topological_space" | |
| 1634 | assumes f: "f -- a --> l" | |
| 1635 | shows "\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S ----> a \<longrightarrow> (\<lambda>n. f (S n)) ----> l" | |
| 1636 | using tendsto_compose_eventually [OF f, where F=sequentially] by simp | |
| 1637 | ||
| 1638 | lemma LIMSEQ_SEQ_conv2: | |
| 1639 | fixes f :: "'a::first_countable_topology \<Rightarrow> 'b::topological_space" | |
| 1640 | assumes "\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S ----> a \<longrightarrow> (\<lambda>n. f (S n)) ----> l" | |
| 1641 | shows "f -- a --> l" | |
| 1642 | using assms unfolding tendsto_def [where l=l] by (simp add: sequentially_imp_eventually_at) | |
| 1643 | ||
| 1644 | lemma LIMSEQ_SEQ_conv: | |
| 1645 | "(\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S ----> (a::'a::first_countable_topology) \<longrightarrow> (\<lambda>n. X (S n)) ----> L) = | |
| 1646 | (X -- a --> (L::'b::topological_space))" | |
| 1647 | using LIMSEQ_SEQ_conv2 LIMSEQ_SEQ_conv1 .. | |
| 1648 | ||
| 51471 | 1649 | subsection {* Continuity *}
 | 
| 1650 | ||
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1651 | subsubsection {* Continuity on a set *}
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1652 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1653 | definition continuous_on :: "'a set \<Rightarrow> ('a :: topological_space \<Rightarrow> 'b :: topological_space) \<Rightarrow> bool" where
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1654 | "continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. (f ---> f x) (at x within s))" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1655 | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1656 | lemma continuous_on_cong [cong]: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1657 | "s = t \<Longrightarrow> (\<And>x. x \<in> t \<Longrightarrow> f x = g x) \<Longrightarrow> continuous_on s f \<longleftrightarrow> continuous_on t g" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1658 | unfolding continuous_on_def by (intro ball_cong filterlim_cong) (auto simp: eventually_at_filter) | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1659 | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1660 | lemma continuous_on_topological: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1661 | "continuous_on s f \<longleftrightarrow> | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1662 | (\<forall>x\<in>s. \<forall>B. open B \<longrightarrow> f x \<in> B \<longrightarrow> (\<exists>A. open A \<and> x \<in> A \<and> (\<forall>y\<in>s. y \<in> A \<longrightarrow> f y \<in> B)))" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1663 | unfolding continuous_on_def tendsto_def eventually_at_topological by metis | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1664 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1665 | lemma continuous_on_open_invariant: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1666 | "continuous_on s f \<longleftrightarrow> (\<forall>B. open B \<longrightarrow> (\<exists>A. open A \<and> A \<inter> s = f -` B \<inter> s))" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1667 | proof safe | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1668 | fix B :: "'b set" assume "continuous_on s f" "open B" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1669 | then have "\<forall>x\<in>f -` B \<inter> s. (\<exists>A. open A \<and> x \<in> A \<and> s \<inter> A \<subseteq> f -` B)" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1670 | by (auto simp: continuous_on_topological subset_eq Ball_def imp_conjL) | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1671 | then guess A unfolding bchoice_iff .. | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1672 | then show "\<exists>A. open A \<and> A \<inter> s = f -` B \<inter> s" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1673 | by (intro exI[of _ "\<Union>x\<in>f -` B \<inter> s. A x"]) auto | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1674 | next | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1675 | assume B: "\<forall>B. open B \<longrightarrow> (\<exists>A. open A \<and> A \<inter> s = f -` B \<inter> s)" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1676 | show "continuous_on s f" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1677 | unfolding continuous_on_topological | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1678 | proof safe | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1679 | fix x B assume "x \<in> s" "open B" "f x \<in> B" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1680 | with B obtain A where A: "open A" "A \<inter> s = f -` B \<inter> s" by auto | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1681 | with `x \<in> s` `f x \<in> B` show "\<exists>A. open A \<and> x \<in> A \<and> (\<forall>y\<in>s. y \<in> A \<longrightarrow> f y \<in> B)" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1682 | by (intro exI[of _ A]) auto | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1683 | qed | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1684 | qed | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1685 | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1686 | lemma continuous_on_open_vimage: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1687 | "open s \<Longrightarrow> continuous_on s f \<longleftrightarrow> (\<forall>B. open B \<longrightarrow> open (f -` B \<inter> s))" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1688 | unfolding continuous_on_open_invariant | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1689 | by (metis open_Int Int_absorb Int_commute[of s] Int_assoc[of _ _ s]) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1690 | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1691 | lemma continuous_on_closed_invariant: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1692 | "continuous_on s f \<longleftrightarrow> (\<forall>B. closed B \<longrightarrow> (\<exists>A. closed A \<and> A \<inter> s = f -` B \<inter> s))" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1693 | proof - | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1694 | have *: "\<And>P Q::'b set\<Rightarrow>bool. (\<And>A. P A \<longleftrightarrow> Q (- A)) \<Longrightarrow> (\<forall>A. P A) \<longleftrightarrow> (\<forall>A. Q A)" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1695 | by (metis double_compl) | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1696 | show ?thesis | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1697 | unfolding continuous_on_open_invariant by (intro *) (auto simp: open_closed[symmetric]) | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1698 | qed | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1699 | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1700 | lemma continuous_on_closed_vimage: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1701 | "closed s \<Longrightarrow> continuous_on s f \<longleftrightarrow> (\<forall>B. closed B \<longrightarrow> closed (f -` B \<inter> s))" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1702 | unfolding continuous_on_closed_invariant | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1703 | by (metis closed_Int Int_absorb Int_commute[of s] Int_assoc[of _ _ s]) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1704 | |
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1705 | lemma continuous_on_open_Union: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1706 | "(\<And>s. s \<in> S \<Longrightarrow> open s) \<Longrightarrow> (\<And>s. s \<in> S \<Longrightarrow> continuous_on s f) \<Longrightarrow> continuous_on (\<Union>S) f" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1707 | unfolding continuous_on_def by safe (metis open_Union at_within_open UnionI) | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1708 | |
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1709 | lemma continuous_on_open_UN: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1710 | "(\<And>s. s \<in> S \<Longrightarrow> open (A s)) \<Longrightarrow> (\<And>s. s \<in> S \<Longrightarrow> continuous_on (A s) f) \<Longrightarrow> continuous_on (\<Union>s\<in>S. A s) f" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1711 | unfolding Union_image_eq[symmetric] by (rule continuous_on_open_Union) auto | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1712 | |
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1713 | lemma continuous_on_closed_Un: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1714 | "closed s \<Longrightarrow> closed t \<Longrightarrow> continuous_on s f \<Longrightarrow> continuous_on t f \<Longrightarrow> continuous_on (s \<union> t) f" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1715 | by (auto simp add: continuous_on_closed_vimage closed_Un Int_Un_distrib) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1716 | |
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1717 | lemma continuous_on_If: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1718 | assumes closed: "closed s" "closed t" and cont: "continuous_on s f" "continuous_on t g" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1719 | and P: "\<And>x. x \<in> s \<Longrightarrow> \<not> P x \<Longrightarrow> f x = g x" "\<And>x. x \<in> t \<Longrightarrow> P x \<Longrightarrow> f x = g x" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1720 | shows "continuous_on (s \<union> t) (\<lambda>x. if P x then f x else g x)" (is "continuous_on _ ?h") | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1721 | proof- | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1722 | from P have "\<forall>x\<in>s. f x = ?h x" "\<forall>x\<in>t. g x = ?h x" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1723 | by auto | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1724 | with cont have "continuous_on s ?h" "continuous_on t ?h" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1725 | by simp_all | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1726 | with closed show ?thesis | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1727 | by (rule continuous_on_closed_Un) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1728 | qed | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1729 | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1730 | ML {*
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1731 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1732 | structure Continuous_On_Intros = Named_Thms | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1733 | ( | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1734 |   val name = @{binding continuous_on_intros}
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1735 | val description = "Structural introduction rules for setwise continuity" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1736 | ) | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1737 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1738 | *} | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1739 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1740 | setup Continuous_On_Intros.setup | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1741 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1742 | lemma continuous_on_id[continuous_on_intros]: "continuous_on s (\<lambda>x. x)" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1743 | unfolding continuous_on_def by (fast intro: tendsto_ident_at) | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1744 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1745 | lemma continuous_on_const[continuous_on_intros]: "continuous_on s (\<lambda>x. c)" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1746 | unfolding continuous_on_def by (auto intro: tendsto_const) | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1747 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1748 | lemma continuous_on_compose[continuous_on_intros]: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1749 | "continuous_on s f \<Longrightarrow> continuous_on (f ` s) g \<Longrightarrow> continuous_on s (g o f)" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1750 | unfolding continuous_on_topological by simp metis | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1751 | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1752 | lemma continuous_on_compose2: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1753 | "continuous_on t g \<Longrightarrow> continuous_on s f \<Longrightarrow> t = f ` s \<Longrightarrow> continuous_on s (\<lambda>x. g (f x))" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1754 | using continuous_on_compose[of s f g] by (simp add: comp_def) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1755 | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1756 | subsubsection {* Continuity at a point *}
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1757 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1758 | definition continuous :: "'a::t2_space filter \<Rightarrow> ('a \<Rightarrow> 'b::topological_space) \<Rightarrow> bool" where
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1759 | "continuous F f \<longleftrightarrow> (f ---> f (Lim F (\<lambda>x. x))) F" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1760 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1761 | ML {*
 | 
| 51471 | 1762 | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1763 | structure Continuous_Intros = Named_Thms | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1764 | ( | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1765 |   val name = @{binding continuous_intros}
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1766 | val description = "Structural introduction rules for pointwise continuity" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1767 | ) | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1768 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1769 | *} | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1770 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1771 | setup Continuous_Intros.setup | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1772 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1773 | lemma continuous_bot[continuous_intros, simp]: "continuous bot f" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1774 | unfolding continuous_def by auto | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1775 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1776 | lemma continuous_trivial_limit: "trivial_limit net \<Longrightarrow> continuous net f" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1777 | by simp | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1778 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1779 | lemma continuous_within: "continuous (at x within s) f \<longleftrightarrow> (f ---> f x) (at x within s)" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1780 | by (cases "trivial_limit (at x within s)") (auto simp add: Lim_ident_at continuous_def) | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1781 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1782 | lemma continuous_within_topological: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1783 | "continuous (at x within s) f \<longleftrightarrow> | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1784 | (\<forall>B. open B \<longrightarrow> f x \<in> B \<longrightarrow> (\<exists>A. open A \<and> x \<in> A \<and> (\<forall>y\<in>s. y \<in> A \<longrightarrow> f y \<in> B)))" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1785 | unfolding continuous_within tendsto_def eventually_at_topological by metis | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1786 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1787 | lemma continuous_within_compose[continuous_intros]: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1788 | "continuous (at x within s) f \<Longrightarrow> continuous (at (f x) within f ` s) g \<Longrightarrow> | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1789 | continuous (at x within s) (g o f)" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1790 | by (simp add: continuous_within_topological) metis | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1791 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1792 | lemma continuous_within_compose2: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1793 | "continuous (at x within s) f \<Longrightarrow> continuous (at (f x) within f ` s) g \<Longrightarrow> | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1794 | continuous (at x within s) (\<lambda>x. g (f x))" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1795 | using continuous_within_compose[of x s f g] by (simp add: comp_def) | 
| 51471 | 1796 | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1797 | lemma continuous_at: "continuous (at x) f \<longleftrightarrow> f -- x --> f x" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1798 | using continuous_within[of x UNIV f] by simp | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1799 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1800 | lemma continuous_ident[continuous_intros, simp]: "continuous (at x within S) (\<lambda>x. x)" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1801 | unfolding continuous_within by (rule tendsto_ident_at) | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1802 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1803 | lemma continuous_const[continuous_intros, simp]: "continuous F (\<lambda>x. c)" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1804 | unfolding continuous_def by (rule tendsto_const) | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1805 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1806 | lemma continuous_on_eq_continuous_within: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1807 | "continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. continuous (at x within s) f)" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1808 | unfolding continuous_on_def continuous_within .. | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1809 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1810 | abbreviation isCont :: "('a::t2_space \<Rightarrow> 'b::topological_space) \<Rightarrow> 'a \<Rightarrow> bool" where
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1811 | "isCont f a \<equiv> continuous (at a) f" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1812 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1813 | lemma isCont_def: "isCont f a \<longleftrightarrow> f -- a --> f a" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1814 | by (rule continuous_at) | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1815 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1816 | lemma continuous_at_within: "isCont f x \<Longrightarrow> continuous (at x within s) f" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1817 | by (auto intro: tendsto_mono at_le simp: continuous_at continuous_within) | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1818 | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1819 | lemma continuous_on_eq_continuous_at: "open s \<Longrightarrow> continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. isCont f x)" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1820 | by (simp add: continuous_on_def continuous_at at_within_open[of _ s]) | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1821 | |
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1822 | lemma continuous_on_subset: "continuous_on s f \<Longrightarrow> t \<subseteq> s \<Longrightarrow> continuous_on t f" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1823 | unfolding continuous_on_def by (metis subset_eq tendsto_within_subset) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1824 | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1825 | lemma continuous_at_imp_continuous_on: "\<forall>x\<in>s. isCont f x \<Longrightarrow> continuous_on s f" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1826 | by (auto intro: continuous_at_within simp: continuous_on_eq_continuous_within) | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1827 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1828 | lemma isContI_continuous: "continuous (at x within UNIV) f \<Longrightarrow> isCont f x" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1829 | by simp | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1830 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1831 | lemma isCont_ident[continuous_intros, simp]: "isCont (\<lambda>x. x) a" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1832 | using continuous_ident by (rule isContI_continuous) | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1833 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1834 | lemmas isCont_const = continuous_const | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1835 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1836 | lemma isCont_o2: "isCont f a \<Longrightarrow> isCont g (f a) \<Longrightarrow> isCont (\<lambda>x. g (f x)) a" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1837 | unfolding isCont_def by (rule tendsto_compose) | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1838 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1839 | lemma isCont_o[continuous_intros]: "isCont f a \<Longrightarrow> isCont g (f a) \<Longrightarrow> isCont (g \<circ> f) a" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1840 | unfolding o_def by (rule isCont_o2) | 
| 51471 | 1841 | |
| 1842 | lemma isCont_tendsto_compose: "isCont g l \<Longrightarrow> (f ---> l) F \<Longrightarrow> ((\<lambda>x. g (f x)) ---> g l) F" | |
| 1843 | unfolding isCont_def by (rule tendsto_compose) | |
| 1844 | ||
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1845 | lemma continuous_within_compose3: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1846 | "isCont g (f x) \<Longrightarrow> continuous (at x within s) f \<Longrightarrow> continuous (at x within s) (\<lambda>x. g (f x))" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1847 | using continuous_within_compose2[of x s f g] by (simp add: continuous_at_within) | 
| 51471 | 1848 | |
| 51479 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1849 | subsubsection{* Open-cover compactness *}
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1850 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1851 | context topological_space | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1852 | begin | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1853 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1854 | definition compact :: "'a set \<Rightarrow> bool" where | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1855 | compact_eq_heine_borel: -- "This name is used for backwards compatibility" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1856 | "compact S \<longleftrightarrow> (\<forall>C. (\<forall>c\<in>C. open c) \<and> S \<subseteq> \<Union>C \<longrightarrow> (\<exists>D\<subseteq>C. finite D \<and> S \<subseteq> \<Union>D))" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1857 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1858 | lemma compactI: | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1859 | assumes "\<And>C. \<forall>t\<in>C. open t \<Longrightarrow> s \<subseteq> \<Union> C \<Longrightarrow> \<exists>C'. C' \<subseteq> C \<and> finite C' \<and> s \<subseteq> \<Union> C'" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1860 | shows "compact s" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1861 | unfolding compact_eq_heine_borel using assms by metis | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1862 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1863 | lemma compact_empty[simp]: "compact {}"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1864 | by (auto intro!: compactI) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1865 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1866 | lemma compactE: | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1867 | assumes "compact s" and "\<forall>t\<in>C. open t" and "s \<subseteq> \<Union>C" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1868 | obtains C' where "C' \<subseteq> C" and "finite C'" and "s \<subseteq> \<Union>C'" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1869 | using assms unfolding compact_eq_heine_borel by metis | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1870 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1871 | lemma compactE_image: | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1872 | assumes "compact s" and "\<forall>t\<in>C. open (f t)" and "s \<subseteq> (\<Union>c\<in>C. f c)" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1873 | obtains C' where "C' \<subseteq> C" and "finite C'" and "s \<subseteq> (\<Union>c\<in>C'. f c)" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1874 | using assms unfolding ball_simps[symmetric] SUP_def | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1875 | by (metis (lifting) finite_subset_image compact_eq_heine_borel[of s]) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1876 | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1877 | lemma compact_inter_closed [intro]: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1878 | assumes "compact s" and "closed t" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1879 | shows "compact (s \<inter> t)" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1880 | proof (rule compactI) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1881 | fix C assume C: "\<forall>c\<in>C. open c" and cover: "s \<inter> t \<subseteq> \<Union>C" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1882 |   from C `closed t` have "\<forall>c\<in>C \<union> {-t}. open c" by auto
 | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1883 |   moreover from cover have "s \<subseteq> \<Union>(C \<union> {-t})" by auto
 | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1884 |   ultimately have "\<exists>D\<subseteq>C \<union> {-t}. finite D \<and> s \<subseteq> \<Union>D"
 | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1885 | using `compact s` unfolding compact_eq_heine_borel by auto | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1886 | then guess D .. | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1887 | then show "\<exists>D\<subseteq>C. finite D \<and> s \<inter> t \<subseteq> \<Union>D" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1888 |     by (intro exI[of _ "D - {-t}"]) auto
 | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1889 | qed | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1890 | |
| 51471 | 1891 | end | 
| 1892 | ||
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1893 | lemma (in t2_space) compact_imp_closed: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1894 | assumes "compact s" shows "closed s" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1895 | unfolding closed_def | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1896 | proof (rule openI) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1897 | fix y assume "y \<in> - s" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1898 |   let ?C = "\<Union>x\<in>s. {u. open u \<and> x \<in> u \<and> eventually (\<lambda>y. y \<notin> u) (nhds y)}"
 | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1899 | note `compact s` | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1900 | moreover have "\<forall>u\<in>?C. open u" by simp | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1901 | moreover have "s \<subseteq> \<Union>?C" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1902 | proof | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1903 | fix x assume "x \<in> s" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1904 | with `y \<in> - s` have "x \<noteq> y" by clarsimp | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1905 |     hence "\<exists>u v. open u \<and> open v \<and> x \<in> u \<and> y \<in> v \<and> u \<inter> v = {}"
 | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1906 | by (rule hausdorff) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1907 | with `x \<in> s` show "x \<in> \<Union>?C" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1908 | unfolding eventually_nhds by auto | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1909 | qed | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1910 | ultimately obtain D where "D \<subseteq> ?C" and "finite D" and "s \<subseteq> \<Union>D" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1911 | by (rule compactE) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1912 | from `D \<subseteq> ?C` have "\<forall>x\<in>D. eventually (\<lambda>y. y \<notin> x) (nhds y)" by auto | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1913 | with `finite D` have "eventually (\<lambda>y. y \<notin> \<Union>D) (nhds y)" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1914 | by (simp add: eventually_Ball_finite) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1915 | with `s \<subseteq> \<Union>D` have "eventually (\<lambda>y. y \<notin> s) (nhds y)" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1916 | by (auto elim!: eventually_mono [rotated]) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1917 | thus "\<exists>t. open t \<and> y \<in> t \<and> t \<subseteq> - s" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1918 | by (simp add: eventually_nhds subset_eq) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1919 | qed | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1920 | |
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1921 | lemma compact_continuous_image: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1922 | assumes f: "continuous_on s f" and s: "compact s" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1923 | shows "compact (f ` s)" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1924 | proof (rule compactI) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1925 | fix C assume "\<forall>c\<in>C. open c" and cover: "f`s \<subseteq> \<Union>C" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1926 | with f have "\<forall>c\<in>C. \<exists>A. open A \<and> A \<inter> s = f -` c \<inter> s" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1927 | unfolding continuous_on_open_invariant by blast | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1928 | then guess A unfolding bchoice_iff .. note A = this | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1929 | with cover have "\<forall>c\<in>C. open (A c)" "s \<subseteq> (\<Union>c\<in>C. A c)" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1930 | by (fastforce simp add: subset_eq set_eq_iff)+ | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1931 | from compactE_image[OF s this] obtain D where "D \<subseteq> C" "finite D" "s \<subseteq> (\<Union>c\<in>D. A c)" . | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1932 | with A show "\<exists>D \<subseteq> C. finite D \<and> f`s \<subseteq> \<Union>D" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1933 | by (intro exI[of _ D]) (fastforce simp add: subset_eq set_eq_iff)+ | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1934 | qed | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1935 | |
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1936 | lemma continuous_on_inv: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1937 | fixes f :: "'a::topological_space \<Rightarrow> 'b::t2_space" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1938 | assumes "continuous_on s f" "compact s" "\<forall>x\<in>s. g (f x) = x" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1939 | shows "continuous_on (f ` s) g" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1940 | unfolding continuous_on_topological | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1941 | proof (clarsimp simp add: assms(3)) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1942 | fix x :: 'a and B :: "'a set" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1943 | assume "x \<in> s" and "open B" and "x \<in> B" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1944 | have 1: "\<forall>x\<in>s. f x \<in> f ` (s - B) \<longleftrightarrow> x \<in> s - B" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1945 | using assms(3) by (auto, metis) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1946 | have "continuous_on (s - B) f" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1947 | using `continuous_on s f` Diff_subset | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1948 | by (rule continuous_on_subset) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1949 | moreover have "compact (s - B)" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1950 | using `open B` and `compact s` | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1951 | unfolding Diff_eq by (intro compact_inter_closed closed_Compl) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1952 | ultimately have "compact (f ` (s - B))" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1953 | by (rule compact_continuous_image) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1954 | hence "closed (f ` (s - B))" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1955 | by (rule compact_imp_closed) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1956 | hence "open (- f ` (s - B))" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1957 | by (rule open_Compl) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1958 | moreover have "f x \<in> - f ` (s - B)" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1959 | using `x \<in> s` and `x \<in> B` by (simp add: 1) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1960 | moreover have "\<forall>y\<in>s. f y \<in> - f ` (s - B) \<longrightarrow> y \<in> B" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1961 | by (simp add: 1) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1962 | ultimately show "\<exists>A. open A \<and> f x \<in> A \<and> (\<forall>y\<in>s. f y \<in> A \<longrightarrow> y \<in> B)" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1963 | by fast | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1964 | qed | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1965 | |
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1966 | lemma continuous_on_inv_into: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1967 | fixes f :: "'a::topological_space \<Rightarrow> 'b::t2_space" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1968 | assumes s: "continuous_on s f" "compact s" and f: "inj_on f s" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1969 | shows "continuous_on (f ` s) (the_inv_into s f)" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1970 | by (rule continuous_on_inv[OF s]) (auto simp: the_inv_into_f_f[OF f]) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1971 | |
| 51479 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1972 | lemma (in linorder_topology) compact_attains_sup: | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1973 |   assumes "compact S" "S \<noteq> {}"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1974 | shows "\<exists>s\<in>S. \<forall>t\<in>S. t \<le> s" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1975 | proof (rule classical) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1976 | assume "\<not> (\<exists>s\<in>S. \<forall>t\<in>S. t \<le> s)" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1977 | then obtain t where t: "\<forall>s\<in>S. t s \<in> S" and "\<forall>s\<in>S. s < t s" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1978 | by (metis not_le) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1979 |   then have "\<forall>s\<in>S. open {..< t s}" "S \<subseteq> (\<Union>s\<in>S. {..< t s})"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1980 | by auto | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1981 |   with `compact S` obtain C where "C \<subseteq> S" "finite C" and C: "S \<subseteq> (\<Union>s\<in>C. {..< t s})"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1982 | by (erule compactE_image) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1983 |   with `S \<noteq> {}` have Max: "Max (t`C) \<in> t`C" and "\<forall>s\<in>t`C. s \<le> Max (t`C)"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1984 | by (auto intro!: Max_in) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1985 |   with C have "S \<subseteq> {..< Max (t`C)}"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1986 | by (auto intro: less_le_trans simp: subset_eq) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1987 | with t Max `C \<subseteq> S` show ?thesis | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1988 | by fastforce | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1989 | qed | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1990 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1991 | lemma (in linorder_topology) compact_attains_inf: | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1992 |   assumes "compact S" "S \<noteq> {}"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1993 | shows "\<exists>s\<in>S. \<forall>t\<in>S. s \<le> t" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1994 | proof (rule classical) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1995 | assume "\<not> (\<exists>s\<in>S. \<forall>t\<in>S. s \<le> t)" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1996 | then obtain t where t: "\<forall>s\<in>S. t s \<in> S" and "\<forall>s\<in>S. t s < s" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1997 | by (metis not_le) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1998 |   then have "\<forall>s\<in>S. open {t s <..}" "S \<subseteq> (\<Union>s\<in>S. {t s <..})"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 1999 | by auto | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2000 |   with `compact S` obtain C where "C \<subseteq> S" "finite C" and C: "S \<subseteq> (\<Union>s\<in>C. {t s <..})"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2001 | by (erule compactE_image) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2002 |   with `S \<noteq> {}` have Min: "Min (t`C) \<in> t`C" and "\<forall>s\<in>t`C. Min (t`C) \<le> s"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2003 | by (auto intro!: Min_in) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2004 |   with C have "S \<subseteq> {Min (t`C) <..}"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2005 | by (auto intro: le_less_trans simp: subset_eq) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2006 | with t Min `C \<subseteq> S` show ?thesis | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2007 | by fastforce | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2008 | qed | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2009 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2010 | lemma continuous_attains_sup: | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2011 | fixes f :: "'a::topological_space \<Rightarrow> 'b::linorder_topology" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2012 |   shows "compact s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> continuous_on s f \<Longrightarrow> (\<exists>x\<in>s. \<forall>y\<in>s.  f y \<le> f x)"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2013 | using compact_attains_sup[of "f ` s"] compact_continuous_image[of s f] by auto | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2014 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2015 | lemma continuous_attains_inf: | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2016 | fixes f :: "'a::topological_space \<Rightarrow> 'b::linorder_topology" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2017 |   shows "compact s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> continuous_on s f \<Longrightarrow> (\<exists>x\<in>s. \<forall>y\<in>s. f x \<le> f y)"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2018 | using compact_attains_inf[of "f ` s"] compact_continuous_image[of s f] by auto | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2019 | |
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2020 | |
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2021 | subsection {* Connectedness *}
 | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2022 | |
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2023 | context topological_space | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2024 | begin | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2025 | |
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2026 | definition "connected S \<longleftrightarrow> | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2027 |   \<not> (\<exists>A B. open A \<and> open B \<and> S \<subseteq> A \<union> B \<and> A \<inter> B \<inter> S = {} \<and> A \<inter> S \<noteq> {} \<and> B \<inter> S \<noteq> {})"
 | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2028 | |
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2029 | lemma connectedI: | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2030 |   "(\<And>A B. open A \<Longrightarrow> open B \<Longrightarrow> A \<inter> U \<noteq> {} \<Longrightarrow> B \<inter> U \<noteq> {} \<Longrightarrow> A \<inter> B \<inter> U = {} \<Longrightarrow> U \<subseteq> A \<union> B \<Longrightarrow> False)
 | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2031 | \<Longrightarrow> connected U" | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2032 | by (auto simp: connected_def) | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2033 | |
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2034 | lemma connected_empty[simp]: "connected {}"
 | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2035 | by (auto intro!: connectedI) | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2036 | |
| 51479 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2037 | end | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2038 | |
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2039 | lemma (in linorder_topology) connectedD_interval: | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2040 | assumes "connected U" and xy: "x \<in> U" "y \<in> U" and "x \<le> z" "z \<le> y" | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2041 | shows "z \<in> U" | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2042 | proof - | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2043 |   have eq: "{..<z} \<union> {z<..} = - {z}"
 | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2044 | by auto | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2045 |   { assume "z \<notin> U" "x < z" "z < y"
 | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2046 | with xy have "\<not> connected U" | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2047 | unfolding connected_def simp_thms | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2048 |       apply (rule_tac exI[of _ "{..< z}"])
 | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2049 |       apply (rule_tac exI[of _ "{z <..}"])
 | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2050 | apply (auto simp add: eq) | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2051 | done } | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2052 | with assms show "z \<in> U" | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2053 | by (metis less_le) | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2054 | qed | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2055 | |
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2056 | lemma connected_continuous_image: | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2057 | assumes *: "continuous_on s f" | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2058 | assumes "connected s" | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2059 | shows "connected (f ` s)" | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2060 | proof (rule connectedI) | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2061 |   fix A B assume A: "open A" "A \<inter> f ` s \<noteq> {}" and B: "open B" "B \<inter> f ` s \<noteq> {}" and
 | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2062 |     AB: "A \<inter> B \<inter> f ` s = {}" "f ` s \<subseteq> A \<union> B"
 | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2063 | obtain A' where A': "open A'" "f -` A \<inter> s = A' \<inter> s" | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2064 | using * `open A` unfolding continuous_on_open_invariant by metis | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2065 | obtain B' where B': "open B'" "f -` B \<inter> s = B' \<inter> s" | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2066 | using * `open B` unfolding continuous_on_open_invariant by metis | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2067 | |
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2068 |   have "\<exists>A B. open A \<and> open B \<and> s \<subseteq> A \<union> B \<and> A \<inter> B \<inter> s = {} \<and> A \<inter> s \<noteq> {} \<and> B \<inter> s \<noteq> {}"
 | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2069 | proof (rule exI[of _ A'], rule exI[of _ B'], intro conjI) | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2070 | have "s \<subseteq> (f -` A \<inter> s) \<union> (f -` B \<inter> s)" using AB by auto | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2071 | then show "s \<subseteq> A' \<union> B'" using A' B' by auto | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2072 | next | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2073 |     have "(f -` A \<inter> s) \<inter> (f -` B \<inter> s) = {}" using AB by auto
 | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2074 |     then show "A' \<inter> B' \<inter> s = {}" using A' B' by auto
 | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2075 | qed (insert A' B' A B, auto) | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2076 | with `connected s` show False | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2077 | unfolding connected_def by blast | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2078 | qed | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2079 | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2080 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2081 | section {* Connectedness *}
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2082 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2083 | class linear_continuum_topology = linorder_topology + linear_continuum | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2084 | begin | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2085 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2086 | lemma Inf_notin_open: | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2087 | assumes A: "open A" and bnd: "\<forall>a\<in>A. x < a" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2088 | shows "Inf A \<notin> A" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2089 | proof | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2090 | assume "Inf A \<in> A" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2091 |   then obtain b where "b < Inf A" "{b <.. Inf A} \<subseteq> A"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2092 | using open_left[of A "Inf A" x] assms by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2093 | with dense[of b "Inf A"] obtain c where "c < Inf A" "c \<in> A" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2094 | by (auto simp: subset_eq) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2095 | then show False | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2096 | using cInf_lower[OF `c \<in> A`, of x] bnd by (metis less_imp_le not_le) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2097 | qed | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2098 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2099 | lemma Sup_notin_open: | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2100 | assumes A: "open A" and bnd: "\<forall>a\<in>A. a < x" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2101 | shows "Sup A \<notin> A" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2102 | proof | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2103 | assume "Sup A \<in> A" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2104 |   then obtain b where "Sup A < b" "{Sup A ..< b} \<subseteq> A"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2105 | using open_right[of A "Sup A" x] assms by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2106 | with dense[of "Sup A" b] obtain c where "Sup A < c" "c \<in> A" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2107 | by (auto simp: subset_eq) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2108 | then show False | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2109 | using cSup_upper[OF `c \<in> A`, of x] bnd by (metis less_imp_le not_le) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2110 | qed | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2111 | |
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2112 | end | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2113 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2114 | instance linear_continuum_topology \<subseteq> perfect_space | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2115 | proof | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2116 | fix x :: 'a | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2117 | from ex_gt_or_lt [of x] guess y .. | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2118 |   with Inf_notin_open[of "{x}" y] Sup_notin_open[of "{x}" y]
 | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2119 |   show "\<not> open {x}"
 | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2120 | by auto | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2121 | qed | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2122 | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2123 | lemma connectedI_interval: | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2124 | fixes U :: "'a :: linear_continuum_topology set" | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2125 | assumes *: "\<And>x y z. x \<in> U \<Longrightarrow> y \<in> U \<Longrightarrow> x \<le> z \<Longrightarrow> z \<le> y \<Longrightarrow> z \<in> U" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2126 | shows "connected U" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2127 | proof (rule connectedI) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2128 |   { fix A B assume "open A" "open B" "A \<inter> B \<inter> U = {}" "U \<subseteq> A \<union> B"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2129 | fix x y assume "x < y" "x \<in> A" "y \<in> B" "x \<in> U" "y \<in> U" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2130 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2131 |     let ?z = "Inf (B \<inter> {x <..})"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2132 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2133 | have "x \<le> ?z" "?z \<le> y" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2134 | using `y \<in> B` `x < y` by (auto intro: cInf_lower[where z=x] cInf_greatest) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2135 | with `x \<in> U` `y \<in> U` have "?z \<in> U" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2136 | by (rule *) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2137 |     moreover have "?z \<notin> B \<inter> {x <..}"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2138 | using `open B` by (intro Inf_notin_open) auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2139 | ultimately have "?z \<in> A" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2140 |       using `x \<le> ?z` `A \<inter> B \<inter> U = {}` `x \<in> A` `U \<subseteq> A \<union> B` by auto
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2141 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2142 |     { assume "?z < y"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2143 |       obtain a where "?z < a" "{?z ..< a} \<subseteq> A"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2144 | using open_right[OF `open A` `?z \<in> A` `?z < y`] by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2145 | moreover obtain b where "b \<in> B" "x < b" "b < min a y" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2146 |         using cInf_less_iff[of "B \<inter> {x <..}" x "min a y"] `?z < a` `?z < y` `x < y` `y \<in> B`
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2147 | by (auto intro: less_imp_le) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2148 | moreover then have "?z \<le> b" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2149 | by (intro cInf_lower[where z=x]) auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2150 | moreover have "b \<in> U" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2151 | using `x \<le> ?z` `?z \<le> b` `b < min a y` | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2152 | by (intro *[OF `x \<in> U` `y \<in> U`]) (auto simp: less_imp_le) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2153 | ultimately have "\<exists>b\<in>B. b \<in> A \<and> b \<in> U" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2154 | by (intro bexI[of _ b]) auto } | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2155 | then have False | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2156 |       using `?z \<le> y` `?z \<in> A` `y \<in> B` `y \<in> U` `A \<inter> B \<inter> U = {}` unfolding le_less by blast }
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2157 | note not_disjoint = this | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2158 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2159 |   fix A B assume AB: "open A" "open B" "U \<subseteq> A \<union> B" "A \<inter> B \<inter> U = {}"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2160 |   moreover assume "A \<inter> U \<noteq> {}" then obtain x where x: "x \<in> U" "x \<in> A" by auto
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2161 |   moreover assume "B \<inter> U \<noteq> {}" then obtain y where y: "y \<in> U" "y \<in> B" by auto
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2162 | moreover note not_disjoint[of B A y x] not_disjoint[of A B x y] | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2163 | ultimately show False by (cases x y rule: linorder_cases) auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2164 | qed | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2165 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2166 | lemma connected_iff_interval: | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2167 | fixes U :: "'a :: linear_continuum_topology set" | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2168 | shows "connected U \<longleftrightarrow> (\<forall>x\<in>U. \<forall>y\<in>U. \<forall>z. x \<le> z \<longrightarrow> z \<le> y \<longrightarrow> z \<in> U)" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2169 | by (auto intro: connectedI_interval dest: connectedD_interval) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2170 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2171 | lemma connected_UNIV[simp]: "connected (UNIV::'a::linear_continuum_topology set)" | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2172 | unfolding connected_iff_interval by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2173 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2174 | lemma connected_Ioi[simp]: "connected {a::'a::linear_continuum_topology <..}"
 | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2175 | unfolding connected_iff_interval by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2176 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2177 | lemma connected_Ici[simp]: "connected {a::'a::linear_continuum_topology ..}"
 | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2178 | unfolding connected_iff_interval by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2179 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2180 | lemma connected_Iio[simp]: "connected {..< a::'a::linear_continuum_topology}"
 | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2181 | unfolding connected_iff_interval by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2182 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2183 | lemma connected_Iic[simp]: "connected {.. a::'a::linear_continuum_topology}"
 | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2184 | unfolding connected_iff_interval by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2185 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2186 | lemma connected_Ioo[simp]: "connected {a <..< b::'a::linear_continuum_topology}"
 | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2187 | unfolding connected_iff_interval by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2188 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2189 | lemma connected_Ioc[simp]: "connected {a <.. b::'a::linear_continuum_topology}"
 | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2190 | unfolding connected_iff_interval by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2191 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2192 | lemma connected_Ico[simp]: "connected {a ..< b::'a::linear_continuum_topology}"
 | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2193 | unfolding connected_iff_interval by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2194 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2195 | lemma connected_Icc[simp]: "connected {a .. b::'a::linear_continuum_topology}"
 | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2196 | unfolding connected_iff_interval by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2197 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2198 | lemma connected_contains_Ioo: | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2199 | fixes A :: "'a :: linorder_topology set" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2200 |   assumes A: "connected A" "a \<in> A" "b \<in> A" shows "{a <..< b} \<subseteq> A"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2201 | using connectedD_interval[OF A] by (simp add: subset_eq Ball_def less_imp_le) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2202 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2203 | subsection {* Intermediate Value Theorem *}
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2204 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2205 | lemma IVT': | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2206 | fixes f :: "'a :: linear_continuum_topology \<Rightarrow> 'b :: linorder_topology" | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2207 | assumes y: "f a \<le> y" "y \<le> f b" "a \<le> b" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2208 |   assumes *: "continuous_on {a .. b} f"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2209 | shows "\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2210 | proof - | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2211 |   have "connected {a..b}"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2212 | unfolding connected_iff_interval by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2213 | from connected_continuous_image[OF * this, THEN connectedD_interval, of "f a" "f b" y] y | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2214 | show ?thesis | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2215 | by (auto simp add: atLeastAtMost_def atLeast_def atMost_def) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2216 | qed | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2217 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2218 | lemma IVT2': | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2219 | fixes f :: "'a :: linear_continuum_topology \<Rightarrow> 'b :: linorder_topology" | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2220 | assumes y: "f b \<le> y" "y \<le> f a" "a \<le> b" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2221 |   assumes *: "continuous_on {a .. b} f"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2222 | shows "\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2223 | proof - | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2224 |   have "connected {a..b}"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2225 | unfolding connected_iff_interval by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2226 | from connected_continuous_image[OF * this, THEN connectedD_interval, of "f b" "f a" y] y | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2227 | show ?thesis | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2228 | by (auto simp add: atLeastAtMost_def atLeast_def atMost_def) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2229 | qed | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2230 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2231 | lemma IVT: | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2232 | fixes f :: "'a :: linear_continuum_topology \<Rightarrow> 'b :: linorder_topology" | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2233 | shows "f a \<le> y \<Longrightarrow> y \<le> f b \<Longrightarrow> a \<le> b \<Longrightarrow> (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x) \<Longrightarrow> \<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2234 | by (rule IVT') (auto intro: continuous_at_imp_continuous_on) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2235 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2236 | lemma IVT2: | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2237 | fixes f :: "'a :: linear_continuum_topology \<Rightarrow> 'b :: linorder_topology" | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2238 | shows "f b \<le> y \<Longrightarrow> y \<le> f a \<Longrightarrow> a \<le> b \<Longrightarrow> (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x) \<Longrightarrow> \<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2239 | by (rule IVT2') (auto intro: continuous_at_imp_continuous_on) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2240 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2241 | lemma continuous_inj_imp_mono: | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2242 | fixes f :: "'a::linear_continuum_topology \<Rightarrow> 'b :: linorder_topology" | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2243 | assumes x: "a < x" "x < b" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2244 |   assumes cont: "continuous_on {a..b} f"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2245 |   assumes inj: "inj_on f {a..b}"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2246 | shows "(f a < f x \<and> f x < f b) \<or> (f b < f x \<and> f x < f a)" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2247 | proof - | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2248 | note I = inj_on_iff[OF inj] | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2249 |   { assume "f x < f a" "f x < f b"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2250 | then obtain s t where "x \<le> s" "s \<le> b" "a \<le> t" "t \<le> x" "f s = f t" "f x < f s" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2251 | using IVT'[of f x "min (f a) (f b)" b] IVT2'[of f x "min (f a) (f b)" a] x | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2252 | by (auto simp: continuous_on_subset[OF cont] less_imp_le) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2253 | with x I have False by auto } | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2254 | moreover | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2255 |   { assume "f a < f x" "f b < f x"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2256 | then obtain s t where "x \<le> s" "s \<le> b" "a \<le> t" "t \<le> x" "f s = f t" "f s < f x" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2257 | using IVT'[of f a "max (f a) (f b)" x] IVT2'[of f b "max (f a) (f b)" x] x | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2258 | by (auto simp: continuous_on_subset[OF cont] less_imp_le) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2259 | with x I have False by auto } | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2260 | ultimately show ?thesis | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2261 | using I[of a x] I[of x b] x less_trans[OF x] by (auto simp add: le_less less_imp_neq neq_iff) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2262 | qed | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2263 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2264 | end | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2265 |