| 13062 |      1 | (*  Title:      HOL/MicroJava/BV/SemilatAlg.thy
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author:     Gerwin Klein
 | 
|  |      4 |     Copyright   2002 Technische Universitaet Muenchen
 | 
|  |      5 | *)
 | 
|  |      6 | 
 | 
|  |      7 | header {* \isaheader{More on Semilattices} *}
 | 
|  |      8 | 
 | 
| 27681 |      9 | theory SemilatAlg
 | 
|  |     10 | imports Typing_Framework Product
 | 
|  |     11 | begin
 | 
| 13062 |     12 | 
 | 
|  |     13 | 
 | 
| 13066 |     14 | constdefs 
 | 
|  |     15 |   lesubstep_type :: "(nat \<times> 's) list \<Rightarrow> 's ord \<Rightarrow> (nat \<times> 's) list \<Rightarrow> bool"
 | 
|  |     16 |                     ("(_ /<=|_| _)" [50, 0, 51] 50)
 | 
|  |     17 |   "x <=|r| y \<equiv> \<forall>(p,s) \<in> set x. \<exists>s'. (p,s') \<in> set y \<and> s <=_r s'"
 | 
|  |     18 | 
 | 
| 13062 |     19 | consts
 | 
|  |     20 |  "@plusplussub" :: "'a list \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" ("(_ /++'__ _)" [65, 1000, 66] 65)
 | 
|  |     21 | primrec
 | 
|  |     22 |   "[] ++_f y = y"
 | 
|  |     23 |   "(x#xs) ++_f y = xs ++_f (x +_f y)"
 | 
|  |     24 | 
 | 
|  |     25 | constdefs
 | 
|  |     26 |  bounded :: "'s step_type \<Rightarrow> nat \<Rightarrow> bool"
 | 
|  |     27 | "bounded step n == !p<n. !s. !(q,t):set(step p s). q<n"  
 | 
|  |     28 | 
 | 
|  |     29 |  pres_type :: "'s step_type \<Rightarrow> nat \<Rightarrow> 's set \<Rightarrow> bool"
 | 
|  |     30 | "pres_type step n A == \<forall>s\<in>A. \<forall>p<n. \<forall>(q,s')\<in>set (step p s). s' \<in> A"
 | 
|  |     31 | 
 | 
|  |     32 |  mono :: "'s ord \<Rightarrow> 's step_type \<Rightarrow> nat \<Rightarrow> 's set \<Rightarrow> bool"
 | 
|  |     33 | "mono r step n A ==
 | 
|  |     34 |  \<forall>s p t. s \<in> A \<and> p < n \<and> s <=_r t \<longrightarrow> step p s <=|r| step p t"
 | 
|  |     35 | 
 | 
|  |     36 | 
 | 
|  |     37 | lemma pres_typeD:
 | 
|  |     38 |   "\<lbrakk> pres_type step n A; s\<in>A; p<n; (q,s')\<in>set (step p s) \<rbrakk> \<Longrightarrow> s' \<in> A"
 | 
|  |     39 |   by (unfold pres_type_def, blast)
 | 
|  |     40 | 
 | 
|  |     41 | lemma monoD:
 | 
|  |     42 |   "\<lbrakk> mono r step n A; p < n; s\<in>A; s <=_r t \<rbrakk> \<Longrightarrow> step p s <=|r| step p t"
 | 
|  |     43 |   by (unfold mono_def, blast)
 | 
|  |     44 | 
 | 
|  |     45 | lemma boundedD: 
 | 
|  |     46 |   "\<lbrakk> bounded step n; p < n; (q,t) : set (step p xs) \<rbrakk> \<Longrightarrow> q < n" 
 | 
|  |     47 |   by (unfold bounded_def, blast)
 | 
|  |     48 | 
 | 
| 13066 |     49 | lemma lesubstep_type_refl [simp, intro]:
 | 
|  |     50 |   "(\<And>x. x <=_r x) \<Longrightarrow> x <=|r| x"
 | 
|  |     51 |   by (unfold lesubstep_type_def) auto
 | 
|  |     52 | 
 | 
|  |     53 | lemma lesub_step_typeD:
 | 
|  |     54 |   "a <=|r| b \<Longrightarrow> (x,y) \<in> set a \<Longrightarrow> \<exists>y'. (x, y') \<in> set b \<and> y <=_r y'"
 | 
|  |     55 |   by (unfold lesubstep_type_def) blast
 | 
|  |     56 | 
 | 
| 13062 |     57 | 
 | 
|  |     58 | lemma list_update_le_listI [rule_format]:
 | 
|  |     59 |   "set xs <= A \<longrightarrow> set ys <= A \<longrightarrow> xs <=[r] ys \<longrightarrow> p < size xs \<longrightarrow>  
 | 
|  |     60 |    x <=_r ys!p \<longrightarrow> semilat(A,r,f) \<longrightarrow> x\<in>A \<longrightarrow> 
 | 
|  |     61 |    xs[p := x +_f xs!p] <=[r] ys"
 | 
|  |     62 |   apply (unfold Listn.le_def lesub_def semilat_def)
 | 
|  |     63 |   apply (simp add: list_all2_conv_all_nth nth_list_update)
 | 
|  |     64 |   done
 | 
|  |     65 | 
 | 
|  |     66 | 
 | 
| 27611 |     67 | lemma plusplus_closed: assumes "semilat (A, r, f)" shows
 | 
|  |     68 |   "\<And>y. \<lbrakk> set x \<subseteq> A; y \<in> A\<rbrakk> \<Longrightarrow> x ++_f y \<in> A" (is "PROP ?P")
 | 
|  |     69 | proof -
 | 
| 29235 |     70 |   interpret Semilat A r f using assms by (rule Semilat.intro)
 | 
| 27611 |     71 |   show "PROP ?P" proof (induct x)
 | 
|  |     72 |     show "\<And>y. y \<in> A \<Longrightarrow> [] ++_f y \<in> A" by simp
 | 
|  |     73 |     fix y x xs
 | 
|  |     74 |     assume y: "y \<in> A" and xs: "set (x#xs) \<subseteq> A"
 | 
|  |     75 |     assume IH: "\<And>y. \<lbrakk> set xs \<subseteq> A; y \<in> A\<rbrakk> \<Longrightarrow> xs ++_f y \<in> A"
 | 
|  |     76 |     from xs obtain x: "x \<in> A" and xs': "set xs \<subseteq> A" by simp
 | 
|  |     77 |     from x y have "(x +_f y) \<in> A" ..
 | 
|  |     78 |     with xs' have "xs ++_f (x +_f y) \<in> A" by (rule IH)
 | 
|  |     79 |     thus "(x#xs) ++_f y \<in> A" by simp
 | 
|  |     80 |   qed
 | 
| 13062 |     81 | qed
 | 
|  |     82 | 
 | 
| 27681 |     83 | lemma (in Semilat) pp_ub2:
 | 
| 13074 |     84 |  "\<And>y. \<lbrakk> set x \<subseteq> A; y \<in> A\<rbrakk> \<Longrightarrow> y <=_r x ++_f y"
 | 
| 13062 |     85 | proof (induct x)
 | 
| 13074 |     86 |   from semilat show "\<And>y. y <=_r [] ++_f y" by simp
 | 
| 13062 |     87 |   
 | 
|  |     88 |   fix y a l
 | 
|  |     89 |   assume y:  "y \<in> A"
 | 
|  |     90 |   assume "set (a#l) \<subseteq> A"
 | 
| 13074 |     91 |   then obtain a: "a \<in> A" and x: "set l \<subseteq> A" by simp
 | 
|  |     92 |   assume "\<And>y. \<lbrakk>set l \<subseteq> A; y \<in> A\<rbrakk> \<Longrightarrow> y <=_r l ++_f y"
 | 
| 23464 |     93 |   hence IH: "\<And>y. y \<in> A \<Longrightarrow> y <=_r l ++_f y" using x .
 | 
| 13062 |     94 | 
 | 
| 13077 |     95 |   from a y have "y <=_r a +_f y" ..
 | 
|  |     96 |   also from a y have "a +_f y \<in> A" ..
 | 
| 13062 |     97 |   hence "(a +_f y) <=_r l ++_f (a +_f y)" by (rule IH)
 | 
| 13074 |     98 |   finally have "y <=_r l ++_f (a +_f y)" .
 | 
| 13062 |     99 |   thus "y <=_r (a#l) ++_f y" by simp
 | 
|  |    100 | qed
 | 
|  |    101 | 
 | 
|  |    102 | 
 | 
| 27681 |    103 | lemma (in Semilat) pp_ub1:
 | 
| 13074 |    104 | shows "\<And>y. \<lbrakk>set ls \<subseteq> A; y \<in> A; x \<in> set ls\<rbrakk> \<Longrightarrow> x <=_r ls ++_f y"
 | 
| 13062 |    105 | proof (induct ls)
 | 
|  |    106 |   show "\<And>y. x \<in> set [] \<Longrightarrow> x <=_r [] ++_f y" by simp
 | 
| 13074 |    107 | 
 | 
| 13062 |    108 |   fix y s ls
 | 
|  |    109 |   assume "set (s#ls) \<subseteq> A"
 | 
|  |    110 |   then obtain s: "s \<in> A" and ls: "set ls \<subseteq> A" by simp
 | 
|  |    111 |   assume y: "y \<in> A" 
 | 
|  |    112 | 
 | 
|  |    113 |   assume 
 | 
| 13074 |    114 |     "\<And>y. \<lbrakk>set ls \<subseteq> A; y \<in> A; x \<in> set ls\<rbrakk> \<Longrightarrow> x <=_r ls ++_f y"
 | 
| 23464 |    115 |   hence IH: "\<And>y. x \<in> set ls \<Longrightarrow> y \<in> A \<Longrightarrow> x <=_r ls ++_f y" using ls .
 | 
| 13062 |    116 | 
 | 
|  |    117 |   assume "x \<in> set (s#ls)"
 | 
|  |    118 |   then obtain xls: "x = s \<or> x \<in> set ls" by simp
 | 
|  |    119 |   moreover {
 | 
|  |    120 |     assume xs: "x = s"
 | 
| 13077 |    121 |     from s y have "s <=_r s +_f y" ..
 | 
|  |    122 |     also from s y have "s +_f y \<in> A" ..
 | 
| 13074 |    123 |     with ls have "(s +_f y) <=_r ls ++_f (s +_f y)" by (rule pp_ub2)
 | 
|  |    124 |     finally have "s <=_r ls ++_f (s +_f y)" .
 | 
| 13062 |    125 |     with xs have "x <=_r ls ++_f (s +_f y)" by simp
 | 
|  |    126 |   } 
 | 
|  |    127 |   moreover {
 | 
|  |    128 |     assume "x \<in> set ls"
 | 
|  |    129 |     hence "\<And>y. y \<in> A \<Longrightarrow> x <=_r ls ++_f y" by (rule IH)
 | 
| 13077 |    130 |     moreover from s y have "s +_f y \<in> A" ..
 | 
| 13074 |    131 |     ultimately have "x <=_r ls ++_f (s +_f y)" .
 | 
| 13062 |    132 |   }
 | 
|  |    133 |   ultimately 
 | 
|  |    134 |   have "x <=_r ls ++_f (s +_f y)" by blast
 | 
|  |    135 |   thus "x <=_r (s#ls) ++_f y" by simp
 | 
|  |    136 | qed
 | 
|  |    137 | 
 | 
|  |    138 | 
 | 
| 27681 |    139 | lemma (in Semilat) pp_lub:
 | 
| 23464 |    140 |   assumes z: "z \<in> A"
 | 
| 13069 |    141 |   shows 
 | 
|  |    142 |   "\<And>y. y \<in> A \<Longrightarrow> set xs \<subseteq> A \<Longrightarrow> \<forall>x \<in> set xs. x <=_r z \<Longrightarrow> y <=_r z \<Longrightarrow> xs ++_f y <=_r z"
 | 
|  |    143 | proof (induct xs)
 | 
|  |    144 |   fix y assume "y <=_r z" thus "[] ++_f y <=_r z" by simp
 | 
|  |    145 | next
 | 
|  |    146 |   fix y l ls assume y: "y \<in> A" and "set (l#ls) \<subseteq> A"
 | 
|  |    147 |   then obtain l: "l \<in> A" and ls: "set ls \<subseteq> A" by auto
 | 
|  |    148 |   assume "\<forall>x \<in> set (l#ls). x <=_r z"
 | 
| 23464 |    149 |   then obtain lz: "l <=_r z" and lsz: "\<forall>x \<in> set ls. x <=_r z" by auto
 | 
|  |    150 |   assume "y <=_r z" with lz have "l +_f y <=_r z" using l y z ..
 | 
| 13069 |    151 |   moreover
 | 
| 13077 |    152 |   from l y have "l +_f y \<in> A" ..
 | 
| 13069 |    153 |   moreover
 | 
|  |    154 |   assume "\<And>y. y \<in> A \<Longrightarrow> set ls \<subseteq> A \<Longrightarrow> \<forall>x \<in> set ls. x <=_r z \<Longrightarrow> y <=_r z
 | 
|  |    155 |           \<Longrightarrow> ls ++_f y <=_r z"
 | 
|  |    156 |   ultimately
 | 
| 13077 |    157 |   have "ls ++_f (l +_f y) <=_r z" using ls lsz by -
 | 
| 13069 |    158 |   thus "(l#ls) ++_f y <=_r z" by simp
 | 
|  |    159 | qed
 | 
|  |    160 | 
 | 
|  |    161 | 
 | 
| 27611 |    162 | lemma ub1':
 | 
|  |    163 |   assumes "semilat (A, r, f)"
 | 
|  |    164 |   shows "\<lbrakk>\<forall>(p,s) \<in> set S. s \<in> A; y \<in> A; (a,b) \<in> set S\<rbrakk> 
 | 
| 23281 |    165 |   \<Longrightarrow> b <=_r map snd [(p', t')\<leftarrow>S. p' = a] ++_f y" 
 | 
| 13062 |    166 | proof -
 | 
| 29235 |    167 |   interpret Semilat A r f using assms by (rule Semilat.intro)
 | 
| 27611 |    168 | 
 | 
| 13062 |    169 |   let "b <=_r ?map ++_f y" = ?thesis
 | 
|  |    170 | 
 | 
| 13074 |    171 |   assume "y \<in> A"
 | 
| 13062 |    172 |   moreover
 | 
|  |    173 |   assume "\<forall>(p,s) \<in> set S. s \<in> A"
 | 
|  |    174 |   hence "set ?map \<subseteq> A" by auto
 | 
|  |    175 |   moreover
 | 
|  |    176 |   assume "(a,b) \<in> set S"
 | 
|  |    177 |   hence "b \<in> set ?map" by (induct S, auto)
 | 
|  |    178 |   ultimately
 | 
| 13074 |    179 |   show ?thesis by - (rule pp_ub1)
 | 
| 13062 |    180 | qed
 | 
|  |    181 |     
 | 
|  |    182 | 
 | 
|  |    183 | lemma plusplus_empty:  
 | 
|  |    184 |   "\<forall>s'. (q, s') \<in> set S \<longrightarrow> s' +_f ss ! q = ss ! q \<Longrightarrow>
 | 
| 23281 |    185 |    (map snd [(p', t') \<leftarrow> S. p' = q] ++_f ss ! q) = ss ! q"
 | 
| 23464 |    186 |   by (induct S) auto 
 | 
| 13062 |    187 | 
 | 
|  |    188 | end
 |