| author | paulson <lp15@cam.ac.uk> | 
| Thu, 22 Feb 2018 22:58:27 +0000 | |
| changeset 67689 | 2c38ffd6ec71 | 
| parent 67399 | eab6ce8368fa | 
| child 71393 | fce780f9c9c6 | 
| permissions | -rw-r--r-- | 
| 63653 | 1 | (* Title: HOL/Equiv_Relations.thy | 
| 2 | Author: Lawrence C Paulson, 1996 Cambridge University Computer Laboratory | |
| 15300 | 3 | *) | 
| 4 | ||
| 60758 | 5 | section \<open>Equivalence Relations in Higher-Order Set Theory\<close> | 
| 15300 | 6 | |
| 7 | theory Equiv_Relations | |
| 66364 | 8 | imports Groups_Big | 
| 15300 | 9 | begin | 
| 10 | ||
| 60758 | 11 | subsection \<open>Equivalence relations -- set version\<close> | 
| 15300 | 12 | |
| 63653 | 13 | definition equiv :: "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool"
 | 
| 14 | where "equiv A r \<longleftrightarrow> refl_on A r \<and> sym r \<and> trans r" | |
| 15300 | 15 | |
| 63653 | 16 | lemma equivI: "refl_on A r \<Longrightarrow> sym r \<Longrightarrow> trans r \<Longrightarrow> equiv A r" | 
| 40815 | 17 | by (simp add: equiv_def) | 
| 18 | ||
| 19 | lemma equivE: | |
| 20 | assumes "equiv A r" | |
| 21 | obtains "refl_on A r" and "sym r" and "trans r" | |
| 22 | using assms by (simp add: equiv_def) | |
| 23 | ||
| 60758 | 24 | text \<open> | 
| 63653 | 25 | Suppes, Theorem 70: \<open>r\<close> is an equiv relation iff \<open>r\<inverse> O r = r\<close>. | 
| 15300 | 26 | |
| 63653 | 27 | First half: \<open>equiv A r \<Longrightarrow> r\<inverse> O r = r\<close>. | 
| 60758 | 28 | \<close> | 
| 15300 | 29 | |
| 63653 | 30 | lemma sym_trans_comp_subset: "sym r \<Longrightarrow> trans r \<Longrightarrow> r\<inverse> O r \<subseteq> r" | 
| 31 | unfolding trans_def sym_def converse_unfold by blast | |
| 15300 | 32 | |
| 63653 | 33 | lemma refl_on_comp_subset: "refl_on A r \<Longrightarrow> r \<subseteq> r\<inverse> O r" | 
| 34 | unfolding refl_on_def by blast | |
| 15300 | 35 | |
| 63653 | 36 | lemma equiv_comp_eq: "equiv A r \<Longrightarrow> r\<inverse> O r = r" | 
| 15300 | 37 | apply (unfold equiv_def) | 
| 38 | apply clarify | |
| 39 | apply (rule equalityI) | |
| 30198 | 40 | apply (iprover intro: sym_trans_comp_subset refl_on_comp_subset)+ | 
| 15300 | 41 | done | 
| 42 | ||
| 60758 | 43 | text \<open>Second half.\<close> | 
| 15300 | 44 | |
| 63653 | 45 | lemma comp_equivI: "r\<inverse> O r = r \<Longrightarrow> Domain r = A \<Longrightarrow> equiv A r" | 
| 30198 | 46 | apply (unfold equiv_def refl_on_def sym_def trans_def) | 
| 15300 | 47 | apply (erule equalityE) | 
| 63653 | 48 | apply (subgoal_tac "\<forall>x y. (x, y) \<in> r \<longrightarrow> (y, x) \<in> r") | 
| 15300 | 49 | apply fast | 
| 50 | apply fast | |
| 51 | done | |
| 52 | ||
| 53 | ||
| 60758 | 54 | subsection \<open>Equivalence classes\<close> | 
| 15300 | 55 | |
| 63653 | 56 | lemma equiv_class_subset: "equiv A r \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> r``{a} \<subseteq> r``{b}"
 | 
| 61799 | 57 | \<comment> \<open>lemma for the next result\<close> | 
| 63653 | 58 | unfolding equiv_def trans_def sym_def by blast | 
| 15300 | 59 | |
| 63653 | 60 | theorem equiv_class_eq: "equiv A r \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> r``{a} = r``{b}"
 | 
| 15300 | 61 | apply (assumption | rule equalityI equiv_class_subset)+ | 
| 62 | apply (unfold equiv_def sym_def) | |
| 63 | apply blast | |
| 64 | done | |
| 65 | ||
| 63653 | 66 | lemma equiv_class_self: "equiv A r \<Longrightarrow> a \<in> A \<Longrightarrow> a \<in> r``{a}"
 | 
| 67 | unfolding equiv_def refl_on_def by blast | |
| 15300 | 68 | |
| 63653 | 69 | lemma subset_equiv_class: "equiv A r \<Longrightarrow> r``{b} \<subseteq> r``{a} \<Longrightarrow> b \<in> A \<Longrightarrow> (a, b) \<in> r"
 | 
| 61799 | 70 | \<comment> \<open>lemma for the next result\<close> | 
| 63653 | 71 | unfolding equiv_def refl_on_def by blast | 
| 15300 | 72 | |
| 63653 | 73 | lemma eq_equiv_class: "r``{a} = r``{b} \<Longrightarrow> equiv A r \<Longrightarrow> b \<in> A \<Longrightarrow> (a, b) \<in> r"
 | 
| 17589 | 74 | by (iprover intro: equalityD2 subset_equiv_class) | 
| 15300 | 75 | |
| 63653 | 76 | lemma equiv_class_nondisjoint: "equiv A r \<Longrightarrow> x \<in> (r``{a} \<inter> r``{b}) \<Longrightarrow> (a, b) \<in> r"
 | 
| 77 | unfolding equiv_def trans_def sym_def by blast | |
| 15300 | 78 | |
| 63653 | 79 | lemma equiv_type: "equiv A r \<Longrightarrow> r \<subseteq> A \<times> A" | 
| 80 | unfolding equiv_def refl_on_def by blast | |
| 15300 | 81 | |
| 63653 | 82 | lemma equiv_class_eq_iff: "equiv A r \<Longrightarrow> (x, y) \<in> r \<longleftrightarrow> r``{x} = r``{y} \<and> x \<in> A \<and> y \<in> A"
 | 
| 15300 | 83 | by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type) | 
| 84 | ||
| 63653 | 85 | lemma eq_equiv_class_iff: "equiv A r \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> r``{x} = r``{y} \<longleftrightarrow> (x, y) \<in> r"
 | 
| 15300 | 86 | by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type) | 
| 87 | ||
| 88 | ||
| 60758 | 89 | subsection \<open>Quotients\<close> | 
| 15300 | 90 | |
| 63653 | 91 | definition quotient :: "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> 'a set set"  (infixl "'/'/" 90)
 | 
| 92 |   where "A//r = (\<Union>x \<in> A. {r``{x}})"  \<comment> \<open>set of equiv classes\<close>
 | |
| 15300 | 93 | |
| 94 | lemma quotientI: "x \<in> A ==> r``{x} \<in> A//r"
 | |
| 63653 | 95 | unfolding quotient_def by blast | 
| 15300 | 96 | |
| 63653 | 97 | lemma quotientE: "X \<in> A//r \<Longrightarrow> (\<And>x. X = r``{x} \<Longrightarrow> x \<in> A \<Longrightarrow> P) \<Longrightarrow> P"
 | 
| 98 | unfolding quotient_def by blast | |
| 15300 | 99 | |
| 63653 | 100 | lemma Union_quotient: "equiv A r \<Longrightarrow> \<Union>(A//r) = A" | 
| 101 | unfolding equiv_def refl_on_def quotient_def by blast | |
| 15300 | 102 | |
| 63653 | 103 | lemma quotient_disj: "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> Y \<in> A//r \<Longrightarrow> X = Y \<or> X \<inter> Y = {}"
 | 
| 15300 | 104 | apply (unfold quotient_def) | 
| 105 | apply clarify | |
| 106 | apply (rule equiv_class_eq) | |
| 107 | apply assumption | |
| 108 | apply (unfold equiv_def trans_def sym_def) | |
| 109 | apply blast | |
| 110 | done | |
| 111 | ||
| 112 | lemma quotient_eqI: | |
| 63653 | 113 | "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> Y \<in> A//r \<Longrightarrow> x \<in> X \<Longrightarrow> y \<in> Y \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> X = Y" | 
| 15300 | 114 | apply (clarify elim!: quotientE) | 
| 63653 | 115 | apply (rule equiv_class_eq) | 
| 116 | apply assumption | |
| 117 | apply (unfold equiv_def sym_def trans_def) | |
| 118 | apply blast | |
| 15300 | 119 | done | 
| 120 | ||
| 121 | lemma quotient_eq_iff: | |
| 63653 | 122 | "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> Y \<in> A//r \<Longrightarrow> x \<in> X \<Longrightarrow> y \<in> Y \<Longrightarrow> X = Y \<longleftrightarrow> (x, y) \<in> r" | 
| 123 | apply (rule iffI) | |
| 124 | prefer 2 | |
| 125 | apply (blast del: equalityI intro: quotient_eqI) | |
| 15300 | 126 | apply (clarify elim!: quotientE) | 
| 63653 | 127 | apply (unfold equiv_def sym_def trans_def) | 
| 128 | apply blast | |
| 15300 | 129 | done | 
| 130 | ||
| 63653 | 131 | lemma eq_equiv_class_iff2: "equiv A r \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> {x}//r = {y}//r \<longleftrightarrow> (x, y) \<in> r"
 | 
| 132 | by (simp add: quotient_def eq_equiv_class_iff) | |
| 15300 | 133 | |
| 134 | lemma quotient_empty [simp]: "{}//r = {}"
 | |
| 63653 | 135 | by (simp add: quotient_def) | 
| 15300 | 136 | |
| 63653 | 137 | lemma quotient_is_empty [iff]: "A//r = {} \<longleftrightarrow> A = {}"
 | 
| 138 | by (simp add: quotient_def) | |
| 15300 | 139 | |
| 63653 | 140 | lemma quotient_is_empty2 [iff]: "{} = A//r \<longleftrightarrow> A = {}"
 | 
| 141 | by (simp add: quotient_def) | |
| 15300 | 142 | |
| 15302 | 143 | lemma singleton_quotient: "{x}//r = {r `` {x}}"
 | 
| 63653 | 144 | by (simp add: quotient_def) | 
| 15302 | 145 | |
| 63653 | 146 | lemma quotient_diff1: "inj_on (\<lambda>a. {a}//r) A \<Longrightarrow> a \<in> A \<Longrightarrow> (A - {a})//r = A//r - {a}//r"
 | 
| 147 | unfolding quotient_def inj_on_def by blast | |
| 148 | ||
| 15302 | 149 | |
| 60758 | 150 | subsection \<open>Refinement of one equivalence relation WRT another\<close> | 
| 59528 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 151 | |
| 63653 | 152 | lemma refines_equiv_class_eq: "R \<subseteq> S \<Longrightarrow> equiv A R \<Longrightarrow> equiv A S \<Longrightarrow> R``(S``{a}) = S``{a}"
 | 
| 59528 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 153 | by (auto simp: equiv_class_eq_iff) | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 154 | |
| 63653 | 155 | lemma refines_equiv_class_eq2: "R \<subseteq> S \<Longrightarrow> equiv A R \<Longrightarrow> equiv A S \<Longrightarrow> S``(R``{a}) = S``{a}"
 | 
| 59528 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 156 | by (auto simp: equiv_class_eq_iff) | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 157 | |
| 63653 | 158 | lemma refines_equiv_image_eq: "R \<subseteq> S \<Longrightarrow> equiv A R \<Longrightarrow> equiv A S \<Longrightarrow> (\<lambda>X. S``X) ` (A//R) = A//S" | 
| 59528 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 159 | by (auto simp: quotient_def image_UN refines_equiv_class_eq2) | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 160 | |
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 161 | lemma finite_refines_finite: | 
| 63653 | 162 | "finite (A//R) \<Longrightarrow> R \<subseteq> S \<Longrightarrow> equiv A R \<Longrightarrow> equiv A S \<Longrightarrow> finite (A//S)" | 
| 163 | by (erule finite_surj [where f = "\<lambda>X. S``X"]) (simp add: refines_equiv_image_eq) | |
| 59528 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 164 | |
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 165 | lemma finite_refines_card_le: | 
| 63653 | 166 | "finite (A//R) \<Longrightarrow> R \<subseteq> S \<Longrightarrow> equiv A R \<Longrightarrow> equiv A S \<Longrightarrow> card (A//S) \<le> card (A//R)" | 
| 167 | by (subst refines_equiv_image_eq [of R S A, symmetric]) | |
| 168 | (auto simp: card_image_le [where f = "\<lambda>X. S``X"]) | |
| 59528 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 169 | |
| 55022 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 170 | |
| 60758 | 171 | subsection \<open>Defining unary operations upon equivalence classes\<close> | 
| 15300 | 172 | |
| 63653 | 173 | text \<open>A congruence-preserving function.\<close> | 
| 40816 
19c492929756
replaced slightly odd locale congruent by plain definition
 haftmann parents: 
40815diff
changeset | 174 | |
| 63653 | 175 | definition congruent :: "('a \<times> 'a) set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool"
 | 
| 176 | where "congruent r f \<longleftrightarrow> (\<forall>(y, z) \<in> r. f y = f z)" | |
| 40816 
19c492929756
replaced slightly odd locale congruent by plain definition
 haftmann parents: 
40815diff
changeset | 177 | |
| 63653 | 178 | lemma congruentI: "(\<And>y z. (y, z) \<in> r \<Longrightarrow> f y = f z) \<Longrightarrow> congruent r f" | 
| 40817 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 179 | by (auto simp add: congruent_def) | 
| 40816 
19c492929756
replaced slightly odd locale congruent by plain definition
 haftmann parents: 
40815diff
changeset | 180 | |
| 63653 | 181 | lemma congruentD: "congruent r f \<Longrightarrow> (y, z) \<in> r \<Longrightarrow> f y = f z" | 
| 40817 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 182 | by (auto simp add: congruent_def) | 
| 15300 | 183 | |
| 63653 | 184 | abbreviation RESPECTS :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool"  (infixr "respects" 80)
 | 
| 185 | where "f respects r \<equiv> congruent r f" | |
| 15300 | 186 | |
| 187 | ||
| 63653 | 188 | lemma UN_constant_eq: "a \<in> A \<Longrightarrow> \<forall>y \<in> A. f y = c \<Longrightarrow> (\<Union>y \<in> A. f y) = c" | 
| 61799 | 189 | \<comment> \<open>lemma required to prove \<open>UN_equiv_class\<close>\<close> | 
| 15300 | 190 | by auto | 
| 191 | ||
| 63653 | 192 | lemma UN_equiv_class: "equiv A r \<Longrightarrow> f respects r \<Longrightarrow> a \<in> A \<Longrightarrow> (\<Union>x \<in> r``{a}. f x) = f a"
 | 
| 61799 | 193 | \<comment> \<open>Conversion rule\<close> | 
| 63653 | 194 | apply (rule equiv_class_self [THEN UN_constant_eq]) | 
| 195 | apply assumption | |
| 196 | apply assumption | |
| 15300 | 197 | apply (unfold equiv_def congruent_def sym_def) | 
| 198 | apply (blast del: equalityI) | |
| 199 | done | |
| 200 | ||
| 201 | lemma UN_equiv_class_type: | |
| 63653 | 202 | "equiv A r \<Longrightarrow> f respects r \<Longrightarrow> X \<in> A//r \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> (\<Union>x \<in> X. f x) \<in> B" | 
| 15300 | 203 | apply (unfold quotient_def) | 
| 204 | apply clarify | |
| 205 | apply (subst UN_equiv_class) | |
| 206 | apply auto | |
| 207 | done | |
| 208 | ||
| 60758 | 209 | text \<open> | 
| 15300 | 210 | Sufficient conditions for injectiveness. Could weaken premises! | 
| 63653 | 211 | major premise could be an inclusion; \<open>bcong\<close> could be | 
| 212 | \<open>\<And>y. y \<in> A \<Longrightarrow> f y \<in> B\<close>. | |
| 60758 | 213 | \<close> | 
| 15300 | 214 | |
| 215 | lemma UN_equiv_class_inject: | |
| 63653 | 216 | "equiv A r \<Longrightarrow> f respects r \<Longrightarrow> | 
| 217 | (\<Union>x \<in> X. f x) = (\<Union>y \<in> Y. f y) \<Longrightarrow> X \<in> A//r ==> Y \<in> A//r | |
| 218 | \<Longrightarrow> (\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> f x = f y \<Longrightarrow> (x, y) \<in> r) | |
| 219 | \<Longrightarrow> X = Y" | |
| 15300 | 220 | apply (unfold quotient_def) | 
| 221 | apply clarify | |
| 222 | apply (rule equiv_class_eq) | |
| 223 | apply assumption | |
| 224 | apply (subgoal_tac "f x = f xa") | |
| 225 | apply blast | |
| 226 | apply (erule box_equals) | |
| 227 | apply (assumption | rule UN_equiv_class)+ | |
| 228 | done | |
| 229 | ||
| 230 | ||
| 60758 | 231 | subsection \<open>Defining binary operations upon equivalence classes\<close> | 
| 15300 | 232 | |
| 63653 | 233 | text \<open>A congruence-preserving function of two arguments.\<close> | 
| 40817 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 234 | |
| 63653 | 235 | definition congruent2 :: "('a \<times> 'a) set \<Rightarrow> ('b \<times> 'b) set \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> bool"
 | 
| 236 | where "congruent2 r1 r2 f \<longleftrightarrow> (\<forall>(y1, z1) \<in> r1. \<forall>(y2, z2) \<in> r2. f y1 y2 = f z1 z2)" | |
| 40817 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 237 | |
| 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 238 | lemma congruent2I': | 
| 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 239 | assumes "\<And>y1 z1 y2 z2. (y1, z1) \<in> r1 \<Longrightarrow> (y2, z2) \<in> r2 \<Longrightarrow> f y1 y2 = f z1 z2" | 
| 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 240 | shows "congruent2 r1 r2 f" | 
| 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 241 | using assms by (auto simp add: congruent2_def) | 
| 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 242 | |
| 63653 | 243 | lemma congruent2D: "congruent2 r1 r2 f \<Longrightarrow> (y1, z1) \<in> r1 \<Longrightarrow> (y2, z2) \<in> r2 \<Longrightarrow> f y1 y2 = f z1 z2" | 
| 63092 | 244 | by (auto simp add: congruent2_def) | 
| 15300 | 245 | |
| 63653 | 246 | text \<open>Abbreviation for the common case where the relations are identical.\<close> | 
| 247 | abbreviation RESPECTS2:: "('a \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool"  (infixr "respects2" 80)
 | |
| 248 | where "f respects2 r \<equiv> congruent2 r r f" | |
| 19979 | 249 | |
| 15300 | 250 | |
| 251 | lemma congruent2_implies_congruent: | |
| 63653 | 252 | "equiv A r1 \<Longrightarrow> congruent2 r1 r2 f \<Longrightarrow> a \<in> A \<Longrightarrow> congruent r2 (f a)" | 
| 253 | unfolding congruent_def congruent2_def equiv_def refl_on_def by blast | |
| 15300 | 254 | |
| 255 | lemma congruent2_implies_congruent_UN: | |
| 63653 | 256 | "equiv A1 r1 \<Longrightarrow> equiv A2 r2 \<Longrightarrow> congruent2 r1 r2 f \<Longrightarrow> a \<in> A2 \<Longrightarrow> | 
| 15300 | 257 |     congruent r1 (\<lambda>x1. \<Union>x2 \<in> r2``{a}. f x1 x2)"
 | 
| 258 | apply (unfold congruent_def) | |
| 259 | apply clarify | |
| 260 | apply (rule equiv_type [THEN subsetD, THEN SigmaE2], assumption+) | |
| 261 | apply (simp add: UN_equiv_class congruent2_implies_congruent) | |
| 30198 | 262 | apply (unfold congruent2_def equiv_def refl_on_def) | 
| 15300 | 263 | apply (blast del: equalityI) | 
| 264 | done | |
| 265 | ||
| 266 | lemma UN_equiv_class2: | |
| 63653 | 267 | "equiv A1 r1 \<Longrightarrow> equiv A2 r2 \<Longrightarrow> congruent2 r1 r2 f \<Longrightarrow> a1 \<in> A1 \<Longrightarrow> a2 \<in> A2 \<Longrightarrow> | 
| 268 |     (\<Union>x1 \<in> r1``{a1}. \<Union>x2 \<in> r2``{a2}. f x1 x2) = f a1 a2"
 | |
| 269 | by (simp add: UN_equiv_class congruent2_implies_congruent congruent2_implies_congruent_UN) | |
| 15300 | 270 | |
| 271 | lemma UN_equiv_class_type2: | |
| 63653 | 272 | "equiv A1 r1 \<Longrightarrow> equiv A2 r2 \<Longrightarrow> congruent2 r1 r2 f | 
| 273 | \<Longrightarrow> X1 \<in> A1//r1 \<Longrightarrow> X2 \<in> A2//r2 | |
| 274 | \<Longrightarrow> (\<And>x1 x2. x1 \<in> A1 \<Longrightarrow> x2 \<in> A2 \<Longrightarrow> f x1 x2 \<in> B) | |
| 275 | \<Longrightarrow> (\<Union>x1 \<in> X1. \<Union>x2 \<in> X2. f x1 x2) \<in> B" | |
| 15300 | 276 | apply (unfold quotient_def) | 
| 277 | apply clarify | |
| 278 | apply (blast intro: UN_equiv_class_type congruent2_implies_congruent_UN | |
| 63653 | 279 | congruent2_implies_congruent quotientI) | 
| 15300 | 280 | done | 
| 281 | ||
| 282 | lemma UN_UN_split_split_eq: | |
| 283 | "(\<Union>(x1, x2) \<in> X. \<Union>(y1, y2) \<in> Y. A x1 x2 y1 y2) = | |
| 284 | (\<Union>x \<in> X. \<Union>y \<in> Y. (\<lambda>(x1, x2). (\<lambda>(y1, y2). A x1 x2 y1 y2) y) x)" | |
| 61799 | 285 | \<comment> \<open>Allows a natural expression of binary operators,\<close> | 
| 286 | \<comment> \<open>without explicit calls to \<open>split\<close>\<close> | |
| 15300 | 287 | by auto | 
| 288 | ||
| 289 | lemma congruent2I: | |
| 63653 | 290 | "equiv A1 r1 \<Longrightarrow> equiv A2 r2 | 
| 291 | \<Longrightarrow> (\<And>y z w. w \<in> A2 \<Longrightarrow> (y,z) \<in> r1 \<Longrightarrow> f y w = f z w) | |
| 292 | \<Longrightarrow> (\<And>y z w. w \<in> A1 \<Longrightarrow> (y,z) \<in> r2 \<Longrightarrow> f w y = f w z) | |
| 293 | \<Longrightarrow> congruent2 r1 r2 f" | |
| 61799 | 294 | \<comment> \<open>Suggested by John Harrison -- the two subproofs may be\<close> | 
| 63653 | 295 | \<comment> \<open>\<^emph>\<open>much\<close> simpler than the direct proof.\<close> | 
| 30198 | 296 | apply (unfold congruent2_def equiv_def refl_on_def) | 
| 15300 | 297 | apply clarify | 
| 298 | apply (blast intro: trans) | |
| 299 | done | |
| 300 | ||
| 301 | lemma congruent2_commuteI: | |
| 302 | assumes equivA: "equiv A r" | |
| 63653 | 303 | and commute: "\<And>y z. y \<in> A \<Longrightarrow> z \<in> A \<Longrightarrow> f y z = f z y" | 
| 304 | and congt: "\<And>y z w. w \<in> A \<Longrightarrow> (y,z) \<in> r \<Longrightarrow> f w y = f w z" | |
| 15300 | 305 | shows "f respects2 r" | 
| 306 | apply (rule congruent2I [OF equivA equivA]) | |
| 307 | apply (rule commute [THEN trans]) | |
| 308 | apply (rule_tac [3] commute [THEN trans, symmetric]) | |
| 309 | apply (rule_tac [5] sym) | |
| 25482 | 310 | apply (rule congt | assumption | | 
| 15300 | 311 | erule equivA [THEN equiv_type, THEN subsetD, THEN SigmaE2])+ | 
| 312 | done | |
| 313 | ||
| 24728 | 314 | |
| 60758 | 315 | subsection \<open>Quotients and finiteness\<close> | 
| 24728 | 316 | |
| 60758 | 317 | text \<open>Suggested by Florian Kammüller\<close> | 
| 24728 | 318 | |
| 63653 | 319 | lemma finite_quotient: "finite A \<Longrightarrow> r \<subseteq> A \<times> A \<Longrightarrow> finite (A//r)" | 
| 61799 | 320 |   \<comment> \<open>recall @{thm equiv_type}\<close>
 | 
| 24728 | 321 | apply (rule finite_subset) | 
| 322 | apply (erule_tac [2] finite_Pow_iff [THEN iffD2]) | |
| 323 | apply (unfold quotient_def) | |
| 324 | apply blast | |
| 325 | done | |
| 326 | ||
| 63653 | 327 | lemma finite_equiv_class: "finite A \<Longrightarrow> r \<subseteq> A \<times> A \<Longrightarrow> X \<in> A//r \<Longrightarrow> finite X" | 
| 24728 | 328 | apply (unfold quotient_def) | 
| 329 | apply (rule finite_subset) | |
| 330 | prefer 2 apply assumption | |
| 331 | apply blast | |
| 332 | done | |
| 333 | ||
| 63653 | 334 | lemma equiv_imp_dvd_card: "finite A \<Longrightarrow> equiv A r \<Longrightarrow> \<forall>X \<in> A//r. k dvd card X \<Longrightarrow> k dvd card A" | 
| 26791 
3581a9c71909
Instantiated subst rule to avoid problems with HO unification.
 berghofe parents: 
25482diff
changeset | 335 | apply (rule Union_quotient [THEN subst [where P="\<lambda>A. k dvd card A"]]) | 
| 24728 | 336 | apply assumption | 
| 337 | apply (rule dvd_partition) | |
| 63653 | 338 | prefer 3 apply (blast dest: quotient_disj) | 
| 339 | apply (simp_all add: Union_quotient equiv_type) | |
| 24728 | 340 | done | 
| 341 | ||
| 63653 | 342 | lemma card_quotient_disjoint: "finite A \<Longrightarrow> inj_on (\<lambda>x. {x} // r) A \<Longrightarrow> card (A//r) = card A"
 | 
| 343 | apply (simp add:quotient_def) | |
| 344 | apply (subst card_UN_disjoint) | |
| 345 | apply assumption | |
| 346 | apply simp | |
| 347 | apply (fastforce simp add:inj_on_def) | |
| 24728 | 348 | apply simp | 
| 63653 | 349 | done | 
| 24728 | 350 | |
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 351 | |
| 60758 | 352 | subsection \<open>Projection\<close> | 
| 55022 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 353 | |
| 63653 | 354 | definition proj :: "('b \<times> 'a) set \<Rightarrow> 'b \<Rightarrow> 'a set"
 | 
| 355 |   where "proj r x = r `` {x}"
 | |
| 55022 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 356 | |
| 63653 | 357 | lemma proj_preserves: "x \<in> A \<Longrightarrow> proj r x \<in> A//r" | 
| 358 | unfolding proj_def by (rule quotientI) | |
| 55022 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 359 | |
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 360 | lemma proj_in_iff: | 
| 63653 | 361 | assumes "equiv A r" | 
| 362 | shows "proj r x \<in> A//r \<longleftrightarrow> x \<in> A" | |
| 363 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 364 | proof | |
| 365 | assume ?rhs | |
| 366 | then show ?lhs by (simp add: proj_preserves) | |
| 367 | next | |
| 368 | assume ?lhs | |
| 369 | then show ?rhs | |
| 370 | unfolding proj_def quotient_def | |
| 371 | proof clarsimp | |
| 372 | fix y | |
| 373 |     assume y: "y \<in> A" and "r `` {x} = r `` {y}"
 | |
| 374 |     moreover have "y \<in> r `` {y}"
 | |
| 375 | using assms y unfolding equiv_def refl_on_def by blast | |
| 376 | ultimately have "(x, y) \<in> r" by blast | |
| 377 | then show "x \<in> A" | |
| 378 | using assms unfolding equiv_def refl_on_def by blast | |
| 379 | qed | |
| 55022 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 380 | qed | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 381 | |
| 63653 | 382 | lemma proj_iff: "equiv A r \<Longrightarrow> {x, y} \<subseteq> A \<Longrightarrow> proj r x = proj r y \<longleftrightarrow> (x, y) \<in> r"
 | 
| 383 | by (simp add: proj_def eq_equiv_class_iff) | |
| 55022 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 384 | |
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 385 | (* | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 386 | lemma in_proj: "\<lbrakk>equiv A r; x \<in> A\<rbrakk> \<Longrightarrow> x \<in> proj r x" | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 387 | unfolding proj_def equiv_def refl_on_def by blast | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 388 | *) | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 389 | |
| 63653 | 390 | lemma proj_image: "proj r ` A = A//r" | 
| 391 | unfolding proj_def[abs_def] quotient_def by blast | |
| 55022 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 392 | |
| 63653 | 393 | lemma in_quotient_imp_non_empty: "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> X \<noteq> {}"
 | 
| 394 | unfolding quotient_def using equiv_class_self by fast | |
| 55022 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 395 | |
| 63653 | 396 | lemma in_quotient_imp_in_rel: "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> {x, y} \<subseteq> X \<Longrightarrow> (x, y) \<in> r"
 | 
| 397 | using quotient_eq_iff[THEN iffD1] by fastforce | |
| 55022 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 398 | |
| 63653 | 399 | lemma in_quotient_imp_closed: "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> x \<in> X \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> y \<in> X" | 
| 400 | unfolding quotient_def equiv_def trans_def by blast | |
| 55022 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 401 | |
| 63653 | 402 | lemma in_quotient_imp_subset: "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> X \<subseteq> A" | 
| 403 | using in_quotient_imp_in_rel equiv_type by fastforce | |
| 55022 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 404 | |
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 405 | |
| 60758 | 406 | subsection \<open>Equivalence relations -- predicate version\<close> | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 407 | |
| 63653 | 408 | text \<open>Partial equivalences.\<close> | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 409 | |
| 63653 | 410 | definition part_equivp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
 | 
| 411 | where "part_equivp R \<longleftrightarrow> (\<exists>x. R x x) \<and> (\<forall>x y. R x y \<longleftrightarrow> R x x \<and> R y y \<and> R x = R y)" | |
| 61799 | 412 | \<comment> \<open>John-Harrison-style characterization\<close> | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 413 | |
| 63653 | 414 | lemma part_equivpI: "\<exists>x. R x x \<Longrightarrow> symp R \<Longrightarrow> transp R \<Longrightarrow> part_equivp R" | 
| 45969 | 415 | by (auto simp add: part_equivp_def) (auto elim: sympE transpE) | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 416 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 417 | lemma part_equivpE: | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 418 | assumes "part_equivp R" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 419 | obtains x where "R x x" and "symp R" and "transp R" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 420 | proof - | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 421 | from assms have 1: "\<exists>x. R x x" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 422 | and 2: "\<And>x y. R x y \<longleftrightarrow> R x x \<and> R y y \<and> R x = R y" | 
| 63653 | 423 | unfolding part_equivp_def by blast+ | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 424 | from 1 obtain x where "R x x" .. | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 425 | moreover have "symp R" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 426 | proof (rule sympI) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 427 | fix x y | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 428 | assume "R x y" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 429 | with 2 [of x y] show "R y x" by auto | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 430 | qed | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 431 | moreover have "transp R" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 432 | proof (rule transpI) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 433 | fix x y z | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 434 | assume "R x y" and "R y z" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 435 | with 2 [of x y] 2 [of y z] show "R x z" by auto | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 436 | qed | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 437 | ultimately show thesis by (rule that) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 438 | qed | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 439 | |
| 63653 | 440 | lemma part_equivp_refl_symp_transp: "part_equivp R \<longleftrightarrow> (\<exists>x. R x x) \<and> symp R \<and> transp R" | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 441 | by (auto intro: part_equivpI elim: part_equivpE) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 442 | |
| 63653 | 443 | lemma part_equivp_symp: "part_equivp R \<Longrightarrow> R x y \<Longrightarrow> R y x" | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 444 | by (erule part_equivpE, erule sympE) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 445 | |
| 63653 | 446 | lemma part_equivp_transp: "part_equivp R \<Longrightarrow> R x y \<Longrightarrow> R y z \<Longrightarrow> R x z" | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 447 | by (erule part_equivpE, erule transpE) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 448 | |
| 63653 | 449 | lemma part_equivp_typedef: "part_equivp R \<Longrightarrow> \<exists>d. d \<in> {c. \<exists>x. R x x \<and> c = Collect (R x)}"
 | 
| 44204 
3cdc4176638c
Quotient Package: make quotient_type work with separate set type
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
40945diff
changeset | 450 | by (auto elim: part_equivpE) | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 451 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 452 | |
| 63653 | 453 | text \<open>Total equivalences.\<close> | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 454 | |
| 63653 | 455 | definition equivp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
 | 
| 456 | where "equivp R \<longleftrightarrow> (\<forall>x y. R x y = (R x = R y))" \<comment> \<open>John-Harrison-style characterization\<close> | |
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 457 | |
| 63653 | 458 | lemma equivpI: "reflp R \<Longrightarrow> symp R \<Longrightarrow> transp R \<Longrightarrow> equivp R" | 
| 45969 | 459 | by (auto elim: reflpE sympE transpE simp add: equivp_def) | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 460 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 461 | lemma equivpE: | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 462 | assumes "equivp R" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 463 | obtains "reflp R" and "symp R" and "transp R" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 464 | using assms by (auto intro!: that reflpI sympI transpI simp add: equivp_def) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 465 | |
| 63653 | 466 | lemma equivp_implies_part_equivp: "equivp R \<Longrightarrow> part_equivp R" | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 467 | by (auto intro: part_equivpI elim: equivpE reflpE) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 468 | |
| 63653 | 469 | lemma equivp_equiv: "equiv UNIV A \<longleftrightarrow> equivp (\<lambda>x y. (x, y) \<in> A)" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
45969diff
changeset | 470 | by (auto intro!: equivI equivpI [to_set] elim!: equivE equivpE [to_set]) | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 471 | |
| 63653 | 472 | lemma equivp_reflp_symp_transp: "equivp R \<longleftrightarrow> reflp R \<and> symp R \<and> transp R" | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 473 | by (auto intro: equivpI elim: equivpE) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 474 | |
| 67399 | 475 | lemma identity_equivp: "equivp (=)" | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 476 | by (auto intro: equivpI reflpI sympI transpI) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 477 | |
| 63653 | 478 | lemma equivp_reflp: "equivp R \<Longrightarrow> R x x" | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 479 | by (erule equivpE, erule reflpE) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 480 | |
| 63653 | 481 | lemma equivp_symp: "equivp R \<Longrightarrow> R x y \<Longrightarrow> R y x" | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 482 | by (erule equivpE, erule sympE) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 483 | |
| 63653 | 484 | lemma equivp_transp: "equivp R \<Longrightarrow> R x y \<Longrightarrow> R y z \<Longrightarrow> R x z" | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 485 | by (erule equivpE, erule transpE) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 486 | |
| 55024 | 487 | hide_const (open) proj | 
| 488 | ||
| 15300 | 489 | end |