16732
|
1 |
(* Title: HOL/Binomial.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson
|
|
4 |
Copyright 1997 University of Cambridge
|
|
5 |
*)
|
|
6 |
|
|
7 |
header{*Binomial Coefficients*}
|
|
8 |
|
|
9 |
theory Binomial
|
17508
|
10 |
imports GCD
|
16732
|
11 |
begin
|
|
12 |
|
|
13 |
text{*This development is based on the work of Andy Gordon and
|
|
14 |
Florian Kammueller*}
|
|
15 |
|
|
16 |
consts
|
|
17 |
binomial :: "nat \<Rightarrow> nat \<Rightarrow> nat" (infixl "choose" 65)
|
|
18 |
|
|
19 |
primrec
|
|
20 |
binomial_0: "(0 choose k) = (if k = 0 then 1 else 0)"
|
|
21 |
|
|
22 |
binomial_Suc: "(Suc n choose k) =
|
|
23 |
(if k = 0 then 1 else (n choose (k - 1)) + (n choose k))"
|
|
24 |
|
|
25 |
lemma binomial_n_0 [simp]: "(n choose 0) = 1"
|
17508
|
26 |
by (cases n) simp_all
|
16732
|
27 |
|
|
28 |
lemma binomial_0_Suc [simp]: "(0 choose Suc k) = 0"
|
|
29 |
by simp
|
|
30 |
|
|
31 |
lemma binomial_Suc_Suc [simp]:
|
|
32 |
"(Suc n choose Suc k) = (n choose k) + (n choose Suc k)"
|
|
33 |
by simp
|
|
34 |
|
|
35 |
lemma binomial_eq_0 [rule_format]: "\<forall>k. n < k --> (n choose k) = 0"
|
|
36 |
apply (induct "n", auto)
|
|
37 |
apply (erule allE)
|
|
38 |
apply (erule mp, arith)
|
|
39 |
done
|
|
40 |
|
|
41 |
declare binomial_0 [simp del] binomial_Suc [simp del]
|
|
42 |
|
|
43 |
lemma binomial_n_n [simp]: "(n choose n) = 1"
|
|
44 |
apply (induct "n")
|
|
45 |
apply (simp_all add: binomial_eq_0)
|
|
46 |
done
|
|
47 |
|
|
48 |
lemma binomial_Suc_n [simp]: "(Suc n choose n) = Suc n"
|
|
49 |
by (induct "n", simp_all)
|
|
50 |
|
|
51 |
lemma binomial_1 [simp]: "(n choose Suc 0) = n"
|
|
52 |
by (induct "n", simp_all)
|
|
53 |
|
|
54 |
lemma zero_less_binomial [rule_format]: "k \<le> n --> 0 < (n choose k)"
|
|
55 |
by (rule_tac m = n and n = k in diff_induct, simp_all)
|
|
56 |
|
|
57 |
lemma binomial_eq_0_iff: "(n choose k = 0) = (n<k)"
|
|
58 |
apply (safe intro!: binomial_eq_0)
|
|
59 |
apply (erule contrapos_pp)
|
|
60 |
apply (simp add: zero_less_binomial)
|
|
61 |
done
|
|
62 |
|
|
63 |
lemma zero_less_binomial_iff: "(0 < n choose k) = (k\<le>n)"
|
|
64 |
by (simp add: linorder_not_less [symmetric] binomial_eq_0_iff [symmetric])
|
|
65 |
|
|
66 |
(*Might be more useful if re-oriented*)
|
|
67 |
lemma Suc_times_binomial_eq [rule_format]:
|
|
68 |
"\<forall>k. k \<le> n --> Suc n * (n choose k) = (Suc n choose Suc k) * Suc k"
|
|
69 |
apply (induct "n")
|
|
70 |
apply (simp add: binomial_0, clarify)
|
|
71 |
apply (case_tac "k")
|
|
72 |
apply (auto simp add: add_mult_distrib add_mult_distrib2 le_Suc_eq
|
|
73 |
binomial_eq_0)
|
|
74 |
done
|
|
75 |
|
|
76 |
text{*This is the well-known version, but it's harder to use because of the
|
|
77 |
need to reason about division.*}
|
|
78 |
lemma binomial_Suc_Suc_eq_times:
|
|
79 |
"k \<le> n ==> (Suc n choose Suc k) = (Suc n * (n choose k)) div Suc k"
|
|
80 |
by (simp add: Suc_times_binomial_eq div_mult_self_is_m zero_less_Suc
|
|
81 |
del: mult_Suc mult_Suc_right)
|
|
82 |
|
|
83 |
text{*Another version, with -1 instead of Suc.*}
|
|
84 |
lemma times_binomial_minus1_eq:
|
|
85 |
"[|k \<le> n; 0<k|] ==> (n choose k) * k = n * ((n - 1) choose (k - 1))"
|
|
86 |
apply (cut_tac n = "n - 1" and k = "k - 1" in Suc_times_binomial_eq)
|
|
87 |
apply (simp split add: nat_diff_split, auto)
|
|
88 |
done
|
|
89 |
|
|
90 |
subsubsection {* Theorems about @{text "choose"} *}
|
|
91 |
|
|
92 |
text {*
|
|
93 |
\medskip Basic theorem about @{text "choose"}. By Florian
|
|
94 |
Kamm\"uller, tidied by LCP.
|
|
95 |
*}
|
|
96 |
|
|
97 |
lemma card_s_0_eq_empty:
|
|
98 |
"finite A ==> card {B. B \<subseteq> A & card B = 0} = 1"
|
|
99 |
apply (simp cong add: conj_cong add: finite_subset [THEN card_0_eq])
|
|
100 |
apply (simp cong add: rev_conj_cong)
|
|
101 |
done
|
|
102 |
|
|
103 |
lemma choose_deconstruct: "finite M ==> x \<notin> M
|
|
104 |
==> {s. s <= insert x M & card(s) = Suc k}
|
|
105 |
= {s. s <= M & card(s) = Suc k} Un
|
|
106 |
{s. EX t. t <= M & card(t) = k & s = insert x t}"
|
|
107 |
apply safe
|
|
108 |
apply (auto intro: finite_subset [THEN card_insert_disjoint])
|
|
109 |
apply (drule_tac x = "xa - {x}" in spec)
|
|
110 |
apply (subgoal_tac "x \<notin> xa", auto)
|
|
111 |
apply (erule rev_mp, subst card_Diff_singleton)
|
|
112 |
apply (auto intro: finite_subset)
|
|
113 |
done
|
|
114 |
|
|
115 |
text{*There are as many subsets of @{term A} having cardinality @{term k}
|
|
116 |
as there are sets obtained from the former by inserting a fixed element
|
|
117 |
@{term x} into each.*}
|
|
118 |
lemma constr_bij:
|
|
119 |
"[|finite A; x \<notin> A|] ==>
|
|
120 |
card {B. EX C. C <= A & card(C) = k & B = insert x C} =
|
|
121 |
card {B. B <= A & card(B) = k}"
|
|
122 |
apply (rule_tac f = "%s. s - {x}" and g = "insert x" in card_bij_eq)
|
|
123 |
apply (auto elim!: equalityE simp add: inj_on_def)
|
|
124 |
apply (subst Diff_insert0, auto)
|
|
125 |
txt {* finiteness of the two sets *}
|
|
126 |
apply (rule_tac [2] B = "Pow (A)" in finite_subset)
|
|
127 |
apply (rule_tac B = "Pow (insert x A)" in finite_subset)
|
|
128 |
apply fast+
|
|
129 |
done
|
|
130 |
|
|
131 |
text {*
|
|
132 |
Main theorem: combinatorial statement about number of subsets of a set.
|
|
133 |
*}
|
|
134 |
|
|
135 |
lemma n_sub_lemma:
|
|
136 |
"!!A. finite A ==> card {B. B <= A & card B = k} = (card A choose k)"
|
|
137 |
apply (induct k)
|
|
138 |
apply (simp add: card_s_0_eq_empty, atomize)
|
|
139 |
apply (rotate_tac -1, erule finite_induct)
|
|
140 |
apply (simp_all (no_asm_simp) cong add: conj_cong
|
|
141 |
add: card_s_0_eq_empty choose_deconstruct)
|
|
142 |
apply (subst card_Un_disjoint)
|
|
143 |
prefer 4 apply (force simp add: constr_bij)
|
|
144 |
prefer 3 apply force
|
|
145 |
prefer 2 apply (blast intro: finite_Pow_iff [THEN iffD2]
|
|
146 |
finite_subset [of _ "Pow (insert x F)", standard])
|
|
147 |
apply (blast intro: finite_Pow_iff [THEN iffD2, THEN [2] finite_subset])
|
|
148 |
done
|
|
149 |
|
|
150 |
theorem n_subsets:
|
|
151 |
"finite A ==> card {B. B <= A & card B = k} = (card A choose k)"
|
|
152 |
by (simp add: n_sub_lemma)
|
|
153 |
|
|
154 |
|
|
155 |
text{* The binomial theorem (courtesy of Tobias Nipkow): *}
|
|
156 |
|
|
157 |
theorem binomial: "(a+b::nat)^n = (\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))"
|
|
158 |
proof (induct n)
|
|
159 |
case 0 thus ?case by simp
|
|
160 |
next
|
|
161 |
case (Suc n)
|
|
162 |
have decomp: "{0..n+1} = {0} \<union> {n+1} \<union> {1..n}"
|
|
163 |
by (auto simp add:atLeastAtMost_def atLeast_def atMost_def)
|
|
164 |
have decomp2: "{0..n} = {0} \<union> {1..n}"
|
|
165 |
by (auto simp add:atLeastAtMost_def atLeast_def atMost_def)
|
|
166 |
have "(a+b::nat)^(n+1) = (a+b) * (\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))"
|
|
167 |
using Suc by simp
|
|
168 |
also have "\<dots> = a*(\<Sum>k=0..n. (n choose k) * a^k * b^(n-k)) +
|
|
169 |
b*(\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))"
|
|
170 |
by(rule nat_distrib)
|
|
171 |
also have "\<dots> = (\<Sum>k=0..n. (n choose k) * a^(k+1) * b^(n-k)) +
|
|
172 |
(\<Sum>k=0..n. (n choose k) * a^k * b^(n-k+1))"
|
|
173 |
by(simp add: setsum_mult mult_ac)
|
|
174 |
also have "\<dots> = (\<Sum>k=0..n. (n choose k) * a^k * b^(n+1-k)) +
|
|
175 |
(\<Sum>k=1..n+1. (n choose (k - 1)) * a^k * b^(n+1-k))"
|
|
176 |
by (simp add:setsum_shift_bounds_cl_Suc_ivl Suc_diff_le
|
|
177 |
del:setsum_cl_ivl_Suc)
|
|
178 |
also have "\<dots> = a^(n+1) + b^(n+1) +
|
|
179 |
(\<Sum>k=1..n. (n choose (k - 1)) * a^k * b^(n+1-k)) +
|
|
180 |
(\<Sum>k=1..n. (n choose k) * a^k * b^(n+1-k))"
|
|
181 |
by(simp add: decomp2)
|
|
182 |
also have
|
|
183 |
"\<dots> = a^(n+1) + b^(n+1) + (\<Sum>k=1..n. (n+1 choose k) * a^k * b^(n+1-k))"
|
|
184 |
by(simp add: nat_distrib setsum_addf binomial.simps)
|
|
185 |
also have "\<dots> = (\<Sum>k=0..n+1. (n+1 choose k) * a^k * b^(n+1-k))"
|
|
186 |
using decomp by simp
|
|
187 |
finally show ?case by simp
|
|
188 |
qed
|
|
189 |
|
|
190 |
end
|