| author | paulson | 
| Wed, 10 Jan 2001 12:43:40 +0100 | |
| changeset 10853 | 2c64c7991f7c | 
| parent 243 | c22b85994e17 | 
| permissions | -rw-r--r-- | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1 | (* Title: HOLCF/one.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 2 | ID: $Id$ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 3 | Author: Franz Regensburger | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 4 | Copyright 1993 Technische Universitaet Muenchen | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 5 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 6 | Introduve atomic type one = (void)u | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 7 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 8 | This is the first type that is introduced using a domain isomorphism. | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 9 | The type axiom | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 10 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 11 | arities one :: pcpo | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 12 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 13 | and the continuity of the Isomorphisms are taken for granted. Since the | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 14 | type is not recursive, it could be easily introduced in a purely conservative | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 15 | style as it was used for the types sprod, ssum, lift. The definition of the | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 16 | ordering is canonical using abstraction and representation, but this would take | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 17 | again a lot of internal constants. It can easily be seen that the axioms below | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 18 | are consistent. | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 19 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 20 | The partial ordering on type one is implicitly defined via the | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 21 | isomorphism axioms and the continuity of abs_one and rep_one. | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 22 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 23 | We could also introduce the function less_one with definition | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 24 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 25 | less_one(x,y) = rep_one[x] << rep_one[y] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 26 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 27 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 28 | *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 29 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 30 | One = ccc1+ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 31 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 32 | types one 0 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 33 | arities one :: pcpo | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 34 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 35 | consts | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 36 | abs_one :: "(void)u -> one" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 37 | rep_one :: "one -> (void)u" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 38 | one :: "one" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 39 | one_when :: "'c -> one -> 'c" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 40 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 41 | rules | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 42 | abs_one_iso "abs_one[rep_one[u]] = u" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 43 | rep_one_iso "rep_one[abs_one[x]] = x" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 44 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 45 | one_def "one == abs_one[up[UU]]" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 46 | one_when_def "one_when == (LAM c u.lift[LAM x.c][rep_one[u]])" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 47 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 48 | end | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 49 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 50 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 51 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 52 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 53 |