author | haftmann |
Tue, 14 Jul 2009 10:54:04 +0200 | |
changeset 31998 | 2c7a24f74db9 |
parent 31723 | f5cafe803b55 |
child 32988 | d1d4d7a08a66 |
permissions | -rw-r--r-- |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
1 |
(* Title: HOL/Hilbert_Choice.thy |
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
2 |
Author: Lawrence C Paulson |
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
3 |
Copyright 2001 University of Cambridge |
12023 | 4 |
*) |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
5 |
|
14760 | 6 |
header {* Hilbert's Epsilon-Operator and the Axiom of Choice *} |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
7 |
|
15131 | 8 |
theory Hilbert_Choice |
29655
ac31940cfb69
Plain, Main form meeting points in import hierarchy
haftmann
parents:
27760
diff
changeset
|
9 |
imports Nat Wellfounded Plain |
31723
f5cafe803b55
discontinued ancient tradition to suffix certain ML module names with "_package"
haftmann
parents:
31454
diff
changeset
|
10 |
uses ("Tools/meson.ML") ("Tools/choice_specification.ML") |
15131 | 11 |
begin |
12298 | 12 |
|
13 |
subsection {* Hilbert's epsilon *} |
|
14 |
||
31454 | 15 |
axiomatization Eps :: "('a => bool) => 'a" where |
22690
0b08f218f260
replaced axioms/finalconsts by proper axiomatization;
wenzelm
parents:
21999
diff
changeset
|
16 |
someI: "P x ==> P (Eps P)" |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
17 |
|
14872
3f2144aebd76
improved symbolic syntax of Eps: \<some> for mode "epsilon";
wenzelm
parents:
14760
diff
changeset
|
18 |
syntax (epsilon) |
3f2144aebd76
improved symbolic syntax of Eps: \<some> for mode "epsilon";
wenzelm
parents:
14760
diff
changeset
|
19 |
"_Eps" :: "[pttrn, bool] => 'a" ("(3\<some>_./ _)" [0, 10] 10) |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
20 |
syntax (HOL) |
12298 | 21 |
"_Eps" :: "[pttrn, bool] => 'a" ("(3@ _./ _)" [0, 10] 10) |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
22 |
syntax |
12298 | 23 |
"_Eps" :: "[pttrn, bool] => 'a" ("(3SOME _./ _)" [0, 10] 10) |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
24 |
translations |
22690
0b08f218f260
replaced axioms/finalconsts by proper axiomatization;
wenzelm
parents:
21999
diff
changeset
|
25 |
"SOME x. P" == "CONST Eps (%x. P)" |
13763
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13585
diff
changeset
|
26 |
|
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13585
diff
changeset
|
27 |
print_translation {* |
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13585
diff
changeset
|
28 |
(* to avoid eta-contraction of body *) |
22690
0b08f218f260
replaced axioms/finalconsts by proper axiomatization;
wenzelm
parents:
21999
diff
changeset
|
29 |
[(@{const_syntax Eps}, fn [Abs abs] => |
13763
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13585
diff
changeset
|
30 |
let val (x,t) = atomic_abs_tr' abs |
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13585
diff
changeset
|
31 |
in Syntax.const "_Eps" $ x $ t end)] |
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13585
diff
changeset
|
32 |
*} |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
33 |
|
12298 | 34 |
constdefs |
35 |
inv :: "('a => 'b) => ('b => 'a)" |
|
36 |
"inv(f :: 'a => 'b) == %y. SOME x. f x = y" |
|
11454
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
paulson
parents:
11451
diff
changeset
|
37 |
|
12298 | 38 |
Inv :: "'a set => ('a => 'b) => ('b => 'a)" |
14760 | 39 |
"Inv A f == %x. SOME y. y \<in> A & f y = x" |
40 |
||
41 |
||
42 |
subsection {*Hilbert's Epsilon-operator*} |
|
43 |
||
44 |
text{*Easier to apply than @{text someI} if the witness comes from an |
|
45 |
existential formula*} |
|
46 |
lemma someI_ex [elim?]: "\<exists>x. P x ==> P (SOME x. P x)" |
|
47 |
apply (erule exE) |
|
48 |
apply (erule someI) |
|
49 |
done |
|
50 |
||
51 |
text{*Easier to apply than @{text someI} because the conclusion has only one |
|
52 |
occurrence of @{term P}.*} |
|
53 |
lemma someI2: "[| P a; !!x. P x ==> Q x |] ==> Q (SOME x. P x)" |
|
54 |
by (blast intro: someI) |
|
55 |
||
56 |
text{*Easier to apply than @{text someI2} if the witness comes from an |
|
57 |
existential formula*} |
|
58 |
lemma someI2_ex: "[| \<exists>a. P a; !!x. P x ==> Q x |] ==> Q (SOME x. P x)" |
|
59 |
by (blast intro: someI2) |
|
60 |
||
61 |
lemma some_equality [intro]: |
|
62 |
"[| P a; !!x. P x ==> x=a |] ==> (SOME x. P x) = a" |
|
63 |
by (blast intro: someI2) |
|
64 |
||
65 |
lemma some1_equality: "[| EX!x. P x; P a |] ==> (SOME x. P x) = a" |
|
66 |
by (blast intro: some_equality) |
|
67 |
||
68 |
lemma some_eq_ex: "P (SOME x. P x) = (\<exists>x. P x)" |
|
69 |
by (blast intro: someI) |
|
70 |
||
71 |
lemma some_eq_trivial [simp]: "(SOME y. y=x) = x" |
|
72 |
apply (rule some_equality) |
|
73 |
apply (rule refl, assumption) |
|
74 |
done |
|
75 |
||
76 |
lemma some_sym_eq_trivial [simp]: "(SOME y. x=y) = x" |
|
77 |
apply (rule some_equality) |
|
78 |
apply (rule refl) |
|
79 |
apply (erule sym) |
|
80 |
done |
|
81 |
||
82 |
||
83 |
subsection{*Axiom of Choice, Proved Using the Description Operator*} |
|
84 |
||
85 |
text{*Used in @{text "Tools/meson.ML"}*} |
|
86 |
lemma choice: "\<forall>x. \<exists>y. Q x y ==> \<exists>f. \<forall>x. Q x (f x)" |
|
87 |
by (fast elim: someI) |
|
88 |
||
89 |
lemma bchoice: "\<forall>x\<in>S. \<exists>y. Q x y ==> \<exists>f. \<forall>x\<in>S. Q x (f x)" |
|
90 |
by (fast elim: someI) |
|
91 |
||
92 |
||
93 |
subsection {*Function Inverse*} |
|
94 |
||
95 |
lemma inv_id [simp]: "inv id = id" |
|
96 |
by (simp add: inv_def id_def) |
|
97 |
||
98 |
text{*A one-to-one function has an inverse.*} |
|
99 |
lemma inv_f_f [simp]: "inj f ==> inv f (f x) = x" |
|
100 |
by (simp add: inv_def inj_eq) |
|
101 |
||
102 |
lemma inv_f_eq: "[| inj f; f x = y |] ==> inv f y = x" |
|
103 |
apply (erule subst) |
|
104 |
apply (erule inv_f_f) |
|
105 |
done |
|
106 |
||
107 |
lemma inj_imp_inv_eq: "[| inj f; \<forall>x. f(g x) = x |] ==> inv f = g" |
|
108 |
by (blast intro: ext inv_f_eq) |
|
109 |
||
110 |
text{*But is it useful?*} |
|
111 |
lemma inj_transfer: |
|
112 |
assumes injf: "inj f" and minor: "!!y. y \<in> range(f) ==> P(inv f y)" |
|
113 |
shows "P x" |
|
114 |
proof - |
|
115 |
have "f x \<in> range f" by auto |
|
116 |
hence "P(inv f (f x))" by (rule minor) |
|
117 |
thus "P x" by (simp add: inv_f_f [OF injf]) |
|
118 |
qed |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
119 |
|
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
120 |
|
14760 | 121 |
lemma inj_iff: "(inj f) = (inv f o f = id)" |
122 |
apply (simp add: o_def expand_fun_eq) |
|
123 |
apply (blast intro: inj_on_inverseI inv_f_f) |
|
124 |
done |
|
125 |
||
23433 | 126 |
lemma inv_o_cancel[simp]: "inj f ==> inv f o f = id" |
127 |
by (simp add: inj_iff) |
|
128 |
||
129 |
lemma o_inv_o_cancel[simp]: "inj f ==> g o inv f o f = g" |
|
130 |
by (simp add: o_assoc[symmetric]) |
|
131 |
||
132 |
lemma inv_image_cancel[simp]: |
|
133 |
"inj f ==> inv f ` f ` S = S" |
|
134 |
by (simp add: image_compose[symmetric]) |
|
135 |
||
14760 | 136 |
lemma inj_imp_surj_inv: "inj f ==> surj (inv f)" |
137 |
by (blast intro: surjI inv_f_f) |
|
138 |
||
139 |
lemma f_inv_f: "y \<in> range(f) ==> f(inv f y) = y" |
|
140 |
apply (simp add: inv_def) |
|
141 |
apply (fast intro: someI) |
|
142 |
done |
|
143 |
||
144 |
lemma surj_f_inv_f: "surj f ==> f(inv f y) = y" |
|
145 |
by (simp add: f_inv_f surj_range) |
|
146 |
||
147 |
lemma inv_injective: |
|
148 |
assumes eq: "inv f x = inv f y" |
|
149 |
and x: "x: range f" |
|
150 |
and y: "y: range f" |
|
151 |
shows "x=y" |
|
152 |
proof - |
|
153 |
have "f (inv f x) = f (inv f y)" using eq by simp |
|
154 |
thus ?thesis by (simp add: f_inv_f x y) |
|
155 |
qed |
|
156 |
||
157 |
lemma inj_on_inv: "A <= range(f) ==> inj_on (inv f) A" |
|
158 |
by (fast intro: inj_onI elim: inv_injective injD) |
|
159 |
||
160 |
lemma surj_imp_inj_inv: "surj f ==> inj (inv f)" |
|
161 |
by (simp add: inj_on_inv surj_range) |
|
162 |
||
163 |
lemma surj_iff: "(surj f) = (f o inv f = id)" |
|
164 |
apply (simp add: o_def expand_fun_eq) |
|
165 |
apply (blast intro: surjI surj_f_inv_f) |
|
166 |
done |
|
167 |
||
168 |
lemma surj_imp_inv_eq: "[| surj f; \<forall>x. g(f x) = x |] ==> inv f = g" |
|
169 |
apply (rule ext) |
|
170 |
apply (drule_tac x = "inv f x" in spec) |
|
171 |
apply (simp add: surj_f_inv_f) |
|
172 |
done |
|
173 |
||
174 |
lemma bij_imp_bij_inv: "bij f ==> bij (inv f)" |
|
175 |
by (simp add: bij_def inj_imp_surj_inv surj_imp_inj_inv) |
|
12372 | 176 |
|
14760 | 177 |
lemma inv_equality: "[| !!x. g (f x) = x; !!y. f (g y) = y |] ==> inv f = g" |
178 |
apply (rule ext) |
|
179 |
apply (auto simp add: inv_def) |
|
180 |
done |
|
181 |
||
182 |
lemma inv_inv_eq: "bij f ==> inv (inv f) = f" |
|
183 |
apply (rule inv_equality) |
|
184 |
apply (auto simp add: bij_def surj_f_inv_f) |
|
185 |
done |
|
186 |
||
187 |
(** bij(inv f) implies little about f. Consider f::bool=>bool such that |
|
188 |
f(True)=f(False)=True. Then it's consistent with axiom someI that |
|
189 |
inv f could be any function at all, including the identity function. |
|
190 |
If inv f=id then inv f is a bijection, but inj f, surj(f) and |
|
191 |
inv(inv f)=f all fail. |
|
192 |
**) |
|
193 |
||
194 |
lemma o_inv_distrib: "[| bij f; bij g |] ==> inv (f o g) = inv g o inv f" |
|
195 |
apply (rule inv_equality) |
|
196 |
apply (auto simp add: bij_def surj_f_inv_f) |
|
197 |
done |
|
198 |
||
199 |
||
200 |
lemma image_surj_f_inv_f: "surj f ==> f ` (inv f ` A) = A" |
|
201 |
by (simp add: image_eq_UN surj_f_inv_f) |
|
202 |
||
203 |
lemma image_inv_f_f: "inj f ==> (inv f) ` (f ` A) = A" |
|
204 |
by (simp add: image_eq_UN) |
|
205 |
||
206 |
lemma inv_image_comp: "inj f ==> inv f ` (f`X) = X" |
|
207 |
by (auto simp add: image_def) |
|
208 |
||
209 |
lemma bij_image_Collect_eq: "bij f ==> f ` Collect P = {y. P (inv f y)}" |
|
210 |
apply auto |
|
211 |
apply (force simp add: bij_is_inj) |
|
212 |
apply (blast intro: bij_is_surj [THEN surj_f_inv_f, symmetric]) |
|
213 |
done |
|
214 |
||
215 |
lemma bij_vimage_eq_inv_image: "bij f ==> f -` A = inv f ` A" |
|
216 |
apply (auto simp add: bij_is_surj [THEN surj_f_inv_f]) |
|
217 |
apply (blast intro: bij_is_inj [THEN inv_f_f, symmetric]) |
|
218 |
done |
|
219 |
||
31380 | 220 |
lemma finite_fun_UNIVD1: |
221 |
assumes fin: "finite (UNIV :: ('a \<Rightarrow> 'b) set)" |
|
222 |
and card: "card (UNIV :: 'b set) \<noteq> Suc 0" |
|
223 |
shows "finite (UNIV :: 'a set)" |
|
224 |
proof - |
|
225 |
from fin have finb: "finite (UNIV :: 'b set)" by (rule finite_fun_UNIVD2) |
|
226 |
with card have "card (UNIV :: 'b set) \<ge> Suc (Suc 0)" |
|
227 |
by (cases "card (UNIV :: 'b set)") (auto simp add: card_eq_0_iff) |
|
228 |
then obtain n where "card (UNIV :: 'b set) = Suc (Suc n)" "n = card (UNIV :: 'b set) - Suc (Suc 0)" by auto |
|
229 |
then obtain b1 b2 where b1b2: "(b1 :: 'b) \<noteq> (b2 :: 'b)" by (auto simp add: card_Suc_eq) |
|
230 |
from fin have "finite (range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1))" by (rule finite_imageI) |
|
231 |
moreover have "UNIV = range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1)" |
|
232 |
proof (rule UNIV_eq_I) |
|
233 |
fix x :: 'a |
|
234 |
from b1b2 have "x = inv (\<lambda>y. if y = x then b1 else b2) b1" by (simp add: inv_def) |
|
235 |
thus "x \<in> range (\<lambda>f\<Colon>'a \<Rightarrow> 'b. inv f b1)" by blast |
|
236 |
qed |
|
237 |
ultimately show "finite (UNIV :: 'a set)" by simp |
|
238 |
qed |
|
14760 | 239 |
|
240 |
subsection {*Inverse of a PI-function (restricted domain)*} |
|
241 |
||
242 |
lemma Inv_f_f: "[| inj_on f A; x \<in> A |] ==> Inv A f (f x) = x" |
|
243 |
apply (simp add: Inv_def inj_on_def) |
|
244 |
apply (blast intro: someI2) |
|
245 |
done |
|
246 |
||
247 |
lemma f_Inv_f: "y \<in> f`A ==> f (Inv A f y) = y" |
|
248 |
apply (simp add: Inv_def) |
|
13585 | 249 |
apply (fast intro: someI2) |
250 |
done |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
251 |
|
14760 | 252 |
lemma Inv_injective: |
253 |
assumes eq: "Inv A f x = Inv A f y" |
|
254 |
and x: "x: f`A" |
|
255 |
and y: "y: f`A" |
|
256 |
shows "x=y" |
|
257 |
proof - |
|
258 |
have "f (Inv A f x) = f (Inv A f y)" using eq by simp |
|
259 |
thus ?thesis by (simp add: f_Inv_f x y) |
|
260 |
qed |
|
261 |
||
262 |
lemma inj_on_Inv: "B <= f`A ==> inj_on (Inv A f) B" |
|
263 |
apply (rule inj_onI) |
|
264 |
apply (blast intro: inj_onI dest: Inv_injective injD) |
|
265 |
done |
|
266 |
||
267 |
lemma Inv_mem: "[| f ` A = B; x \<in> B |] ==> Inv A f x \<in> A" |
|
268 |
apply (simp add: Inv_def) |
|
269 |
apply (fast intro: someI2) |
|
270 |
done |
|
271 |
||
272 |
lemma Inv_f_eq: "[| inj_on f A; f x = y; x \<in> A |] ==> Inv A f y = x" |
|
14399
dc677b35e54f
New lemmas about inversion of restricted functions.
ballarin
parents:
14208
diff
changeset
|
273 |
apply (erule subst) |
14760 | 274 |
apply (erule Inv_f_f, assumption) |
14399
dc677b35e54f
New lemmas about inversion of restricted functions.
ballarin
parents:
14208
diff
changeset
|
275 |
done |
dc677b35e54f
New lemmas about inversion of restricted functions.
ballarin
parents:
14208
diff
changeset
|
276 |
|
dc677b35e54f
New lemmas about inversion of restricted functions.
ballarin
parents:
14208
diff
changeset
|
277 |
lemma Inv_comp: |
14760 | 278 |
"[| inj_on f (g ` A); inj_on g A; x \<in> f ` g ` A |] ==> |
14399
dc677b35e54f
New lemmas about inversion of restricted functions.
ballarin
parents:
14208
diff
changeset
|
279 |
Inv A (f o g) x = (Inv A g o Inv (g ` A) f) x" |
dc677b35e54f
New lemmas about inversion of restricted functions.
ballarin
parents:
14208
diff
changeset
|
280 |
apply simp |
dc677b35e54f
New lemmas about inversion of restricted functions.
ballarin
parents:
14208
diff
changeset
|
281 |
apply (rule Inv_f_eq) |
dc677b35e54f
New lemmas about inversion of restricted functions.
ballarin
parents:
14208
diff
changeset
|
282 |
apply (fast intro: comp_inj_on) |
dc677b35e54f
New lemmas about inversion of restricted functions.
ballarin
parents:
14208
diff
changeset
|
283 |
apply (simp add: f_Inv_f Inv_mem) |
dc677b35e54f
New lemmas about inversion of restricted functions.
ballarin
parents:
14208
diff
changeset
|
284 |
apply (simp add: Inv_mem) |
dc677b35e54f
New lemmas about inversion of restricted functions.
ballarin
parents:
14208
diff
changeset
|
285 |
done |
dc677b35e54f
New lemmas about inversion of restricted functions.
ballarin
parents:
14208
diff
changeset
|
286 |
|
26105
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents:
26072
diff
changeset
|
287 |
lemma bij_betw_Inv: "bij_betw f A B \<Longrightarrow> bij_betw (Inv A f) B A" |
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents:
26072
diff
changeset
|
288 |
apply (auto simp add: bij_betw_def inj_on_Inv Inv_mem) |
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents:
26072
diff
changeset
|
289 |
apply (simp add: image_compose [symmetric] o_def) |
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents:
26072
diff
changeset
|
290 |
apply (simp add: image_def Inv_f_f) |
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents:
26072
diff
changeset
|
291 |
done |
14760 | 292 |
|
293 |
subsection {*Other Consequences of Hilbert's Epsilon*} |
|
294 |
||
295 |
text {*Hilbert's Epsilon and the @{term split} Operator*} |
|
296 |
||
297 |
text{*Looping simprule*} |
|
298 |
lemma split_paired_Eps: "(SOME x. P x) = (SOME (a,b). P(a,b))" |
|
26347 | 299 |
by simp |
14760 | 300 |
|
301 |
lemma Eps_split: "Eps (split P) = (SOME xy. P (fst xy) (snd xy))" |
|
26347 | 302 |
by (simp add: split_def) |
14760 | 303 |
|
304 |
lemma Eps_split_eq [simp]: "(@(x',y'). x = x' & y = y') = (x,y)" |
|
26347 | 305 |
by blast |
14760 | 306 |
|
307 |
||
308 |
text{*A relation is wellfounded iff it has no infinite descending chain*} |
|
309 |
lemma wf_iff_no_infinite_down_chain: |
|
310 |
"wf r = (~(\<exists>f. \<forall>i. (f(Suc i),f i) \<in> r))" |
|
311 |
apply (simp only: wf_eq_minimal) |
|
312 |
apply (rule iffI) |
|
313 |
apply (rule notI) |
|
314 |
apply (erule exE) |
|
315 |
apply (erule_tac x = "{w. \<exists>i. w=f i}" in allE, blast) |
|
316 |
apply (erule contrapos_np, simp, clarify) |
|
317 |
apply (subgoal_tac "\<forall>n. nat_rec x (%i y. @z. z:Q & (z,y) :r) n \<in> Q") |
|
318 |
apply (rule_tac x = "nat_rec x (%i y. @z. z:Q & (z,y) :r)" in exI) |
|
319 |
apply (rule allI, simp) |
|
320 |
apply (rule someI2_ex, blast, blast) |
|
321 |
apply (rule allI) |
|
322 |
apply (induct_tac "n", simp_all) |
|
323 |
apply (rule someI2_ex, blast+) |
|
324 |
done |
|
325 |
||
27760 | 326 |
lemma wf_no_infinite_down_chainE: |
327 |
assumes "wf r" obtains k where "(f (Suc k), f k) \<notin> r" |
|
328 |
using `wf r` wf_iff_no_infinite_down_chain[of r] by blast |
|
329 |
||
330 |
||
14760 | 331 |
text{*A dynamically-scoped fact for TFL *} |
12298 | 332 |
lemma tfl_some: "\<forall>P x. P x --> P (Eps P)" |
333 |
by (blast intro: someI) |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
334 |
|
12298 | 335 |
|
336 |
subsection {* Least value operator *} |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
337 |
|
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
338 |
constdefs |
12298 | 339 |
LeastM :: "['a => 'b::ord, 'a => bool] => 'a" |
14760 | 340 |
"LeastM m P == SOME x. P x & (\<forall>y. P y --> m x <= m y)" |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
341 |
|
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
342 |
syntax |
12298 | 343 |
"_LeastM" :: "[pttrn, 'a => 'b::ord, bool] => 'a" ("LEAST _ WRT _. _" [0, 4, 10] 10) |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
344 |
translations |
12298 | 345 |
"LEAST x WRT m. P" == "LeastM m (%x. P)" |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
346 |
|
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
347 |
lemma LeastMI2: |
12298 | 348 |
"P x ==> (!!y. P y ==> m x <= m y) |
349 |
==> (!!x. P x ==> \<forall>y. P y --> m x \<le> m y ==> Q x) |
|
350 |
==> Q (LeastM m P)" |
|
14760 | 351 |
apply (simp add: LeastM_def) |
14208 | 352 |
apply (rule someI2_ex, blast, blast) |
12298 | 353 |
done |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
354 |
|
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
355 |
lemma LeastM_equality: |
12298 | 356 |
"P k ==> (!!x. P x ==> m k <= m x) |
357 |
==> m (LEAST x WRT m. P x) = (m k::'a::order)" |
|
14208 | 358 |
apply (rule LeastMI2, assumption, blast) |
12298 | 359 |
apply (blast intro!: order_antisym) |
360 |
done |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
361 |
|
11454
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
paulson
parents:
11451
diff
changeset
|
362 |
lemma wf_linord_ex_has_least: |
14760 | 363 |
"wf r ==> \<forall>x y. ((x,y):r^+) = ((y,x)~:r^*) ==> P k |
364 |
==> \<exists>x. P x & (!y. P y --> (m x,m y):r^*)" |
|
12298 | 365 |
apply (drule wf_trancl [THEN wf_eq_minimal [THEN iffD1]]) |
14208 | 366 |
apply (drule_tac x = "m`Collect P" in spec, force) |
12298 | 367 |
done |
11454
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
paulson
parents:
11451
diff
changeset
|
368 |
|
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
paulson
parents:
11451
diff
changeset
|
369 |
lemma ex_has_least_nat: |
14760 | 370 |
"P k ==> \<exists>x. P x & (\<forall>y. P y --> m x <= (m y::nat))" |
12298 | 371 |
apply (simp only: pred_nat_trancl_eq_le [symmetric]) |
372 |
apply (rule wf_pred_nat [THEN wf_linord_ex_has_least]) |
|
16796 | 373 |
apply (simp add: less_eq linorder_not_le pred_nat_trancl_eq_le, assumption) |
12298 | 374 |
done |
11454
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
paulson
parents:
11451
diff
changeset
|
375 |
|
12298 | 376 |
lemma LeastM_nat_lemma: |
14760 | 377 |
"P k ==> P (LeastM m P) & (\<forall>y. P y --> m (LeastM m P) <= (m y::nat))" |
378 |
apply (simp add: LeastM_def) |
|
12298 | 379 |
apply (rule someI_ex) |
380 |
apply (erule ex_has_least_nat) |
|
381 |
done |
|
11454
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
paulson
parents:
11451
diff
changeset
|
382 |
|
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
paulson
parents:
11451
diff
changeset
|
383 |
lemmas LeastM_natI = LeastM_nat_lemma [THEN conjunct1, standard] |
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
paulson
parents:
11451
diff
changeset
|
384 |
|
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
paulson
parents:
11451
diff
changeset
|
385 |
lemma LeastM_nat_le: "P x ==> m (LeastM m P) <= (m x::nat)" |
14208 | 386 |
by (rule LeastM_nat_lemma [THEN conjunct2, THEN spec, THEN mp], assumption, assumption) |
11454
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
paulson
parents:
11451
diff
changeset
|
387 |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
388 |
|
12298 | 389 |
subsection {* Greatest value operator *} |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
390 |
|
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
391 |
constdefs |
12298 | 392 |
GreatestM :: "['a => 'b::ord, 'a => bool] => 'a" |
14760 | 393 |
"GreatestM m P == SOME x. P x & (\<forall>y. P y --> m y <= m x)" |
12298 | 394 |
|
395 |
Greatest :: "('a::ord => bool) => 'a" (binder "GREATEST " 10) |
|
396 |
"Greatest == GreatestM (%x. x)" |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
397 |
|
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
398 |
syntax |
12298 | 399 |
"_GreatestM" :: "[pttrn, 'a=>'b::ord, bool] => 'a" |
400 |
("GREATEST _ WRT _. _" [0, 4, 10] 10) |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
401 |
|
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
402 |
translations |
12298 | 403 |
"GREATEST x WRT m. P" == "GreatestM m (%x. P)" |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
404 |
|
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
405 |
lemma GreatestMI2: |
12298 | 406 |
"P x ==> (!!y. P y ==> m y <= m x) |
407 |
==> (!!x. P x ==> \<forall>y. P y --> m y \<le> m x ==> Q x) |
|
408 |
==> Q (GreatestM m P)" |
|
14760 | 409 |
apply (simp add: GreatestM_def) |
14208 | 410 |
apply (rule someI2_ex, blast, blast) |
12298 | 411 |
done |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
412 |
|
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
413 |
lemma GreatestM_equality: |
12298 | 414 |
"P k ==> (!!x. P x ==> m x <= m k) |
415 |
==> m (GREATEST x WRT m. P x) = (m k::'a::order)" |
|
14208 | 416 |
apply (rule_tac m = m in GreatestMI2, assumption, blast) |
12298 | 417 |
apply (blast intro!: order_antisym) |
418 |
done |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
419 |
|
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
420 |
lemma Greatest_equality: |
12298 | 421 |
"P (k::'a::order) ==> (!!x. P x ==> x <= k) ==> (GREATEST x. P x) = k" |
14760 | 422 |
apply (simp add: Greatest_def) |
14208 | 423 |
apply (erule GreatestM_equality, blast) |
12298 | 424 |
done |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
425 |
|
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
426 |
lemma ex_has_greatest_nat_lemma: |
14760 | 427 |
"P k ==> \<forall>x. P x --> (\<exists>y. P y & ~ ((m y::nat) <= m x)) |
428 |
==> \<exists>y. P y & ~ (m y < m k + n)" |
|
15251 | 429 |
apply (induct n, force) |
12298 | 430 |
apply (force simp add: le_Suc_eq) |
431 |
done |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
432 |
|
12298 | 433 |
lemma ex_has_greatest_nat: |
14760 | 434 |
"P k ==> \<forall>y. P y --> m y < b |
435 |
==> \<exists>x. P x & (\<forall>y. P y --> (m y::nat) <= m x)" |
|
12298 | 436 |
apply (rule ccontr) |
437 |
apply (cut_tac P = P and n = "b - m k" in ex_has_greatest_nat_lemma) |
|
14208 | 438 |
apply (subgoal_tac [3] "m k <= b", auto) |
12298 | 439 |
done |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
440 |
|
12298 | 441 |
lemma GreatestM_nat_lemma: |
14760 | 442 |
"P k ==> \<forall>y. P y --> m y < b |
443 |
==> P (GreatestM m P) & (\<forall>y. P y --> (m y::nat) <= m (GreatestM m P))" |
|
444 |
apply (simp add: GreatestM_def) |
|
12298 | 445 |
apply (rule someI_ex) |
14208 | 446 |
apply (erule ex_has_greatest_nat, assumption) |
12298 | 447 |
done |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
448 |
|
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
449 |
lemmas GreatestM_natI = GreatestM_nat_lemma [THEN conjunct1, standard] |
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
450 |
|
12298 | 451 |
lemma GreatestM_nat_le: |
14760 | 452 |
"P x ==> \<forall>y. P y --> m y < b |
12298 | 453 |
==> (m x::nat) <= m (GreatestM m P)" |
21020 | 454 |
apply (blast dest: GreatestM_nat_lemma [THEN conjunct2, THEN spec, of P]) |
12298 | 455 |
done |
456 |
||
457 |
||
458 |
text {* \medskip Specialization to @{text GREATEST}. *} |
|
459 |
||
14760 | 460 |
lemma GreatestI: "P (k::nat) ==> \<forall>y. P y --> y < b ==> P (GREATEST x. P x)" |
461 |
apply (simp add: Greatest_def) |
|
14208 | 462 |
apply (rule GreatestM_natI, auto) |
12298 | 463 |
done |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
464 |
|
12298 | 465 |
lemma Greatest_le: |
14760 | 466 |
"P x ==> \<forall>y. P y --> y < b ==> (x::nat) <= (GREATEST x. P x)" |
467 |
apply (simp add: Greatest_def) |
|
14208 | 468 |
apply (rule GreatestM_nat_le, auto) |
12298 | 469 |
done |
470 |
||
471 |
||
472 |
subsection {* The Meson proof procedure *} |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
473 |
|
12298 | 474 |
subsubsection {* Negation Normal Form *} |
475 |
||
476 |
text {* de Morgan laws *} |
|
477 |
||
478 |
lemma meson_not_conjD: "~(P&Q) ==> ~P | ~Q" |
|
479 |
and meson_not_disjD: "~(P|Q) ==> ~P & ~Q" |
|
480 |
and meson_not_notD: "~~P ==> P" |
|
14760 | 481 |
and meson_not_allD: "!!P. ~(\<forall>x. P(x)) ==> \<exists>x. ~P(x)" |
482 |
and meson_not_exD: "!!P. ~(\<exists>x. P(x)) ==> \<forall>x. ~P(x)" |
|
12298 | 483 |
by fast+ |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
484 |
|
12298 | 485 |
text {* Removal of @{text "-->"} and @{text "<->"} (positive and |
486 |
negative occurrences) *} |
|
487 |
||
488 |
lemma meson_imp_to_disjD: "P-->Q ==> ~P | Q" |
|
489 |
and meson_not_impD: "~(P-->Q) ==> P & ~Q" |
|
490 |
and meson_iff_to_disjD: "P=Q ==> (~P | Q) & (~Q | P)" |
|
491 |
and meson_not_iffD: "~(P=Q) ==> (P | Q) & (~P | ~Q)" |
|
492 |
-- {* Much more efficient than @{prop "(P & ~Q) | (Q & ~P)"} for computing CNF *} |
|
18389 | 493 |
and meson_not_refl_disj_D: "x ~= x | P ==> P" |
12298 | 494 |
by fast+ |
495 |
||
496 |
||
497 |
subsubsection {* Pulling out the existential quantifiers *} |
|
498 |
||
499 |
text {* Conjunction *} |
|
500 |
||
14760 | 501 |
lemma meson_conj_exD1: "!!P Q. (\<exists>x. P(x)) & Q ==> \<exists>x. P(x) & Q" |
502 |
and meson_conj_exD2: "!!P Q. P & (\<exists>x. Q(x)) ==> \<exists>x. P & Q(x)" |
|
12298 | 503 |
by fast+ |
504 |
||
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
505 |
|
12298 | 506 |
text {* Disjunction *} |
507 |
||
14760 | 508 |
lemma meson_disj_exD: "!!P Q. (\<exists>x. P(x)) | (\<exists>x. Q(x)) ==> \<exists>x. P(x) | Q(x)" |
12298 | 509 |
-- {* DO NOT USE with forall-Skolemization: makes fewer schematic variables!! *} |
510 |
-- {* With ex-Skolemization, makes fewer Skolem constants *} |
|
14760 | 511 |
and meson_disj_exD1: "!!P Q. (\<exists>x. P(x)) | Q ==> \<exists>x. P(x) | Q" |
512 |
and meson_disj_exD2: "!!P Q. P | (\<exists>x. Q(x)) ==> \<exists>x. P | Q(x)" |
|
12298 | 513 |
by fast+ |
514 |
||
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
515 |
|
12298 | 516 |
subsubsection {* Generating clauses for the Meson Proof Procedure *} |
517 |
||
518 |
text {* Disjunctions *} |
|
519 |
||
520 |
lemma meson_disj_assoc: "(P|Q)|R ==> P|(Q|R)" |
|
521 |
and meson_disj_comm: "P|Q ==> Q|P" |
|
522 |
and meson_disj_FalseD1: "False|P ==> P" |
|
523 |
and meson_disj_FalseD2: "P|False ==> P" |
|
524 |
by fast+ |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
525 |
|
14760 | 526 |
|
527 |
subsection{*Lemmas for Meson, the Model Elimination Procedure*} |
|
528 |
||
529 |
text{* Generation of contrapositives *} |
|
530 |
||
531 |
text{*Inserts negated disjunct after removing the negation; P is a literal. |
|
532 |
Model elimination requires assuming the negation of every attempted subgoal, |
|
533 |
hence the negated disjuncts.*} |
|
534 |
lemma make_neg_rule: "~P|Q ==> ((~P==>P) ==> Q)" |
|
535 |
by blast |
|
536 |
||
537 |
text{*Version for Plaisted's "Postive refinement" of the Meson procedure*} |
|
538 |
lemma make_refined_neg_rule: "~P|Q ==> (P ==> Q)" |
|
539 |
by blast |
|
540 |
||
541 |
text{*@{term P} should be a literal*} |
|
542 |
lemma make_pos_rule: "P|Q ==> ((P==>~P) ==> Q)" |
|
543 |
by blast |
|
544 |
||
545 |
text{*Versions of @{text make_neg_rule} and @{text make_pos_rule} that don't |
|
546 |
insert new assumptions, for ordinary resolution.*} |
|
547 |
||
548 |
lemmas make_neg_rule' = make_refined_neg_rule |
|
549 |
||
550 |
lemma make_pos_rule': "[|P|Q; ~P|] ==> Q" |
|
551 |
by blast |
|
552 |
||
553 |
text{* Generation of a goal clause -- put away the final literal *} |
|
554 |
||
555 |
lemma make_neg_goal: "~P ==> ((~P==>P) ==> False)" |
|
556 |
by blast |
|
557 |
||
558 |
lemma make_pos_goal: "P ==> ((P==>~P) ==> False)" |
|
559 |
by blast |
|
560 |
||
561 |
||
562 |
subsubsection{* Lemmas for Forward Proof*} |
|
563 |
||
564 |
text{*There is a similarity to congruence rules*} |
|
565 |
||
566 |
(*NOTE: could handle conjunctions (faster?) by |
|
567 |
nf(th RS conjunct2) RS (nf(th RS conjunct1) RS conjI) *) |
|
568 |
lemma conj_forward: "[| P'&Q'; P' ==> P; Q' ==> Q |] ==> P&Q" |
|
569 |
by blast |
|
570 |
||
571 |
lemma disj_forward: "[| P'|Q'; P' ==> P; Q' ==> Q |] ==> P|Q" |
|
572 |
by blast |
|
573 |
||
574 |
(*Version of @{text disj_forward} for removal of duplicate literals*) |
|
575 |
lemma disj_forward2: |
|
576 |
"[| P'|Q'; P' ==> P; [| Q'; P==>False |] ==> Q |] ==> P|Q" |
|
577 |
apply blast |
|
578 |
done |
|
579 |
||
580 |
lemma all_forward: "[| \<forall>x. P'(x); !!x. P'(x) ==> P(x) |] ==> \<forall>x. P(x)" |
|
581 |
by blast |
|
582 |
||
583 |
lemma ex_forward: "[| \<exists>x. P'(x); !!x. P'(x) ==> P(x) |] ==> \<exists>x. P(x)" |
|
584 |
by blast |
|
585 |
||
17420 | 586 |
|
21999
0cf192e489e2
improvements to proof reconstruction. Some files loaded in a different order
paulson
parents:
21243
diff
changeset
|
587 |
subsection {* Meson package *} |
17893
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
wenzelm
parents:
17702
diff
changeset
|
588 |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
589 |
use "Tools/meson.ML" |
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
590 |
|
26562
9d25ef112cf6
* Metis: the maximum number of clauses that can be produced from a theorem is now given by the attribute max_clauses. Theorems that exceed this number are ignored, with a warning printed.
paulson
parents:
26347
diff
changeset
|
591 |
setup Meson.setup |
9d25ef112cf6
* Metis: the maximum number of clauses that can be produced from a theorem is now given by the attribute max_clauses. Theorems that exceed this number are ignored, with a warning printed.
paulson
parents:
26347
diff
changeset
|
592 |
|
17893
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
wenzelm
parents:
17702
diff
changeset
|
593 |
|
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
wenzelm
parents:
17702
diff
changeset
|
594 |
subsection {* Specification package -- Hilbertized version *} |
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
wenzelm
parents:
17702
diff
changeset
|
595 |
|
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
wenzelm
parents:
17702
diff
changeset
|
596 |
lemma exE_some: "[| Ex P ; c == Eps P |] ==> P c" |
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
wenzelm
parents:
17702
diff
changeset
|
597 |
by (simp only: someI_ex) |
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
wenzelm
parents:
17702
diff
changeset
|
598 |
|
31723
f5cafe803b55
discontinued ancient tradition to suffix certain ML module names with "_package"
haftmann
parents:
31454
diff
changeset
|
599 |
use "Tools/choice_specification.ML" |
14115 | 600 |
|
31454 | 601 |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
602 |
end |