author | haftmann |
Tue, 14 Jul 2009 10:54:04 +0200 | |
changeset 31998 | 2c7a24f74db9 |
parent 28592 | 824f8390aaa2 |
child 32519 | e9644b497e1c |
permissions | -rw-r--r-- |
23449 | 1 |
(* Title: HOL/MetisExamples/set.thy |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
||
5 |
Testing the metis method |
|
6 |
*) |
|
7 |
||
8 |
theory set imports Main |
|
9 |
||
10 |
begin |
|
11 |
||
12 |
lemma "EX x X. ALL y. EX z Z. (~P(y,y) | P(x,x) | ~S(z,x)) & |
|
13 |
(S(x,y) | ~S(y,z) | Q(Z,Z)) & |
|
24742
73b8b42a36b6
removal of some "ref"s from res_axioms.ML; a side-effect is that the ordering
paulson
parents:
23519
diff
changeset
|
14 |
(Q(X,y) | ~Q(y,Z) | S(X,X))" |
23519 | 15 |
by metis |
16 |
(*??But metis can't prove the single-step version...*) |
|
23449 | 17 |
|
23519 | 18 |
|
23449 | 19 |
|
20 |
lemma "P(n::nat) ==> ~P(0) ==> n ~= 0" |
|
21 |
by metis |
|
22 |
||
26333
68e5eee47a45
Attributes sledgehammer_full, sledgehammer_modulus, sledgehammer_sorts
paulson
parents:
26312
diff
changeset
|
23 |
declare [[sledgehammer_modulus = 1]] |
23449 | 24 |
|
28486 | 25 |
|
23449 | 26 |
(*multiple versions of this example*) |
27 |
lemma (*equal_union: *) |
|
28 |
"(X = Y \<union> Z) = |
|
29 |
(Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" |
|
30 |
proof (neg_clausify) |
|
31 |
fix x |
|
32 |
assume 0: "Y \<subseteq> X \<or> X = Y \<union> Z" |
|
33 |
assume 1: "Z \<subseteq> X \<or> X = Y \<union> Z" |
|
34 |
assume 2: "(\<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X \<or> Y \<subseteq> x) \<or> X \<noteq> Y \<union> Z" |
|
35 |
assume 3: "(\<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X \<or> Z \<subseteq> x) \<or> X \<noteq> Y \<union> Z" |
|
36 |
assume 4: "(\<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X \<or> \<not> X \<subseteq> x) \<or> X \<noteq> Y \<union> Z" |
|
24937
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
paulson
parents:
24855
diff
changeset
|
37 |
assume 5: "\<And>V. ((\<not> Y \<subseteq> V \<or> \<not> Z \<subseteq> V) \<or> X \<subseteq> V) \<or> X = Y \<union> Z" |
23449 | 38 |
have 6: "sup Y Z = X \<or> Y \<subseteq> X" |
39 |
by (metis 0 sup_set_eq) |
|
40 |
have 7: "sup Y Z = X \<or> Z \<subseteq> X" |
|
41 |
by (metis 1 sup_set_eq) |
|
42 |
have 8: "\<And>X3. sup Y Z = X \<or> X \<subseteq> X3 \<or> \<not> Y \<subseteq> X3 \<or> \<not> Z \<subseteq> X3" |
|
43 |
by (metis 5 sup_set_eq) |
|
44 |
have 9: "Y \<subseteq> x \<or> sup Y Z \<noteq> X \<or> \<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X" |
|
45 |
by (metis 2 sup_set_eq) |
|
46 |
have 10: "Z \<subseteq> x \<or> sup Y Z \<noteq> X \<or> \<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X" |
|
47 |
by (metis 3 sup_set_eq) |
|
48 |
have 11: "sup Y Z \<noteq> X \<or> \<not> X \<subseteq> x \<or> \<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X" |
|
49 |
by (metis 4 sup_set_eq) |
|
50 |
have 12: "Z \<subseteq> X" |
|
51 |
by (metis Un_upper2 sup_set_eq 7) |
|
52 |
have 13: "\<And>X3. sup Y Z = X \<or> X \<subseteq> sup X3 Z \<or> \<not> Y \<subseteq> sup X3 Z" |
|
53 |
by (metis 8 Un_upper2 sup_set_eq) |
|
54 |
have 14: "Y \<subseteq> X" |
|
55 |
by (metis Un_upper1 sup_set_eq 6) |
|
56 |
have 15: "Z \<subseteq> x \<or> sup Y Z \<noteq> X \<or> \<not> Y \<subseteq> X" |
|
57 |
by (metis 10 12) |
|
58 |
have 16: "Y \<subseteq> x \<or> sup Y Z \<noteq> X \<or> \<not> Y \<subseteq> X" |
|
59 |
by (metis 9 12) |
|
60 |
have 17: "sup Y Z \<noteq> X \<or> \<not> X \<subseteq> x \<or> \<not> Y \<subseteq> X" |
|
61 |
by (metis 11 12) |
|
62 |
have 18: "sup Y Z \<noteq> X \<or> \<not> X \<subseteq> x" |
|
63 |
by (metis 17 14) |
|
64 |
have 19: "Z \<subseteq> x \<or> sup Y Z \<noteq> X" |
|
65 |
by (metis 15 14) |
|
66 |
have 20: "Y \<subseteq> x \<or> sup Y Z \<noteq> X" |
|
67 |
by (metis 16 14) |
|
68 |
have 21: "sup Y Z = X \<or> X \<subseteq> sup Y Z" |
|
69 |
by (metis 13 Un_upper1 sup_set_eq) |
|
70 |
have 22: "sup Y Z = X \<or> \<not> sup Y Z \<subseteq> X" |
|
71 |
by (metis equalityI 21) |
|
72 |
have 23: "sup Y Z = X \<or> \<not> Z \<subseteq> X \<or> \<not> Y \<subseteq> X" |
|
73 |
by (metis 22 Un_least sup_set_eq) |
|
74 |
have 24: "sup Y Z = X \<or> \<not> Y \<subseteq> X" |
|
75 |
by (metis 23 12) |
|
76 |
have 25: "sup Y Z = X" |
|
77 |
by (metis 24 14) |
|
78 |
have 26: "\<And>X3. X \<subseteq> X3 \<or> \<not> Z \<subseteq> X3 \<or> \<not> Y \<subseteq> X3" |
|
79 |
by (metis Un_least sup_set_eq 25) |
|
80 |
have 27: "Y \<subseteq> x" |
|
81 |
by (metis 20 25) |
|
82 |
have 28: "Z \<subseteq> x" |
|
83 |
by (metis 19 25) |
|
84 |
have 29: "\<not> X \<subseteq> x" |
|
85 |
by (metis 18 25) |
|
86 |
have 30: "X \<subseteq> x \<or> \<not> Y \<subseteq> x" |
|
87 |
by (metis 26 28) |
|
88 |
have 31: "X \<subseteq> x" |
|
89 |
by (metis 30 27) |
|
90 |
show "False" |
|
91 |
by (metis 31 29) |
|
92 |
qed |
|
93 |
||
26333
68e5eee47a45
Attributes sledgehammer_full, sledgehammer_modulus, sledgehammer_sorts
paulson
parents:
26312
diff
changeset
|
94 |
declare [[sledgehammer_modulus = 2]] |
23449 | 95 |
|
96 |
lemma (*equal_union: *) |
|
97 |
"(X = Y \<union> Z) = |
|
98 |
(Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" |
|
99 |
proof (neg_clausify) |
|
100 |
fix x |
|
101 |
assume 0: "Y \<subseteq> X \<or> X = Y \<union> Z" |
|
102 |
assume 1: "Z \<subseteq> X \<or> X = Y \<union> Z" |
|
103 |
assume 2: "(\<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X \<or> Y \<subseteq> x) \<or> X \<noteq> Y \<union> Z" |
|
104 |
assume 3: "(\<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X \<or> Z \<subseteq> x) \<or> X \<noteq> Y \<union> Z" |
|
105 |
assume 4: "(\<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X \<or> \<not> X \<subseteq> x) \<or> X \<noteq> Y \<union> Z" |
|
24937
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
paulson
parents:
24855
diff
changeset
|
106 |
assume 5: "\<And>V. ((\<not> Y \<subseteq> V \<or> \<not> Z \<subseteq> V) \<or> X \<subseteq> V) \<or> X = Y \<union> Z" |
23449 | 107 |
have 6: "sup Y Z = X \<or> Y \<subseteq> X" |
108 |
by (metis 0 sup_set_eq) |
|
109 |
have 7: "Y \<subseteq> x \<or> sup Y Z \<noteq> X \<or> \<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X" |
|
110 |
by (metis 2 sup_set_eq) |
|
111 |
have 8: "sup Y Z \<noteq> X \<or> \<not> X \<subseteq> x \<or> \<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X" |
|
112 |
by (metis 4 sup_set_eq) |
|
113 |
have 9: "\<And>X3. sup Y Z = X \<or> X \<subseteq> sup X3 Z \<or> \<not> Y \<subseteq> sup X3 Z" |
|
114 |
by (metis 5 sup_set_eq Un_upper2 sup_set_eq) |
|
115 |
have 10: "Z \<subseteq> x \<or> sup Y Z \<noteq> X \<or> \<not> Y \<subseteq> X" |
|
24855 | 116 |
by (metis 3 sup_set_eq Un_upper2 sup_set_eq sup_set_eq) |
23449 | 117 |
have 11: "sup Y Z \<noteq> X \<or> \<not> X \<subseteq> x \<or> \<not> Y \<subseteq> X" |
24855 | 118 |
by (metis 8 Un_upper2 sup_set_eq sup_set_eq) |
23449 | 119 |
have 12: "Z \<subseteq> x \<or> sup Y Z \<noteq> X" |
24855 | 120 |
by (metis 10 Un_upper1 sup_set_eq) |
23449 | 121 |
have 13: "sup Y Z = X \<or> X \<subseteq> sup Y Z" |
122 |
by (metis 9 Un_upper1 sup_set_eq) |
|
123 |
have 14: "sup Y Z = X \<or> \<not> Z \<subseteq> X \<or> \<not> Y \<subseteq> X" |
|
124 |
by (metis equalityI 13 Un_least sup_set_eq) |
|
125 |
have 15: "sup Y Z = X" |
|
24855 | 126 |
by (metis 14 sup_set_eq 1 sup_set_eq sup_set_eq 6) |
23449 | 127 |
have 16: "Y \<subseteq> x" |
24855 | 128 |
by (metis 7 Un_upper2 sup_set_eq sup_set_eq Un_upper1 sup_set_eq 15) |
23449 | 129 |
have 17: "\<not> X \<subseteq> x" |
24855 | 130 |
by (metis 11 Un_upper1 sup_set_eq 15) |
23449 | 131 |
have 18: "X \<subseteq> x" |
132 |
by (metis Un_least sup_set_eq 15 12 15 16) |
|
133 |
show "False" |
|
134 |
by (metis 18 17) |
|
135 |
qed |
|
136 |
||
26333
68e5eee47a45
Attributes sledgehammer_full, sledgehammer_modulus, sledgehammer_sorts
paulson
parents:
26312
diff
changeset
|
137 |
declare [[sledgehammer_modulus = 3]] |
23449 | 138 |
|
139 |
lemma (*equal_union: *) |
|
140 |
"(X = Y \<union> Z) = |
|
141 |
(Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" |
|
142 |
proof (neg_clausify) |
|
143 |
fix x |
|
144 |
assume 0: "Y \<subseteq> X \<or> X = Y \<union> Z" |
|
145 |
assume 1: "Z \<subseteq> X \<or> X = Y \<union> Z" |
|
146 |
assume 2: "(\<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X \<or> Y \<subseteq> x) \<or> X \<noteq> Y \<union> Z" |
|
147 |
assume 3: "(\<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X \<or> Z \<subseteq> x) \<or> X \<noteq> Y \<union> Z" |
|
148 |
assume 4: "(\<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X \<or> \<not> X \<subseteq> x) \<or> X \<noteq> Y \<union> Z" |
|
24937
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
paulson
parents:
24855
diff
changeset
|
149 |
assume 5: "\<And>V. ((\<not> Y \<subseteq> V \<or> \<not> Z \<subseteq> V) \<or> X \<subseteq> V) \<or> X = Y \<union> Z" |
23449 | 150 |
have 6: "Z \<subseteq> x \<or> sup Y Z \<noteq> X \<or> \<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X" |
151 |
by (metis 3 sup_set_eq) |
|
152 |
have 7: "\<And>X3. sup Y Z = X \<or> X \<subseteq> sup X3 Z \<or> \<not> Y \<subseteq> sup X3 Z" |
|
153 |
by (metis 5 sup_set_eq Un_upper2 sup_set_eq) |
|
154 |
have 8: "Y \<subseteq> x \<or> sup Y Z \<noteq> X \<or> \<not> Y \<subseteq> X" |
|
24855 | 155 |
by (metis 2 sup_set_eq Un_upper2 sup_set_eq sup_set_eq) |
23449 | 156 |
have 9: "Z \<subseteq> x \<or> sup Y Z \<noteq> X" |
24855 | 157 |
by (metis 6 Un_upper2 sup_set_eq sup_set_eq Un_upper1 sup_set_eq sup_set_eq) |
23449 | 158 |
have 10: "sup Y Z = X \<or> \<not> sup Y Z \<subseteq> X" |
159 |
by (metis equalityI 7 Un_upper1 sup_set_eq) |
|
160 |
have 11: "sup Y Z = X" |
|
24855 | 161 |
by (metis 10 Un_least sup_set_eq sup_set_eq 1 sup_set_eq sup_set_eq 0 sup_set_eq) |
23449 | 162 |
have 12: "Z \<subseteq> x" |
163 |
by (metis 9 11) |
|
164 |
have 13: "X \<subseteq> x" |
|
24855 | 165 |
by (metis Un_least sup_set_eq 11 12 8 Un_upper1 sup_set_eq sup_set_eq 11) |
23449 | 166 |
show "False" |
24855 | 167 |
by (metis 13 4 sup_set_eq Un_upper2 sup_set_eq sup_set_eq Un_upper1 sup_set_eq sup_set_eq 11) |
23449 | 168 |
qed |
169 |
||
170 |
(*Example included in TPHOLs paper*) |
|
171 |
||
26333
68e5eee47a45
Attributes sledgehammer_full, sledgehammer_modulus, sledgehammer_sorts
paulson
parents:
26312
diff
changeset
|
172 |
declare [[sledgehammer_modulus = 4]] |
23449 | 173 |
|
174 |
lemma (*equal_union: *) |
|
175 |
"(X = Y \<union> Z) = |
|
176 |
(Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" |
|
177 |
proof (neg_clausify) |
|
178 |
fix x |
|
179 |
assume 0: "Y \<subseteq> X \<or> X = Y \<union> Z" |
|
180 |
assume 1: "Z \<subseteq> X \<or> X = Y \<union> Z" |
|
181 |
assume 2: "(\<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X \<or> Y \<subseteq> x) \<or> X \<noteq> Y \<union> Z" |
|
182 |
assume 3: "(\<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X \<or> Z \<subseteq> x) \<or> X \<noteq> Y \<union> Z" |
|
183 |
assume 4: "(\<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X \<or> \<not> X \<subseteq> x) \<or> X \<noteq> Y \<union> Z" |
|
24937
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
paulson
parents:
24855
diff
changeset
|
184 |
assume 5: "\<And>V. ((\<not> Y \<subseteq> V \<or> \<not> Z \<subseteq> V) \<or> X \<subseteq> V) \<or> X = Y \<union> Z" |
23449 | 185 |
have 6: "sup Y Z \<noteq> X \<or> \<not> X \<subseteq> x \<or> \<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X" |
186 |
by (metis 4 sup_set_eq) |
|
187 |
have 7: "Z \<subseteq> x \<or> sup Y Z \<noteq> X \<or> \<not> Y \<subseteq> X" |
|
24855 | 188 |
by (metis 3 sup_set_eq Un_upper2 sup_set_eq sup_set_eq) |
23449 | 189 |
have 8: "Z \<subseteq> x \<or> sup Y Z \<noteq> X" |
24855 | 190 |
by (metis 7 Un_upper1 sup_set_eq sup_set_eq) |
23449 | 191 |
have 9: "sup Y Z = X \<or> \<not> Z \<subseteq> X \<or> \<not> Y \<subseteq> X" |
192 |
by (metis equalityI 5 sup_set_eq Un_upper2 sup_set_eq Un_upper1 sup_set_eq Un_least sup_set_eq) |
|
193 |
have 10: "Y \<subseteq> x" |
|
194 |
by (metis 2 sup_set_eq Un_upper2 sup_set_eq 1 sup_set_eq Un_upper1 sup_set_eq 0 sup_set_eq 9 Un_upper2 sup_set_eq 1 sup_set_eq Un_upper1 sup_set_eq 0 sup_set_eq) |
|
195 |
have 11: "X \<subseteq> x" |
|
196 |
by (metis Un_least sup_set_eq 9 Un_upper2 sup_set_eq 1 sup_set_eq Un_upper1 sup_set_eq 0 sup_set_eq 8 9 Un_upper2 sup_set_eq 1 sup_set_eq Un_upper1 sup_set_eq 0 sup_set_eq 10) |
|
197 |
show "False" |
|
198 |
by (metis 11 6 Un_upper2 sup_set_eq 1 sup_set_eq Un_upper1 sup_set_eq 0 sup_set_eq 9 Un_upper2 sup_set_eq 1 sup_set_eq Un_upper1 sup_set_eq 0 sup_set_eq) |
|
199 |
qed |
|
200 |
||
28592 | 201 |
ML {*AtpWrapper.problem_name := "set__equal_union"*} |
23449 | 202 |
lemma (*equal_union: *) |
203 |
"(X = Y \<union> Z) = |
|
204 |
(Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" |
|
205 |
(*One shot proof: hand-reduced. Metis can't do the full proof any more.*) |
|
206 |
by (metis Un_least Un_upper1 Un_upper2 set_eq_subset) |
|
207 |
||
208 |
||
28592 | 209 |
ML {*AtpWrapper.problem_name := "set__equal_inter"*} |
23449 | 210 |
lemma "(X = Y \<inter> Z) = |
211 |
(X \<subseteq> Y \<and> X \<subseteq> Z \<and> (\<forall>V. V \<subseteq> Y \<and> V \<subseteq> Z \<longrightarrow> V \<subseteq> X))" |
|
212 |
by (metis Int_greatest Int_lower1 Int_lower2 set_eq_subset) |
|
213 |
||
28592 | 214 |
ML {*AtpWrapper.problem_name := "set__fixedpoint"*} |
23449 | 215 |
lemma fixedpoint: |
216 |
"\<exists>!x. f (g x) = x \<Longrightarrow> \<exists>!y. g (f y) = y" |
|
217 |
by metis |
|
218 |
||
26312 | 219 |
lemma (*fixedpoint:*) |
23449 | 220 |
"\<exists>!x. f (g x) = x \<Longrightarrow> \<exists>!y. g (f y) = y" |
221 |
proof (neg_clausify) |
|
222 |
fix x xa |
|
223 |
assume 0: "f (g x) = x" |
|
24937
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
paulson
parents:
24855
diff
changeset
|
224 |
assume 1: "\<And>y. y = x \<or> f (g y) \<noteq> y" |
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
paulson
parents:
24855
diff
changeset
|
225 |
assume 2: "\<And>x. g (f (xa x)) = xa x \<or> g (f x) \<noteq> x" |
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
paulson
parents:
24855
diff
changeset
|
226 |
assume 3: "\<And>x. g (f x) \<noteq> x \<or> xa x \<noteq> x" |
23449 | 227 |
have 4: "\<And>X1. g (f X1) \<noteq> X1 \<or> g x \<noteq> X1" |
23519 | 228 |
by (metis 3 1 2) |
23449 | 229 |
show "False" |
230 |
by (metis 4 0) |
|
231 |
qed |
|
232 |
||
28592 | 233 |
ML {*AtpWrapper.problem_name := "set__singleton_example"*} |
23449 | 234 |
lemma (*singleton_example_2:*) |
235 |
"\<forall>x \<in> S. \<Union>S \<subseteq> x \<Longrightarrow> \<exists>z. S \<subseteq> {z}" |
|
236 |
by (metis Set.subsetI Union_upper insertCI set_eq_subset) |
|
237 |
--{*found by SPASS*} |
|
238 |
||
239 |
lemma (*singleton_example_2:*) |
|
240 |
"\<forall>x \<in> S. \<Union>S \<subseteq> x \<Longrightarrow> \<exists>z. S \<subseteq> {z}" |
|
26806 | 241 |
by (metis Un_absorb2 Union_insert insertI1 insert_Diff insert_Diff_single subset_eq) |
23449 | 242 |
|
243 |
lemma singleton_example_2: |
|
244 |
"\<forall>x \<in> S. \<Union>S \<subseteq> x \<Longrightarrow> \<exists>z. S \<subseteq> {z}" |
|
245 |
proof (neg_clausify) |
|
24937
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
paulson
parents:
24855
diff
changeset
|
246 |
assume 0: "\<And>x. \<not> S \<subseteq> {x}" |
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
paulson
parents:
24855
diff
changeset
|
247 |
assume 1: "\<And>x. x \<notin> S \<or> \<Union>S \<subseteq> x" |
23449 | 248 |
have 2: "\<And>X3. X3 = \<Union>S \<or> \<not> X3 \<subseteq> \<Union>S \<or> X3 \<notin> S" |
24855 | 249 |
by (metis set_eq_subset 1) |
23449 | 250 |
have 3: "\<And>X3. S \<subseteq> insert (\<Union>S) X3" |
24855 | 251 |
by (metis insert_iff Set.subsetI Union_upper 2 Set.subsetI) |
23449 | 252 |
show "False" |
24855 | 253 |
by (metis 3 0) |
23449 | 254 |
qed |
255 |
||
256 |
||
257 |
||
258 |
text {* |
|
259 |
From W. W. Bledsoe and Guohui Feng, SET-VAR. JAR 11 (3), 1993, pages |
|
260 |
293-314. |
|
261 |
*} |
|
262 |
||
28592 | 263 |
ML {*AtpWrapper.problem_name := "set__Bledsoe_Fung"*} |
23449 | 264 |
(*Notes: 1, the numbering doesn't completely agree with the paper. |
265 |
2, we must rename set variables to avoid type clashes.*) |
|
266 |
lemma "\<exists>B. (\<forall>x \<in> B. x \<le> (0::int))" |
|
267 |
"D \<in> F \<Longrightarrow> \<exists>G. \<forall>A \<in> G. \<exists>B \<in> F. A \<subseteq> B" |
|
268 |
"P a \<Longrightarrow> \<exists>A. (\<forall>x \<in> A. P x) \<and> (\<exists>y. y \<in> A)" |
|
269 |
"a < b \<and> b < (c::int) \<Longrightarrow> \<exists>B. a \<notin> B \<and> b \<in> B \<and> c \<notin> B" |
|
270 |
"P (f b) \<Longrightarrow> \<exists>s A. (\<forall>x \<in> A. P x) \<and> f s \<in> A" |
|
271 |
"P (f b) \<Longrightarrow> \<exists>s A. (\<forall>x \<in> A. P x) \<and> f s \<in> A" |
|
272 |
"\<exists>A. a \<notin> A" |
|
273 |
"(\<forall>C. (0, 0) \<in> C \<and> (\<forall>x y. (x, y) \<in> C \<longrightarrow> (Suc x, Suc y) \<in> C) \<longrightarrow> (n, m) \<in> C) \<and> Q n \<longrightarrow> Q m" |
|
24855 | 274 |
apply (metis atMost_iff) |
23449 | 275 |
apply (metis emptyE) |
276 |
apply (metis insert_iff singletonE) |
|
277 |
apply (metis insertCI singletonE zless_le) |
|
278 |
apply (metis insert_iff singletonE) |
|
279 |
apply (metis insert_iff singletonE) |
|
280 |
apply (metis DiffE) |
|
24855 | 281 |
apply (metis pair_in_Id_conv) |
23449 | 282 |
done |
283 |
||
284 |
end |