| author | haftmann | 
| Tue, 14 Jul 2009 10:54:04 +0200 | |
| changeset 31998 | 2c7a24f74db9 | 
| parent 31867 | 4d278bbb5cc8 | 
| child 33954 | 1bc3b688548c | 
| permissions | -rw-r--r-- | 
| 12951 | 1 | (* Title: HOL/MicroJava/BV/BVExample.thy | 
| 2 | Author: Gerwin Klein | |
| 3 | *) | |
| 4 | ||
| 12972 | 5 | header {* \isaheader{Example Welltypings}\label{sec:BVExample} *}
 | 
| 12951 | 6 | |
| 23022 
9872ef956276
added qualification for ambiguous definition names
 haftmann parents: 
22271diff
changeset | 7 | theory BVExample | 
| 24351 | 8 | imports "../JVM/JVMListExample" BVSpecTypeSafe JVM Executable_Set | 
| 23022 
9872ef956276
added qualification for ambiguous definition names
 haftmann parents: 
22271diff
changeset | 9 | begin | 
| 12951 | 10 | |
| 12972 | 11 | text {*
 | 
| 12 | This theory shows type correctness of the example program in section | |
| 13 |   \ref{sec:JVMListExample} (p. \pageref{sec:JVMListExample}) by
 | |
| 14 | explicitly providing a welltyping. It also shows that the start | |
| 15 | state of the program conforms to the welltyping; hence type safe | |
| 16 | execution is guaranteed. | |
| 17 | *} | |
| 18 | ||
| 12951 | 19 | section "Setup" | 
| 20 | text {*
 | |
| 21 |   Since the types @{typ cnam}, @{text vnam}, and @{text mname} are 
 | |
| 22 | anonymous, we describe distinctness of names in the example by axioms: | |
| 23 | *} | |
| 24 | axioms | |
| 25 | distinct_classes: "list_nam \<noteq> test_nam" | |
| 26 | distinct_fields: "val_nam \<noteq> next_nam" | |
| 27 | ||
| 13101 | 28 | text {* Abbreviations for definitions we will have to use often in the
 | 
| 12951 | 29 | proofs below: *} | 
| 13101 | 30 | lemmas name_defs = list_name_def test_name_def val_name_def next_name_def | 
| 12951 | 31 | lemmas system_defs = SystemClasses_def ObjectC_def NullPointerC_def | 
| 32 | OutOfMemoryC_def ClassCastC_def | |
| 33 | lemmas class_defs = list_class_def test_class_def | |
| 34 | ||
| 35 | text {* These auxiliary proofs are for efficiency: class lookup,
 | |
| 36 | subclass relation, method and field lookup are computed only once: | |
| 37 | *} | |
| 38 | lemma class_Object [simp]: | |
| 28520 | 39 | "class E Object = Some (undefined, [],[])" | 
| 12951 | 40 | by (simp add: class_def system_defs E_def) | 
| 41 | ||
| 42 | lemma class_NullPointer [simp]: | |
| 43 | "class E (Xcpt NullPointer) = Some (Object, [], [])" | |
| 44 | by (simp add: class_def system_defs E_def) | |
| 45 | ||
| 46 | lemma class_OutOfMemory [simp]: | |
| 47 | "class E (Xcpt OutOfMemory) = Some (Object, [], [])" | |
| 48 | by (simp add: class_def system_defs E_def) | |
| 49 | ||
| 50 | lemma class_ClassCast [simp]: | |
| 51 | "class E (Xcpt ClassCast) = Some (Object, [], [])" | |
| 52 | by (simp add: class_def system_defs E_def) | |
| 53 | ||
| 54 | lemma class_list [simp]: | |
| 55 | "class E list_name = Some list_class" | |
| 56 | by (simp add: class_def system_defs E_def name_defs distinct_classes [symmetric]) | |
| 57 | ||
| 58 | lemma class_test [simp]: | |
| 59 | "class E test_name = Some test_class" | |
| 60 | by (simp add: class_def system_defs E_def name_defs distinct_classes [symmetric]) | |
| 61 | ||
| 62 | lemma E_classes [simp]: | |
| 63 |   "{C. is_class E C} = {list_name, test_name, Xcpt NullPointer, 
 | |
| 64 | Xcpt ClassCast, Xcpt OutOfMemory, Object}" | |
| 65 | by (auto simp add: is_class_def class_def system_defs E_def name_defs class_defs) | |
| 66 | ||
| 67 | text {* The subclass releation spelled out: *}
 | |
| 68 | lemma subcls1: | |
| 23757 | 69 |   "subcls1 E = (\<lambda>C D. (C, D) \<in> {(list_name,Object), (test_name,Object), (Xcpt NullPointer, Object),
 | 
| 70 | (Xcpt ClassCast, Object), (Xcpt OutOfMemory, Object)})" | |
| 31197 
c1c163ec6c44
fine-tuned elimination of comprehensions involving x=t.
 nipkow parents: 
31168diff
changeset | 71 | apply (simp add: subcls1_def2) | 
| 31166 
a90fe83f58ea
"{x. P x & x=t & Q x}" is now rewritten to "if P t & Q t then {t} else {}"
 nipkow parents: 
28520diff
changeset | 72 | apply (simp add: name_defs class_defs system_defs E_def class_def) | 
| 31197 
c1c163ec6c44
fine-tuned elimination of comprehensions involving x=t.
 nipkow parents: 
31168diff
changeset | 73 | apply (auto simp: expand_fun_eq) | 
| 31166 
a90fe83f58ea
"{x. P x & x=t & Q x}" is now rewritten to "if P t & Q t then {t} else {}"
 nipkow parents: 
28520diff
changeset | 74 | done | 
| 12951 | 75 | |
| 76 | text {* The subclass relation is acyclic; hence its converse is well founded: *}
 | |
| 77 | lemma notin_rtrancl: | |
| 22271 | 78 | "r\<^sup>*\<^sup>* a b \<Longrightarrow> a \<noteq> b \<Longrightarrow> (\<And>y. \<not> r a y) \<Longrightarrow> False" | 
| 23757 | 79 | by (auto elim: converse_rtranclpE) | 
| 12951 | 80 | |
| 22271 | 81 | lemma acyclic_subcls1_E: "acyclicP (subcls1 E)" | 
| 82 | apply (rule acyclicI [to_pred]) | |
| 12951 | 83 | apply (simp add: subcls1) | 
| 23757 | 84 | apply (auto dest!: tranclpD) | 
| 12951 | 85 | apply (auto elim!: notin_rtrancl simp add: name_defs distinct_classes) | 
| 86 | done | |
| 87 | ||
| 22271 | 88 | lemma wf_subcls1_E: "wfP ((subcls1 E)\<inverse>\<inverse>)" | 
| 89 | apply (rule finite_acyclic_wf_converse [to_pred]) | |
| 23757 | 90 | apply (simp add: subcls1 del: insert_iff) | 
| 12951 | 91 | apply (rule acyclic_subcls1_E) | 
| 92 | done | |
| 93 | ||
| 94 | text {* Method and field lookup: *}
 | |
| 95 | lemma method_Object [simp]: | |
| 31852 
a16bb835e97d
explicit Set constructor for code generated for sets
 haftmann parents: 
31197diff
changeset | 96 | "method (E, Object) = Map.empty" | 
| 12951 | 97 | by (simp add: method_rec_lemma [OF class_Object wf_subcls1_E]) | 
| 98 | ||
| 99 | lemma method_append [simp]: | |
| 100 | "method (E, list_name) (append_name, [Class list_name]) = | |
| 101 | Some (list_name, PrimT Void, 3, 0, append_ins, [(1, 2, 8, Xcpt NullPointer)])" | |
| 102 | apply (insert class_list) | |
| 103 | apply (unfold list_class_def) | |
| 104 | apply (drule method_rec_lemma [OF _ wf_subcls1_E]) | |
| 105 | apply simp | |
| 106 | done | |
| 107 | ||
| 108 | lemma method_makelist [simp]: | |
| 109 | "method (E, test_name) (makelist_name, []) = | |
| 110 | Some (test_name, PrimT Void, 3, 2, make_list_ins, [])" | |
| 111 | apply (insert class_test) | |
| 112 | apply (unfold test_class_def) | |
| 113 | apply (drule method_rec_lemma [OF _ wf_subcls1_E]) | |
| 114 | apply simp | |
| 115 | done | |
| 116 | ||
| 117 | lemma field_val [simp]: | |
| 118 | "field (E, list_name) val_name = Some (list_name, PrimT Integer)" | |
| 23022 
9872ef956276
added qualification for ambiguous definition names
 haftmann parents: 
22271diff
changeset | 119 | apply (unfold TypeRel.field_def) | 
| 12951 | 120 | apply (insert class_list) | 
| 121 | apply (unfold list_class_def) | |
| 122 | apply (drule fields_rec_lemma [OF _ wf_subcls1_E]) | |
| 123 | apply simp | |
| 124 | done | |
| 125 | ||
| 126 | lemma field_next [simp]: | |
| 127 | "field (E, list_name) next_name = Some (list_name, Class list_name)" | |
| 23022 
9872ef956276
added qualification for ambiguous definition names
 haftmann parents: 
22271diff
changeset | 128 | apply (unfold TypeRel.field_def) | 
| 12951 | 129 | apply (insert class_list) | 
| 130 | apply (unfold list_class_def) | |
| 131 | apply (drule fields_rec_lemma [OF _ wf_subcls1_E]) | |
| 132 | apply (simp add: name_defs distinct_fields [symmetric]) | |
| 133 | done | |
| 134 | ||
| 135 | lemma [simp]: "fields (E, Object) = []" | |
| 136 | by (simp add: fields_rec_lemma [OF class_Object wf_subcls1_E]) | |
| 137 | ||
| 138 | lemma [simp]: "fields (E, Xcpt NullPointer) = []" | |
| 139 | by (simp add: fields_rec_lemma [OF class_NullPointer wf_subcls1_E]) | |
| 140 | ||
| 141 | lemma [simp]: "fields (E, Xcpt ClassCast) = []" | |
| 142 | by (simp add: fields_rec_lemma [OF class_ClassCast wf_subcls1_E]) | |
| 143 | ||
| 144 | lemma [simp]: "fields (E, Xcpt OutOfMemory) = []" | |
| 145 | by (simp add: fields_rec_lemma [OF class_OutOfMemory wf_subcls1_E]) | |
| 146 | ||
| 147 | lemma [simp]: "fields (E, test_name) = []" | |
| 148 | apply (insert class_test) | |
| 149 | apply (unfold test_class_def) | |
| 150 | apply (drule fields_rec_lemma [OF _ wf_subcls1_E]) | |
| 151 | apply simp | |
| 152 | done | |
| 153 | ||
| 154 | lemmas [simp] = is_class_def | |
| 155 | ||
| 156 | text {*
 | |
| 157 | The next definition and three proof rules implement an algorithm to | |
| 158 |   enumarate natural numbers. The command @{text "apply (elim pc_end pc_next pc_0"} 
 | |
| 159 | transforms a goal of the form | |
| 160 |   @{prop [display] "pc < n \<Longrightarrow> P pc"} 
 | |
| 161 | into a series of goals | |
| 162 |   @{prop [display] "P 0"} 
 | |
| 163 |   @{prop [display] "P (Suc 0)"} 
 | |
| 164 | ||
| 165 |   @{text "\<dots>"}
 | |
| 166 | ||
| 167 |   @{prop [display] "P n"} 
 | |
| 168 | *} | |
| 169 | constdefs | |
| 170 |   intervall :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" ("_ \<in> [_, _')")
 | |
| 171 | "x \<in> [a, b) \<equiv> a \<le> x \<and> x < b" | |
| 172 | ||
| 173 | lemma pc_0: "x < n \<Longrightarrow> (x \<in> [0, n) \<Longrightarrow> P x) \<Longrightarrow> P x" | |
| 174 | by (simp add: intervall_def) | |
| 175 | ||
| 176 | lemma pc_next: "x \<in> [n0, n) \<Longrightarrow> P n0 \<Longrightarrow> (x \<in> [Suc n0, n) \<Longrightarrow> P x) \<Longrightarrow> P x" | |
| 177 | apply (cases "x=n0") | |
| 13187 | 178 | apply (auto simp add: intervall_def) | 
| 12951 | 179 | done | 
| 180 | ||
| 181 | lemma pc_end: "x \<in> [n,n) \<Longrightarrow> P x" | |
| 182 | by (unfold intervall_def) arith | |
| 183 | ||
| 184 | ||
| 185 | section "Program structure" | |
| 186 | ||
| 187 | text {*
 | |
| 188 | The program is structurally wellformed: | |
| 189 | *} | |
| 14045 | 190 | |
| 12951 | 191 | lemma wf_struct: | 
| 192 | "wf_prog (\<lambda>G C mb. True) E" (is "wf_prog ?mb E") | |
| 193 | proof - | |
| 194 | have "unique E" | |
| 195 | by (simp add: system_defs E_def class_defs name_defs distinct_classes) | |
| 196 | moreover | |
| 197 | have "set SystemClasses \<subseteq> set E" by (simp add: system_defs E_def) | |
| 198 | hence "wf_syscls E" by (rule wf_syscls) | |
| 199 | moreover | |
| 200 | have "wf_cdecl ?mb E ObjectC" by (simp add: wf_cdecl_def ObjectC_def) | |
| 201 | moreover | |
| 202 | have "wf_cdecl ?mb E NullPointerC" | |
| 203 | by (auto elim: notin_rtrancl | |
| 204 | simp add: wf_cdecl_def name_defs NullPointerC_def subcls1) | |
| 205 | moreover | |
| 206 | have "wf_cdecl ?mb E ClassCastC" | |
| 207 | by (auto elim: notin_rtrancl | |
| 208 | simp add: wf_cdecl_def name_defs ClassCastC_def subcls1) | |
| 209 | moreover | |
| 210 | have "wf_cdecl ?mb E OutOfMemoryC" | |
| 211 | by (auto elim: notin_rtrancl | |
| 212 | simp add: wf_cdecl_def name_defs OutOfMemoryC_def subcls1) | |
| 213 | moreover | |
| 214 | have "wf_cdecl ?mb E (list_name, list_class)" | |
| 215 | apply (auto elim!: notin_rtrancl | |
| 216 | simp add: wf_cdecl_def wf_fdecl_def list_class_def | |
| 217 | wf_mdecl_def wf_mhead_def subcls1) | |
| 218 | apply (auto simp add: name_defs distinct_classes distinct_fields) | |
| 219 | done | |
| 220 | moreover | |
| 221 | have "wf_cdecl ?mb E (test_name, test_class)" | |
| 222 | apply (auto elim!: notin_rtrancl | |
| 223 | simp add: wf_cdecl_def wf_fdecl_def test_class_def | |
| 224 | wf_mdecl_def wf_mhead_def subcls1) | |
| 225 | apply (auto simp add: name_defs distinct_classes distinct_fields) | |
| 226 | done | |
| 227 | ultimately | |
| 14045 | 228 | show ?thesis | 
| 229 | by (simp add: wf_prog_def ws_prog_def wf_cdecl_mrT_cdecl_mdecl E_def SystemClasses_def) | |
| 12951 | 230 | qed | 
| 231 | ||
| 232 | section "Welltypings" | |
| 233 | text {*
 | |
| 234 |   We show welltypings of the methods @{term append_name} in class @{term list_name}, 
 | |
| 235 |   and @{term makelist_name} in class @{term test_name}:
 | |
| 236 | *} | |
| 237 | lemmas eff_simps [simp] = eff_def norm_eff_def xcpt_eff_def | |
| 238 | declare appInvoke [simp del] | |
| 239 | ||
| 240 | constdefs | |
| 241 |   phi_append :: method_type ("\<phi>\<^sub>a")
 | |
| 242 | "\<phi>\<^sub>a \<equiv> map (\<lambda>(x,y). Some (x, map OK y)) [ | |
| 243 | ( [], [Class list_name, Class list_name]), | |
| 244 | ( [Class list_name], [Class list_name, Class list_name]), | |
| 245 | ( [Class list_name], [Class list_name, Class list_name]), | |
| 246 | ( [Class list_name, Class list_name], [Class list_name, Class list_name]), | |
| 247 | ([NT, Class list_name, Class list_name], [Class list_name, Class list_name]), | |
| 248 | ( [Class list_name], [Class list_name, Class list_name]), | |
| 249 | ( [Class list_name, Class list_name], [Class list_name, Class list_name]), | |
| 250 | ( [PrimT Void], [Class list_name, Class list_name]), | |
| 251 | ( [Class Object], [Class list_name, Class list_name]), | |
| 252 | ( [], [Class list_name, Class list_name]), | |
| 253 | ( [Class list_name], [Class list_name, Class list_name]), | |
| 254 | ( [Class list_name, Class list_name], [Class list_name, Class list_name]), | |
| 255 | ( [], [Class list_name, Class list_name]), | |
| 256 | ( [PrimT Void], [Class list_name, Class list_name])]" | |
| 257 | ||
| 13214 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 258 | |
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 259 | lemma bounded_append [simp]: | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 260 | "check_bounded append_ins [(Suc 0, 2, 8, Xcpt NullPointer)]" | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 261 | apply (simp add: check_bounded_def) | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 262 | apply (simp add: nat_number append_ins_def) | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 263 | apply (rule allI, rule impI) | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 264 | apply (elim pc_end pc_next pc_0) | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 265 | apply auto | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 266 | done | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 267 | |
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 268 | lemma types_append [simp]: "check_types E 3 (Suc (Suc 0)) (map OK \<phi>\<^sub>a)" | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 269 | apply (auto simp add: check_types_def phi_append_def JVM_states_unfold) | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 270 | apply (unfold list_def) | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 271 | apply auto | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 272 | done | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 273 | |
| 12951 | 274 | lemma wt_append [simp]: | 
| 275 | "wt_method E list_name [Class list_name] (PrimT Void) 3 0 append_ins | |
| 276 | [(Suc 0, 2, 8, Xcpt NullPointer)] \<phi>\<^sub>a" | |
| 13214 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 277 | apply (simp add: wt_method_def wt_start_def wt_instr_def) | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 278 | apply (simp add: phi_append_def append_ins_def) | 
| 12951 | 279 | apply clarify | 
| 280 | apply (elim pc_end pc_next pc_0) | |
| 281 | apply simp | |
| 282 | apply (fastsimp simp add: match_exception_entry_def sup_state_conv subcls1) | |
| 283 | apply simp | |
| 284 | apply simp | |
| 285 | apply (fastsimp simp add: sup_state_conv subcls1) | |
| 286 | apply simp | |
| 287 | apply (simp add: app_def xcpt_app_def) | |
| 288 | apply simp | |
| 289 | apply simp | |
| 290 | apply simp | |
| 291 | apply (simp add: match_exception_entry_def) | |
| 292 | apply (simp add: match_exception_entry_def) | |
| 293 | apply simp | |
| 294 | apply simp | |
| 295 | done | |
| 296 | ||
| 13006 | 297 | text {* Some abbreviations for readability *} 
 | 
| 12951 | 298 | syntax | 
| 13214 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 299 | Clist :: ty | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 300 | Ctest :: ty | 
| 12951 | 301 | translations | 
| 13214 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 302 | "Clist" == "Class list_name" | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 303 | "Ctest" == "Class test_name" | 
| 12951 | 304 | |
| 305 | constdefs | |
| 306 |   phi_makelist :: method_type ("\<phi>\<^sub>m")
 | |
| 307 | "\<phi>\<^sub>m \<equiv> map (\<lambda>(x,y). Some (x, y)) [ | |
| 13214 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 308 | ( [], [OK Ctest, Err , Err ]), | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 309 | ( [Clist], [OK Ctest, Err , Err ]), | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 310 | ( [Clist, Clist], [OK Ctest, Err , Err ]), | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 311 | ( [Clist], [OK Clist, Err , Err ]), | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 312 | ( [PrimT Integer, Clist], [OK Clist, Err , Err ]), | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 313 | ( [], [OK Clist, Err , Err ]), | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 314 | ( [Clist], [OK Clist, Err , Err ]), | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 315 | ( [Clist, Clist], [OK Clist, Err , Err ]), | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 316 | ( [Clist], [OK Clist, OK Clist, Err ]), | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 317 | ( [PrimT Integer, Clist], [OK Clist, OK Clist, Err ]), | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 318 | ( [], [OK Clist, OK Clist, Err ]), | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 319 | ( [Clist], [OK Clist, OK Clist, Err ]), | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 320 | ( [Clist, Clist], [OK Clist, OK Clist, Err ]), | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 321 | ( [Clist], [OK Clist, OK Clist, OK Clist]), | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 322 | ( [PrimT Integer, Clist], [OK Clist, OK Clist, OK Clist]), | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 323 | ( [], [OK Clist, OK Clist, OK Clist]), | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 324 | ( [Clist], [OK Clist, OK Clist, OK Clist]), | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 325 | ( [Clist, Clist], [OK Clist, OK Clist, OK Clist]), | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 326 | ( [PrimT Void], [OK Clist, OK Clist, OK Clist]), | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 327 | ( [], [OK Clist, OK Clist, OK Clist]), | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 328 | ( [Clist], [OK Clist, OK Clist, OK Clist]), | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 329 | ( [Clist, Clist], [OK Clist, OK Clist, OK Clist]), | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 330 | ( [PrimT Void], [OK Clist, OK Clist, OK Clist])]" | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 331 | |
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 332 | lemma bounded_makelist [simp]: "check_bounded make_list_ins []" | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 333 | apply (simp add: check_bounded_def) | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 334 | apply (simp add: nat_number make_list_ins_def) | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 335 | apply (rule allI, rule impI) | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 336 | apply (elim pc_end pc_next pc_0) | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 337 | apply auto | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 338 | done | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 339 | |
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 340 | lemma types_makelist [simp]: "check_types E 3 (Suc (Suc (Suc 0))) (map OK \<phi>\<^sub>m)" | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 341 | apply (auto simp add: check_types_def phi_makelist_def JVM_states_unfold) | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 342 | apply (unfold list_def) | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 343 | apply auto | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 344 | done | 
| 12951 | 345 | |
| 346 | lemma wt_makelist [simp]: | |
| 347 | "wt_method E test_name [] (PrimT Void) 3 2 make_list_ins [] \<phi>\<^sub>m" | |
| 13214 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 348 | apply (simp add: wt_method_def) | 
| 
2aa33ed5f526
wt_method now checks bounded+types ==> wt_kildall <=> wt_method
 kleing parents: 
13187diff
changeset | 349 | apply (simp add: make_list_ins_def phi_makelist_def) | 
| 13043 
ad1828b479b7
renamed nat_number_of to nat_number (avoid clash with separate theorem);
 wenzelm parents: 
13006diff
changeset | 350 | apply (simp add: wt_start_def nat_number) | 
| 12951 | 351 | apply (simp add: wt_instr_def) | 
| 352 | apply clarify | |
| 353 | apply (elim pc_end pc_next pc_0) | |
| 354 | apply (simp add: match_exception_entry_def) | |
| 355 | apply simp | |
| 356 | apply simp | |
| 357 | apply simp | |
| 358 | apply (simp add: match_exception_entry_def) | |
| 359 | apply (simp add: match_exception_entry_def) | |
| 360 | apply simp | |
| 361 | apply simp | |
| 362 | apply simp | |
| 363 | apply (simp add: match_exception_entry_def) | |
| 364 | apply (simp add: match_exception_entry_def) | |
| 365 | apply simp | |
| 366 | apply simp | |
| 367 | apply simp | |
| 368 | apply (simp add: match_exception_entry_def) | |
| 369 | apply (simp add: match_exception_entry_def) | |
| 370 | apply simp | |
| 371 | apply (simp add: app_def xcpt_app_def) | |
| 13101 | 372 | apply simp | 
| 12951 | 373 | apply simp | 
| 374 | apply simp | |
| 13101 | 375 | apply (simp add: app_def xcpt_app_def) | 
| 12951 | 376 | apply simp | 
| 377 | done | |
| 378 | ||
| 379 | text {* The whole program is welltyped: *}
 | |
| 380 | constdefs | |
| 381 |   Phi :: prog_type ("\<Phi>")
 | |
| 13101 | 382 | "\<Phi> C sg \<equiv> if C = test_name \<and> sg = (makelist_name, []) then \<phi>\<^sub>m else | 
| 383 | if C = list_name \<and> sg = (append_name, [Class list_name]) then \<phi>\<^sub>a else []" | |
| 13139 | 384 | |
| 12951 | 385 | lemma wf_prog: | 
| 13101 | 386 | "wt_jvm_prog E \<Phi>" | 
| 12951 | 387 | apply (unfold wt_jvm_prog_def) | 
| 388 | apply (rule wf_mb'E [OF wf_struct]) | |
| 389 | apply (simp add: E_def) | |
| 390 | apply clarify | |
| 391 | apply (fold E_def) | |
| 13101 | 392 | apply (simp add: system_defs class_defs Phi_def) | 
| 12951 | 393 | apply auto | 
| 13101 | 394 | done | 
| 12951 | 395 | |
| 396 | ||
| 397 | section "Conformance" | |
| 398 | text {* Execution of the program will be typesafe, because its
 | |
| 399 | start state conforms to the welltyping: *} | |
| 400 | ||
| 13052 | 401 | lemma "E,\<Phi> \<turnstile>JVM start_state E test_name makelist_name \<surd>" | 
| 402 | apply (rule BV_correct_initial) | |
| 403 | apply (rule wf_prog) | |
| 404 | apply simp | |
| 405 | apply simp | |
| 12951 | 406 | done | 
| 407 | ||
| 13092 | 408 | |
| 409 | section "Example for code generation: inferring method types" | |
| 410 | ||
| 28520 | 411 | definition test_kil :: "jvm_prog \<Rightarrow> cname \<Rightarrow> ty list \<Rightarrow> ty \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> | 
| 412 | exception_table \<Rightarrow> instr list \<Rightarrow> JVMType.state list" where | |
| 413 | "test_kil G C pTs rT mxs mxl et instr = | |
| 13092 | 414 | (let first = Some ([],(OK (Class C))#((map OK pTs))@(replicate mxl Err)); | 
| 415 | start = OK first#(replicate (size instr - 1) (OK None)) | |
| 416 | in kiljvm G mxs (1+size pTs+mxl) rT et instr start)" | |
| 417 | ||
| 418 | lemma [code]: | |
| 15045 | 419 |   "unstables r step ss = (UN p:{..<size ss}. if \<not>stable r step ss p then {p} else {})"
 | 
| 13092 | 420 | apply (unfold unstables_def) | 
| 421 | apply (rule equalityI) | |
| 422 | apply (rule subsetI) | |
| 423 | apply (erule CollectE) | |
| 424 | apply (erule conjE) | |
| 425 | apply (rule UN_I) | |
| 426 | apply simp | |
| 427 | apply simp | |
| 428 | apply (rule subsetI) | |
| 429 | apply (erule UN_E) | |
| 430 | apply (case_tac "\<not> stable r step ss p") | |
| 431 | apply simp+ | |
| 432 | done | |
| 433 | ||
| 28520 | 434 | definition some_elem :: "'a set \<Rightarrow> 'a" where | 
| 435 | "some_elem = (%S. SOME x. x : S)" | |
| 13092 | 436 | |
| 437 | consts_code | |
| 31852 
a16bb835e97d
explicit Set constructor for code generated for sets
 haftmann parents: 
31197diff
changeset | 438 |   "some_elem" ("(case/ _ of/ {*Set*}/ xs/ =>/ hd/ xs)")
 | 
| 13092 | 439 | |
| 28520 | 440 | text {* This code setup is just a demonstration and \emph{not} sound! *}
 | 
| 441 | ||
| 442 | lemma False | |
| 443 | proof - | |
| 444 | have "some_elem (set [False, True]) = False" | |
| 445 | by evaluation | |
| 446 | moreover have "some_elem (set [True, False]) = True" | |
| 447 | by evaluation | |
| 448 | ultimately show False | |
| 449 | by (simp add: some_elem_def) | |
| 450 | qed | |
| 451 | ||
| 452 | lemma [code]: | |
| 31867 | 453 | "iter f step ss w = while (\<lambda>(ss, w). \<not> is_empty w) | 
| 28520 | 454 | (\<lambda>(ss, w). | 
| 455 |         let p = some_elem w in propa f (step p (ss ! p)) ss (w - {p}))
 | |
| 456 | (ss, w)" | |
| 31852 
a16bb835e97d
explicit Set constructor for code generated for sets
 haftmann parents: 
31197diff
changeset | 457 | unfolding iter_def List_Set.is_empty_def some_elem_def .. | 
| 20593 | 458 | |
| 13092 | 459 | lemma JVM_sup_unfold [code]: | 
| 460 | "JVMType.sup S m n = lift2 (Opt.sup | |
| 461 | (Product.sup (Listn.sup (JType.sup S)) | |
| 462 | (\<lambda>x y. OK (map2 (lift2 (JType.sup S)) x y))))" | |
| 463 | apply (unfold JVMType.sup_def JVMType.sl_def Opt.esl_def Err.sl_def | |
| 464 | stk_esl_def reg_sl_def Product.esl_def | |
| 465 | Listn.sl_def upto_esl_def JType.esl_def Err.esl_def) | |
| 466 | by simp | |
| 467 | ||
| 28520 | 468 | lemmas [code] = JType.sup_def [unfolded exec_lub_def] JVM_le_unfold | 
| 13092 | 469 | |
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31867diff
changeset | 470 | lemmas [code_ind] = rtranclp.rtrancl_refl converse_rtranclp_into_rtranclp | 
| 13092 | 471 | |
| 17145 | 472 | code_module BV | 
| 473 | contains | |
| 13092 | 474 | test1 = "test_kil E list_name [Class list_name] (PrimT Void) 3 0 | 
| 475 | [(Suc 0, 2, 8, Xcpt NullPointer)] append_ins" | |
| 476 | test2 = "test_kil E test_name [] (PrimT Void) 3 2 [] make_list_ins" | |
| 17145 | 477 | ML BV.test1 | 
| 478 | ML BV.test2 | |
| 13092 | 479 | |
| 13006 | 480 | end |