author | wenzelm |
Sat, 01 May 2004 22:28:51 +0200 | |
changeset 14699 | 2c9b463044ec |
parent 13339 | 0f89104dd377 |
child 16417 | 9bc16273c2d4 |
permissions | -rw-r--r-- |
12776 | 1 |
(* Title: ZF/AC/AC16_lemmas.thy |
2 |
ID: $Id$ |
|
3 |
Author: Krzysztof Grabczewski |
|
4 |
||
5 |
Lemmas used in the proofs concerning AC16 |
|
6 |
*) |
|
7 |
||
8 |
theory AC16_lemmas = AC_Equiv + Hartog + Cardinal_aux: |
|
9 |
||
10 |
lemma cons_Diff_eq: "a\<notin>A ==> cons(a,A)-{a}=A" |
|
11 |
by fast |
|
12 |
||
13 |
lemma nat_1_lepoll_iff: "1\<lesssim>X <-> (\<exists>x. x \<in> X)" |
|
14 |
apply (unfold lepoll_def) |
|
15 |
apply (rule iffI) |
|
16 |
apply (fast intro: inj_is_fun [THEN apply_type]) |
|
17 |
apply (erule exE) |
|
18 |
apply (rule_tac x = "\<lambda>a \<in> 1. x" in exI) |
|
19 |
apply (fast intro!: lam_injective) |
|
20 |
done |
|
21 |
||
22 |
lemma eqpoll_1_iff_singleton: "X\<approx>1 <-> (\<exists>x. X={x})" |
|
23 |
apply (rule iffI) |
|
24 |
apply (erule eqpollE) |
|
25 |
apply (drule nat_1_lepoll_iff [THEN iffD1]) |
|
26 |
apply (fast intro!: lepoll_1_is_sing) |
|
27 |
apply (fast intro!: singleton_eqpoll_1) |
|
28 |
done |
|
29 |
||
30 |
lemma cons_eqpoll_succ: "[| x\<approx>n; y\<notin>x |] ==> cons(y,x)\<approx>succ(n)" |
|
31 |
apply (unfold succ_def) |
|
32 |
apply (fast elim!: cons_eqpoll_cong mem_irrefl) |
|
33 |
done |
|
34 |
||
35 |
lemma subsets_eqpoll_1_eq: "{Y \<in> Pow(X). Y\<approx>1} = {{x}. x \<in> X}" |
|
36 |
apply (rule equalityI) |
|
37 |
apply (rule subsetI) |
|
38 |
apply (erule CollectE) |
|
39 |
apply (drule eqpoll_1_iff_singleton [THEN iffD1]) |
|
40 |
apply (fast intro!: RepFunI) |
|
41 |
apply (rule subsetI) |
|
42 |
apply (erule RepFunE) |
|
12820 | 43 |
apply (rule CollectI, fast) |
12776 | 44 |
apply (fast intro!: singleton_eqpoll_1) |
45 |
done |
|
46 |
||
47 |
lemma eqpoll_RepFun_sing: "X\<approx>{{x}. x \<in> X}" |
|
48 |
apply (unfold eqpoll_def bij_def) |
|
49 |
apply (rule_tac x = "\<lambda>x \<in> X. {x}" in exI) |
|
50 |
apply (rule IntI) |
|
12820 | 51 |
apply (unfold inj_def surj_def, simp) |
52 |
apply (fast intro!: lam_type RepFunI intro: singleton_eq_iff [THEN iffD1], simp) |
|
12776 | 53 |
apply (fast intro!: lam_type) |
54 |
done |
|
55 |
||
56 |
lemma subsets_eqpoll_1_eqpoll: "{Y \<in> Pow(X). Y\<approx>1}\<approx>X" |
|
57 |
apply (rule subsets_eqpoll_1_eq [THEN ssubst]) |
|
58 |
apply (rule eqpoll_RepFun_sing [THEN eqpoll_sym]) |
|
59 |
done |
|
60 |
||
61 |
lemma InfCard_Least_in: |
|
62 |
"[| InfCard(x); y \<subseteq> x; y \<approx> succ(z) |] ==> (LEAST i. i \<in> y) \<in> y" |
|
63 |
apply (erule eqpoll_sym [THEN eqpoll_imp_lepoll, |
|
64 |
THEN succ_lepoll_imp_not_empty, THEN not_emptyE]) |
|
65 |
apply (fast intro: LeastI |
|
66 |
dest!: InfCard_is_Card [THEN Card_is_Ord] |
|
67 |
elim: Ord_in_Ord) |
|
68 |
done |
|
69 |
||
70 |
lemma subsets_lepoll_lemma1: |
|
71 |
"[| InfCard(x); n \<in> nat |] |
|
72 |
==> {y \<in> Pow(x). y\<approx>succ(succ(n))} \<lesssim> x*{y \<in> Pow(x). y\<approx>succ(n)}" |
|
73 |
apply (unfold lepoll_def) |
|
74 |
apply (rule_tac x = "\<lambda>y \<in> {y \<in> Pow(x) . y\<approx>succ (succ (n))}. |
|
75 |
<LEAST i. i \<in> y, y-{LEAST i. i \<in> y}>" in exI) |
|
12820 | 76 |
apply (rule_tac d = "%z. cons (fst(z), snd(z))" in lam_injective) |
77 |
apply (blast intro!: Diff_sing_eqpoll intro: InfCard_Least_in) |
|
78 |
apply (simp, blast intro: InfCard_Least_in) |
|
12776 | 79 |
done |
80 |
||
81 |
lemma set_of_Ord_succ_Union: "(\<forall>y \<in> z. Ord(y)) ==> z \<subseteq> succ(Union(z))" |
|
82 |
apply (rule subsetI) |
|
12820 | 83 |
apply (case_tac "\<forall>y \<in> z. y \<subseteq> x", blast ) |
84 |
apply (simp, erule bexE) |
|
13339
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
12820
diff
changeset
|
85 |
apply (rule_tac i=y and j=x in Ord_linear_le) |
12776 | 86 |
apply (blast dest: le_imp_subset elim: leE ltE)+ |
87 |
done |
|
88 |
||
89 |
lemma subset_not_mem: "j \<subseteq> i ==> i \<notin> j" |
|
90 |
by (fast elim!: mem_irrefl) |
|
91 |
||
92 |
lemma succ_Union_not_mem: |
|
93 |
"(!!y. y \<in> z ==> Ord(y)) ==> succ(Union(z)) \<notin> z" |
|
12820 | 94 |
apply (rule set_of_Ord_succ_Union [THEN subset_not_mem], blast) |
12776 | 95 |
done |
96 |
||
97 |
lemma Union_cons_eq_succ_Union: |
|
98 |
"Union(cons(succ(Union(z)),z)) = succ(Union(z))" |
|
99 |
by fast |
|
100 |
||
101 |
lemma Un_Ord_disj: "[| Ord(i); Ord(j) |] ==> i Un j = i | i Un j = j" |
|
102 |
by (fast dest!: le_imp_subset elim: Ord_linear_le) |
|
103 |
||
104 |
lemma Union_eq_Un: "x \<in> X ==> Union(X) = x Un Union(X-{x})" |
|
105 |
by fast |
|
1196 | 106 |
|
12776 | 107 |
lemma Union_in_lemma [rule_format]: |
108 |
"n \<in> nat ==> \<forall>z. (\<forall>y \<in> z. Ord(y)) & z\<approx>n & z\<noteq>0 --> Union(z) \<in> z" |
|
109 |
apply (induct_tac "n") |
|
110 |
apply (fast dest!: eqpoll_imp_lepoll [THEN lepoll_0_is_0]) |
|
111 |
apply (intro allI impI) |
|
112 |
apply (erule natE) |
|
113 |
apply (fast dest!: eqpoll_1_iff_singleton [THEN iffD1] |
|
12820 | 114 |
intro!: Union_singleton, clarify) |
12776 | 115 |
apply (elim not_emptyE) |
116 |
apply (erule_tac x = "z-{xb}" in allE) |
|
117 |
apply (erule impE) |
|
118 |
apply (fast elim!: Diff_sing_eqpoll |
|
119 |
Diff_sing_eqpoll [THEN eqpoll_succ_imp_not_empty]) |
|
12820 | 120 |
apply (subgoal_tac "xb \<union> \<Union>(z - {xb}) \<in> z") |
121 |
apply (simp add: Union_eq_Un [symmetric]) |
|
12776 | 122 |
apply (frule bspec, assumption) |
12820 | 123 |
apply (drule bspec) |
124 |
apply (erule Diff_subset [THEN subsetD]) |
|
125 |
apply (drule Un_Ord_disj, assumption, auto) |
|
12776 | 126 |
done |
127 |
||
128 |
lemma Union_in: "[| \<forall>x \<in> z. Ord(x); z\<approx>n; z\<noteq>0; n \<in> nat |] ==> Union(z) \<in> z" |
|
12820 | 129 |
by (blast intro: Union_in_lemma) |
12776 | 130 |
|
131 |
lemma succ_Union_in_x: |
|
132 |
"[| InfCard(x); z \<in> Pow(x); z\<approx>n; n \<in> nat |] ==> succ(Union(z)) \<in> x" |
|
12820 | 133 |
apply (rule Limit_has_succ [THEN ltE]) |
12776 | 134 |
prefer 3 apply assumption |
135 |
apply (erule InfCard_is_Limit) |
|
12820 | 136 |
apply (case_tac "z=0") |
137 |
apply (simp, fast intro!: InfCard_is_Limit [THEN Limit_has_0]) |
|
138 |
apply (rule ltI [OF PowD [THEN subsetD] InfCard_is_Card [THEN Card_is_Ord]], assumption) |
|
12776 | 139 |
apply (blast intro: Union_in |
140 |
InfCard_is_Card [THEN Card_is_Ord, THEN Ord_in_Ord])+ |
|
141 |
done |
|
142 |
||
143 |
lemma succ_lepoll_succ_succ: |
|
144 |
"[| InfCard(x); n \<in> nat |] |
|
145 |
==> {y \<in> Pow(x). y\<approx>succ(n)} \<lesssim> {y \<in> Pow(x). y\<approx>succ(succ(n))}" |
|
12820 | 146 |
apply (unfold lepoll_def) |
12776 | 147 |
apply (rule_tac x = "\<lambda>z \<in> {y\<in>Pow(x). y\<approx>succ(n)}. cons(succ(Union(z)), z)" |
148 |
in exI) |
|
149 |
apply (rule_tac d = "%z. z-{Union (z) }" in lam_injective) |
|
150 |
apply (blast intro!: succ_Union_in_x succ_Union_not_mem |
|
151 |
intro: cons_eqpoll_succ Ord_in_Ord |
|
152 |
dest!: InfCard_is_Card [THEN Card_is_Ord]) |
|
12820 | 153 |
apply (simp only: Union_cons_eq_succ_Union) |
154 |
apply (rule cons_Diff_eq) |
|
12776 | 155 |
apply (fast dest!: InfCard_is_Card [THEN Card_is_Ord] |
156 |
elim: Ord_in_Ord |
|
12820 | 157 |
intro!: succ_Union_not_mem) |
12776 | 158 |
done |
159 |
||
160 |
lemma subsets_eqpoll_X: |
|
161 |
"[| InfCard(X); n \<in> nat |] ==> {Y \<in> Pow(X). Y\<approx>succ(n)} \<approx> X" |
|
162 |
apply (induct_tac "n") |
|
163 |
apply (rule subsets_eqpoll_1_eqpoll) |
|
164 |
apply (rule eqpollI) |
|
12820 | 165 |
apply (rule subsets_lepoll_lemma1 [THEN lepoll_trans], assumption+) |
166 |
apply (rule eqpoll_trans [THEN eqpoll_imp_lepoll]) |
|
167 |
apply (erule eqpoll_refl [THEN prod_eqpoll_cong]) |
|
12776 | 168 |
apply (erule InfCard_square_eqpoll) |
169 |
apply (fast elim: eqpoll_sym [THEN eqpoll_imp_lepoll, THEN lepoll_trans] |
|
170 |
intro!: succ_lepoll_succ_succ) |
|
171 |
done |
|
172 |
||
173 |
lemma image_vimage_eq: |
|
174 |
"[| f \<in> surj(A,B); y \<subseteq> B |] ==> f``(converse(f)``y) = y" |
|
175 |
apply (unfold surj_def) |
|
176 |
apply (fast dest: apply_equality2 elim: apply_iff [THEN iffD2]) |
|
177 |
done |
|
178 |
||
179 |
lemma vimage_image_eq: "[| f \<in> inj(A,B); y \<subseteq> A |] ==> converse(f)``(f``y) = y" |
|
12820 | 180 |
by (fast elim!: inj_is_fun [THEN apply_Pair] dest: inj_equality) |
12776 | 181 |
|
182 |
lemma subsets_eqpoll: |
|
183 |
"A\<approx>B ==> {Y \<in> Pow(A). Y\<approx>n}\<approx>{Y \<in> Pow(B). Y\<approx>n}" |
|
184 |
apply (unfold eqpoll_def) |
|
185 |
apply (erule exE) |
|
186 |
apply (rule_tac x = "\<lambda>X \<in> {Y \<in> Pow (A) . \<exists>f. f \<in> bij (Y, n) }. f``X" in exI) |
|
187 |
apply (rule_tac d = "%Z. converse (f) ``Z" in lam_bijective) |
|
188 |
apply (fast intro!: bij_is_inj [THEN restrict_bij, THEN bij_converse_bij, |
|
189 |
THEN comp_bij] |
|
190 |
elim!: bij_is_fun [THEN fun_is_rel, THEN image_subset]) |
|
191 |
apply (blast intro!: bij_is_inj [THEN restrict_bij] |
|
192 |
comp_bij bij_converse_bij |
|
193 |
bij_is_fun [THEN fun_is_rel, THEN image_subset]) |
|
194 |
apply (fast elim!: bij_is_inj [THEN vimage_image_eq]) |
|
195 |
apply (fast elim!: bij_is_surj [THEN image_vimage_eq]) |
|
196 |
done |
|
197 |
||
198 |
lemma WO2_imp_ex_Card: "WO2 ==> \<exists>a. Card(a) & X\<approx>a" |
|
199 |
apply (unfold WO2_def) |
|
200 |
apply (drule spec [of _ X]) |
|
201 |
apply (blast intro: Card_cardinal eqpoll_trans |
|
202 |
well_ord_Memrel [THEN well_ord_cardinal_eqpoll, THEN eqpoll_sym]) |
|
203 |
done |
|
204 |
||
205 |
lemma lepoll_infinite: "[| X\<lesssim>Y; ~Finite(X) |] ==> ~Finite(Y)" |
|
206 |
by (blast intro: lepoll_Finite) |
|
207 |
||
208 |
lemma infinite_Card_is_InfCard: "[| ~Finite(X); Card(X) |] ==> InfCard(X)" |
|
209 |
apply (unfold InfCard_def) |
|
210 |
apply (fast elim!: Card_is_Ord [THEN nat_le_infinite_Ord]) |
|
211 |
done |
|
212 |
||
213 |
lemma WO2_infinite_subsets_eqpoll_X: "[| WO2; n \<in> nat; ~Finite(X) |] |
|
214 |
==> {Y \<in> Pow(X). Y\<approx>succ(n)}\<approx>X" |
|
215 |
apply (drule WO2_imp_ex_Card) |
|
12820 | 216 |
apply (elim allE exE conjE) |
12776 | 217 |
apply (frule eqpoll_imp_lepoll [THEN lepoll_infinite], assumption) |
218 |
apply (drule infinite_Card_is_InfCard, assumption) |
|
12820 | 219 |
apply (blast intro: subsets_eqpoll subsets_eqpoll_X eqpoll_sym eqpoll_trans) |
12776 | 220 |
done |
221 |
||
222 |
lemma well_ord_imp_ex_Card: "well_ord(X,R) ==> \<exists>a. Card(a) & X\<approx>a" |
|
223 |
by (fast elim!: well_ord_cardinal_eqpoll [THEN eqpoll_sym] |
|
224 |
intro!: Card_cardinal) |
|
225 |
||
226 |
lemma well_ord_infinite_subsets_eqpoll_X: |
|
227 |
"[| well_ord(X,R); n \<in> nat; ~Finite(X) |] ==> {Y \<in> Pow(X). Y\<approx>succ(n)}\<approx>X" |
|
228 |
apply (drule well_ord_imp_ex_Card) |
|
229 |
apply (elim allE exE conjE) |
|
230 |
apply (frule eqpoll_imp_lepoll [THEN lepoll_infinite], assumption) |
|
231 |
apply (drule infinite_Card_is_InfCard, assumption) |
|
12820 | 232 |
apply (blast intro: subsets_eqpoll subsets_eqpoll_X eqpoll_sym eqpoll_trans) |
12776 | 233 |
done |
234 |
||
235 |
end |