0
|
1 |
(* Title: CCL/equalities
|
|
2 |
ID: $Id$
|
|
3 |
|
|
4 |
Modified version of
|
|
5 |
Title: HOL/equalities
|
|
6 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
7 |
Copyright 1991 University of Cambridge
|
|
8 |
|
|
9 |
Equalities involving union, intersection, inclusion, etc.
|
|
10 |
*)
|
|
11 |
|
|
12 |
writeln"File HOL/equalities";
|
|
13 |
|
|
14 |
val eq_cs = set_cs addSIs [equalityI];
|
|
15 |
|
|
16 |
(** Binary Intersection **)
|
|
17 |
|
|
18 |
goal Set.thy "A Int A = A";
|
|
19 |
by (fast_tac eq_cs 1);
|
757
|
20 |
qed "Int_absorb";
|
0
|
21 |
|
|
22 |
goal Set.thy "A Int B = B Int A";
|
|
23 |
by (fast_tac eq_cs 1);
|
757
|
24 |
qed "Int_commute";
|
0
|
25 |
|
|
26 |
goal Set.thy "(A Int B) Int C = A Int (B Int C)";
|
|
27 |
by (fast_tac eq_cs 1);
|
757
|
28 |
qed "Int_assoc";
|
0
|
29 |
|
|
30 |
goal Set.thy "(A Un B) Int C = (A Int C) Un (B Int C)";
|
|
31 |
by (fast_tac eq_cs 1);
|
757
|
32 |
qed "Int_Un_distrib";
|
0
|
33 |
|
|
34 |
goal Set.thy "(A<=B) <-> (A Int B = A)";
|
|
35 |
by (fast_tac (eq_cs addSEs [equalityE]) 1);
|
757
|
36 |
qed "subset_Int_eq";
|
0
|
37 |
|
|
38 |
(** Binary Union **)
|
|
39 |
|
|
40 |
goal Set.thy "A Un A = A";
|
|
41 |
by (fast_tac eq_cs 1);
|
757
|
42 |
qed "Un_absorb";
|
0
|
43 |
|
|
44 |
goal Set.thy "A Un B = B Un A";
|
|
45 |
by (fast_tac eq_cs 1);
|
757
|
46 |
qed "Un_commute";
|
0
|
47 |
|
|
48 |
goal Set.thy "(A Un B) Un C = A Un (B Un C)";
|
|
49 |
by (fast_tac eq_cs 1);
|
757
|
50 |
qed "Un_assoc";
|
0
|
51 |
|
|
52 |
goal Set.thy "(A Int B) Un C = (A Un C) Int (B Un C)";
|
|
53 |
by (fast_tac eq_cs 1);
|
757
|
54 |
qed "Un_Int_distrib";
|
0
|
55 |
|
|
56 |
goal Set.thy
|
|
57 |
"(A Int B) Un (B Int C) Un (C Int A) = (A Un B) Int (B Un C) Int (C Un A)";
|
|
58 |
by (fast_tac eq_cs 1);
|
757
|
59 |
qed "Un_Int_crazy";
|
0
|
60 |
|
|
61 |
goal Set.thy "(A<=B) <-> (A Un B = B)";
|
|
62 |
by (fast_tac (eq_cs addSEs [equalityE]) 1);
|
757
|
63 |
qed "subset_Un_eq";
|
0
|
64 |
|
|
65 |
(** Simple properties of Compl -- complement of a set **)
|
|
66 |
|
|
67 |
goal Set.thy "A Int Compl(A) = {x.False}";
|
|
68 |
by (fast_tac eq_cs 1);
|
757
|
69 |
qed "Compl_disjoint";
|
0
|
70 |
|
|
71 |
goal Set.thy "A Un Compl(A) = {x.True}";
|
|
72 |
by (fast_tac eq_cs 1);
|
757
|
73 |
qed "Compl_partition";
|
0
|
74 |
|
|
75 |
goal Set.thy "Compl(Compl(A)) = A";
|
|
76 |
by (fast_tac eq_cs 1);
|
757
|
77 |
qed "double_complement";
|
0
|
78 |
|
|
79 |
goal Set.thy "Compl(A Un B) = Compl(A) Int Compl(B)";
|
|
80 |
by (fast_tac eq_cs 1);
|
757
|
81 |
qed "Compl_Un";
|
0
|
82 |
|
|
83 |
goal Set.thy "Compl(A Int B) = Compl(A) Un Compl(B)";
|
|
84 |
by (fast_tac eq_cs 1);
|
757
|
85 |
qed "Compl_Int";
|
0
|
86 |
|
|
87 |
goal Set.thy "Compl(UN x:A. B(x)) = (INT x:A. Compl(B(x)))";
|
|
88 |
by (fast_tac eq_cs 1);
|
757
|
89 |
qed "Compl_UN";
|
0
|
90 |
|
|
91 |
goal Set.thy "Compl(INT x:A. B(x)) = (UN x:A. Compl(B(x)))";
|
|
92 |
by (fast_tac eq_cs 1);
|
757
|
93 |
qed "Compl_INT";
|
0
|
94 |
|
|
95 |
(*Halmos, Naive Set Theory, page 16.*)
|
|
96 |
|
|
97 |
goal Set.thy "((A Int B) Un C = A Int (B Un C)) <-> (C<=A)";
|
|
98 |
by (fast_tac (eq_cs addSEs [equalityE]) 1);
|
757
|
99 |
qed "Un_Int_assoc_eq";
|
0
|
100 |
|
|
101 |
|
|
102 |
(** Big Union and Intersection **)
|
|
103 |
|
|
104 |
goal Set.thy "Union(A Un B) = Union(A) Un Union(B)";
|
|
105 |
by (fast_tac eq_cs 1);
|
757
|
106 |
qed "Union_Un_distrib";
|
0
|
107 |
|
|
108 |
val prems = goal Set.thy
|
|
109 |
"(Union(C) Int A = {x.False}) <-> (ALL B:C. B Int A = {x.False})";
|
|
110 |
by (fast_tac (eq_cs addSEs [equalityE]) 1);
|
757
|
111 |
qed "Union_disjoint";
|
0
|
112 |
|
|
113 |
goal Set.thy "Inter(A Un B) = Inter(A) Int Inter(B)";
|
|
114 |
by (best_tac eq_cs 1);
|
757
|
115 |
qed "Inter_Un_distrib";
|
0
|
116 |
|
|
117 |
(** Unions and Intersections of Families **)
|
|
118 |
|
|
119 |
goal Set.thy "(UN x:A. B(x)) = Union({Y. EX x:A. Y=B(x)})";
|
|
120 |
by (fast_tac eq_cs 1);
|
757
|
121 |
qed "UN_eq";
|
0
|
122 |
|
|
123 |
(*Look: it has an EXISTENTIAL quantifier*)
|
|
124 |
goal Set.thy "(INT x:A. B(x)) = Inter({Y. EX x:A. Y=B(x)})";
|
|
125 |
by (fast_tac eq_cs 1);
|
757
|
126 |
qed "INT_eq";
|
0
|
127 |
|
|
128 |
goal Set.thy "A Int Union(B) = (UN C:B. A Int C)";
|
|
129 |
by (fast_tac eq_cs 1);
|
757
|
130 |
qed "Int_Union_image";
|
0
|
131 |
|
|
132 |
goal Set.thy "A Un Inter(B) = (INT C:B. A Un C)";
|
|
133 |
by (fast_tac eq_cs 1);
|
757
|
134 |
qed "Un_Inter_image";
|