| author | wenzelm | 
| Thu, 01 Sep 2016 20:34:43 +0200 | |
| changeset 63761 | 2ca536d0163e | 
| parent 63092 | a949b2a5f51d | 
| child 64910 | 6108dddad9f0 | 
| permissions | -rw-r--r-- | 
| 13586 | 1 | (* Title: HOL/Library/FuncSet.thy | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 2 | Author: Florian Kammueller and Lawrence C Paulson, Lukas Bulwahn | 
| 13586 | 3 | *) | 
| 4 | ||
| 58881 | 5 | section \<open>Pi and Function Sets\<close> | 
| 13586 | 6 | |
| 15131 | 7 | theory FuncSet | 
| 30663 
0b6aff7451b2
Main is (Complex_Main) base entry point in library theories
 haftmann parents: 
28524diff
changeset | 8 | imports Hilbert_Choice Main | 
| 15131 | 9 | begin | 
| 13586 | 10 | |
| 58783 | 11 | definition Pi :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<Rightarrow> 'b) set"
 | 
| 12 |   where "Pi A B = {f. \<forall>x. x \<in> A \<longrightarrow> f x \<in> B x}"
 | |
| 13586 | 13 | |
| 58783 | 14 | definition extensional :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b) set"
 | 
| 15 |   where "extensional A = {f. \<forall>x. x \<notin> A \<longrightarrow> f x = undefined}"
 | |
| 13586 | 16 | |
| 58783 | 17 | definition "restrict" :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b"
 | 
| 18 | where "restrict f A = (\<lambda>x. if x \<in> A then f x else undefined)" | |
| 13586 | 19 | |
| 61384 | 20 | abbreviation funcset :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set"  (infixr "\<rightarrow>" 60)
 | 
| 21 | where "A \<rightarrow> B \<equiv> Pi A (\<lambda>_. B)" | |
| 19536 | 22 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61585diff
changeset | 23 | syntax (ASCII) | 
| 58783 | 24 |   "_Pi"  :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set"  ("(3PI _:_./ _)" 10)
 | 
| 25 |   "_lam" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a \<Rightarrow> 'b)"  ("(3%_:_./ _)" [0,0,3] 3)
 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61585diff
changeset | 26 | syntax | 
| 58783 | 27 |   "_Pi" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
 | 
| 28 |   "_lam" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
 | |
| 13586 | 29 | translations | 
| 58783 | 30 | "\<Pi> x\<in>A. B" \<rightleftharpoons> "CONST Pi A (\<lambda>x. B)" | 
| 31 | "\<lambda>x\<in>A. f" \<rightleftharpoons> "CONST restrict (\<lambda>x. f) A" | |
| 13586 | 32 | |
| 58783 | 33 | definition "compose" :: "'a set \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'c)"
 | 
| 34 | where "compose A g f = (\<lambda>x\<in>A. g (f x))" | |
| 13586 | 35 | |
| 36 | ||
| 58783 | 37 | subsection \<open>Basic Properties of @{term Pi}\<close>
 | 
| 13586 | 38 | |
| 58783 | 39 | lemma Pi_I[intro!]: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B x) \<Longrightarrow> f \<in> Pi A B" | 
| 14706 | 40 | by (simp add: Pi_def) | 
| 13586 | 41 | |
| 58783 | 42 | lemma Pi_I'[simp]: "(\<And>x. x \<in> A \<longrightarrow> f x \<in> B x) \<Longrightarrow> f \<in> Pi A B" | 
| 43 | by (simp add:Pi_def) | |
| 31731 | 44 | |
| 58783 | 45 | lemma funcsetI: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> f \<in> A \<rightarrow> B" | 
| 14706 | 46 | by (simp add: Pi_def) | 
| 13586 | 47 | |
| 58783 | 48 | lemma Pi_mem: "f \<in> Pi A B \<Longrightarrow> x \<in> A \<Longrightarrow> f x \<in> B x" | 
| 14706 | 49 | by (simp add: Pi_def) | 
| 13586 | 50 | |
| 47761 | 51 | lemma Pi_iff: "f \<in> Pi I X \<longleftrightarrow> (\<forall>i\<in>I. f i \<in> X i)" | 
| 52 | unfolding Pi_def by auto | |
| 53 | ||
| 58783 | 54 | lemma PiE [elim]: "f \<in> Pi A B \<Longrightarrow> (f x \<in> B x \<Longrightarrow> Q) \<Longrightarrow> (x \<notin> A \<Longrightarrow> Q) \<Longrightarrow> Q" | 
| 55 | by (auto simp: Pi_def) | |
| 31754 | 56 | |
| 58783 | 57 | lemma Pi_cong: "(\<And>w. w \<in> A \<Longrightarrow> f w = g w) \<Longrightarrow> f \<in> Pi A B \<longleftrightarrow> g \<in> Pi A B" | 
| 38656 | 58 | by (auto simp: Pi_def) | 
| 59 | ||
| 31769 | 60 | lemma funcset_id [simp]: "(\<lambda>x. x) \<in> A \<rightarrow> A" | 
| 44382 | 61 | by auto | 
| 31769 | 62 | |
| 58783 | 63 | lemma funcset_mem: "f \<in> A \<rightarrow> B \<Longrightarrow> x \<in> A \<Longrightarrow> f x \<in> B" | 
| 14706 | 64 | by (simp add: Pi_def) | 
| 13586 | 65 | |
| 58783 | 66 | lemma funcset_image: "f \<in> A \<rightarrow> B \<Longrightarrow> f ` A \<subseteq> B" | 
| 50104 | 67 | by auto | 
| 68 | ||
| 69 | lemma image_subset_iff_funcset: "F ` A \<subseteq> B \<longleftrightarrow> F \<in> A \<rightarrow> B" | |
| 70 | by auto | |
| 14762 | 71 | |
| 58783 | 72 | lemma Pi_eq_empty[simp]: "(\<Pi> x \<in> A. B x) = {} \<longleftrightarrow> (\<exists>x\<in>A. B x = {})"
 | 
| 73 | apply (simp add: Pi_def) | |
| 74 | apply auto | |
| 75 | txt \<open>Converse direction requires Axiom of Choice to exhibit a function | |
| 76 |   picking an element from each non-empty @{term "B x"}\<close>
 | |
| 77 | apply (drule_tac x = "\<lambda>u. SOME y. y \<in> B u" in spec) | |
| 78 | apply auto | |
| 79 | apply (cut_tac P = "\<lambda>y. y \<in> B x" in some_eq_ex) | |
| 80 | apply auto | |
| 81 | done | |
| 13586 | 82 | |
| 13593 | 83 | lemma Pi_empty [simp]: "Pi {} B = UNIV"
 | 
| 58783 | 84 | by (simp add: Pi_def) | 
| 13593 | 85 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 86 | lemma Pi_Int: "Pi I E \<inter> Pi I F = (\<Pi> i\<in>I. E i \<inter> F i)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 87 | by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 88 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 89 | lemma Pi_UN: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 90 | fixes A :: "nat \<Rightarrow> 'i \<Rightarrow> 'a set" | 
| 58783 | 91 | assumes "finite I" | 
| 92 | and mono: "\<And>i n m. i \<in> I \<Longrightarrow> n \<le> m \<Longrightarrow> A n i \<subseteq> A m i" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 93 | shows "(\<Union>n. Pi I (A n)) = (\<Pi> i\<in>I. \<Union>n. A n i)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 94 | proof (intro set_eqI iffI) | 
| 58783 | 95 | fix f | 
| 96 | assume "f \<in> (\<Pi> i\<in>I. \<Union>n. A n i)" | |
| 97 | then have "\<forall>i\<in>I. \<exists>n. f i \<in> A n i" | |
| 98 | by auto | |
| 63060 | 99 | from bchoice[OF this] obtain n where n: "f i \<in> A (n i) i" if "i \<in> I" for i | 
| 58783 | 100 | by auto | 
| 63060 | 101 | obtain k where k: "n i \<le> k" if "i \<in> I" for i | 
| 58783 | 102 | using \<open>finite I\<close> finite_nat_set_iff_bounded_le[of "n`I"] by auto | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 103 | have "f \<in> Pi I (A k)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 104 | proof (intro Pi_I) | 
| 58783 | 105 | fix i | 
| 106 | assume "i \<in> I" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 107 | from mono[OF this, of "n i" k] k[OF this] n[OF this] | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 108 | show "f i \<in> A k i" by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 109 | qed | 
| 58783 | 110 | then show "f \<in> (\<Union>n. Pi I (A n))" | 
| 111 | by auto | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 112 | qed auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 113 | |
| 58783 | 114 | lemma Pi_UNIV [simp]: "A \<rightarrow> UNIV = UNIV" | 
| 115 | by (simp add: Pi_def) | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 116 | |
| 58783 | 117 | text \<open>Covariance of Pi-sets in their second argument\<close> | 
| 118 | lemma Pi_mono: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C x) \<Longrightarrow> Pi A B \<subseteq> Pi A C" | |
| 119 | by auto | |
| 13586 | 120 | |
| 58783 | 121 | text \<open>Contravariance of Pi-sets in their first argument\<close> | 
| 122 | lemma Pi_anti_mono: "A' \<subseteq> A \<Longrightarrow> Pi A B \<subseteq> Pi A' B" | |
| 123 | by auto | |
| 13586 | 124 | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 125 | lemma prod_final: | 
| 58783 | 126 | assumes 1: "fst \<circ> f \<in> Pi A B" | 
| 127 | and 2: "snd \<circ> f \<in> Pi A C" | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 128 | shows "f \<in> (\<Pi> z \<in> A. B z \<times> C z)" | 
| 58783 | 129 | proof (rule Pi_I) | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 130 | fix z | 
| 58783 | 131 | assume z: "z \<in> A" | 
| 132 | have "f z = (fst (f z), snd (f z))" | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 133 | by simp | 
| 58783 | 134 | also have "\<dots> \<in> B z \<times> C z" | 
| 135 | by (metis SigmaI PiE o_apply 1 2 z) | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 136 | finally show "f z \<in> B z \<times> C z" . | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 137 | qed | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 138 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 139 | lemma Pi_split_domain[simp]: "x \<in> Pi (I \<union> J) X \<longleftrightarrow> x \<in> Pi I X \<and> x \<in> Pi J X" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 140 | by (auto simp: Pi_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 141 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 142 | lemma Pi_split_insert_domain[simp]: "x \<in> Pi (insert i I) X \<longleftrightarrow> x \<in> Pi I X \<and> x i \<in> X i" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 143 | by (auto simp: Pi_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 144 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 145 | lemma Pi_cancel_fupd_range[simp]: "i \<notin> I \<Longrightarrow> x \<in> Pi I (B(i := b)) \<longleftrightarrow> x \<in> Pi I B" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 146 | by (auto simp: Pi_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 147 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 148 | lemma Pi_cancel_fupd[simp]: "i \<notin> I \<Longrightarrow> x(i := a) \<in> Pi I B \<longleftrightarrow> x \<in> Pi I B" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 149 | by (auto simp: Pi_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 150 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 151 | lemma Pi_fupd_iff: "i \<in> I \<Longrightarrow> f \<in> Pi I (B(i := A)) \<longleftrightarrow> f \<in> Pi (I - {i}) B \<and> f i \<in> A"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 152 | apply auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 153 | apply (drule_tac x=x in Pi_mem) | 
| 62390 | 154 | apply (simp_all split: if_split_asm) | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 155 | apply (drule_tac x=i in Pi_mem) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 156 | apply (auto dest!: Pi_mem) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 157 | done | 
| 13586 | 158 | |
| 58783 | 159 | |
| 160 | subsection \<open>Composition With a Restricted Domain: @{term compose}\<close>
 | |
| 13586 | 161 | |
| 58783 | 162 | lemma funcset_compose: "f \<in> A \<rightarrow> B \<Longrightarrow> g \<in> B \<rightarrow> C \<Longrightarrow> compose A g f \<in> A \<rightarrow> C" | 
| 163 | by (simp add: Pi_def compose_def restrict_def) | |
| 13586 | 164 | |
| 165 | lemma compose_assoc: | |
| 58783 | 166 | assumes "f \<in> A \<rightarrow> B" | 
| 167 | and "g \<in> B \<rightarrow> C" | |
| 168 | and "h \<in> C \<rightarrow> D" | |
| 169 | shows "compose A h (compose A g f) = compose A (compose B h g) f" | |
| 170 | using assms by (simp add: fun_eq_iff Pi_def compose_def restrict_def) | |
| 13586 | 171 | |
| 58783 | 172 | lemma compose_eq: "x \<in> A \<Longrightarrow> compose A g f x = g (f x)" | 
| 173 | by (simp add: compose_def restrict_def) | |
| 13586 | 174 | |
| 58783 | 175 | lemma surj_compose: "f ` A = B \<Longrightarrow> g ` B = C \<Longrightarrow> compose A g f ` A = C" | 
| 14706 | 176 | by (auto simp add: image_def compose_eq) | 
| 13586 | 177 | |
| 178 | ||
| 58783 | 179 | subsection \<open>Bounded Abstraction: @{term restrict}\<close>
 | 
| 13586 | 180 | |
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
59425diff
changeset | 181 | lemma restrict_cong: "I = J \<Longrightarrow> (\<And>i. i \<in> J =simp=> f i = g i) \<Longrightarrow> restrict f I = restrict g J" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
59425diff
changeset | 182 | by (auto simp: restrict_def fun_eq_iff simp_implies_def) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
59425diff
changeset | 183 | |
| 54417 | 184 | lemma restrict_in_funcset: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> (\<lambda>x\<in>A. f x) \<in> A \<rightarrow> B" | 
| 14706 | 185 | by (simp add: Pi_def restrict_def) | 
| 13586 | 186 | |
| 54417 | 187 | lemma restrictI[intro!]: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B x) \<Longrightarrow> (\<lambda>x\<in>A. f x) \<in> Pi A B" | 
| 14706 | 188 | by (simp add: Pi_def restrict_def) | 
| 13586 | 189 | |
| 54417 | 190 | lemma restrict_apply[simp]: "(\<lambda>y\<in>A. f y) x = (if x \<in> A then f x else undefined)" | 
| 14706 | 191 | by (simp add: restrict_def) | 
| 13586 | 192 | |
| 54417 | 193 | lemma restrict_apply': "x \<in> A \<Longrightarrow> (\<lambda>y\<in>A. f y) x = f x" | 
| 194 | by simp | |
| 195 | ||
| 58783 | 196 | lemma restrict_ext: "(\<And>x. x \<in> A \<Longrightarrow> f x = g x) \<Longrightarrow> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 197 | by (simp add: fun_eq_iff Pi_def restrict_def) | 
| 13586 | 198 | |
| 58606 | 199 | lemma restrict_UNIV: "restrict f UNIV = f" | 
| 200 | by (simp add: restrict_def) | |
| 201 | ||
| 14853 | 202 | lemma inj_on_restrict_eq [simp]: "inj_on (restrict f A) A = inj_on f A" | 
| 14706 | 203 | by (simp add: inj_on_def restrict_def) | 
| 13586 | 204 | |
| 58783 | 205 | lemma Id_compose: "f \<in> A \<rightarrow> B \<Longrightarrow> f \<in> extensional A \<Longrightarrow> compose A (\<lambda>y\<in>B. y) f = f" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 206 | by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def) | 
| 13586 | 207 | |
| 58783 | 208 | lemma compose_Id: "g \<in> A \<rightarrow> B \<Longrightarrow> g \<in> extensional A \<Longrightarrow> compose A g (\<lambda>x\<in>A. x) = g" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 209 | by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def) | 
| 13586 | 210 | |
| 14853 | 211 | lemma image_restrict_eq [simp]: "(restrict f A) ` A = f ` A" | 
| 19736 | 212 | by (auto simp add: restrict_def) | 
| 13586 | 213 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 214 | lemma restrict_restrict[simp]: "restrict (restrict f A) B = restrict f (A \<inter> B)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 215 | unfolding restrict_def by (simp add: fun_eq_iff) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 216 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 217 | lemma restrict_fupd[simp]: "i \<notin> I \<Longrightarrow> restrict (f (i := x)) I = restrict f I" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 218 | by (auto simp: restrict_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 219 | |
| 58783 | 220 | lemma restrict_upd[simp]: "i \<notin> I \<Longrightarrow> (restrict f I)(i := y) = restrict (f(i := y)) (insert i I)" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 221 | by (auto simp: fun_eq_iff) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 222 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 223 | lemma restrict_Pi_cancel: "restrict x I \<in> Pi I A \<longleftrightarrow> x \<in> Pi I A" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 224 | by (auto simp: restrict_def Pi_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 225 | |
| 14745 | 226 | |
| 58783 | 227 | subsection \<open>Bijections Between Sets\<close> | 
| 14762 | 228 | |
| 61585 | 229 | text \<open>The definition of @{const bij_betw} is in \<open>Fun.thy\<close>, but most of
 | 
| 58783 | 230 | the theorems belong here, or need at least @{term Hilbert_Choice}.\<close>
 | 
| 14762 | 231 | |
| 39595 | 232 | lemma bij_betwI: | 
| 58783 | 233 | assumes "f \<in> A \<rightarrow> B" | 
| 234 | and "g \<in> B \<rightarrow> A" | |
| 235 | and g_f: "\<And>x. x\<in>A \<Longrightarrow> g (f x) = x" | |
| 236 | and f_g: "\<And>y. y\<in>B \<Longrightarrow> f (g y) = y" | |
| 237 | shows "bij_betw f A B" | |
| 238 | unfolding bij_betw_def | |
| 39595 | 239 | proof | 
| 58783 | 240 | show "inj_on f A" | 
| 241 | by (metis g_f inj_on_def) | |
| 242 | have "f ` A \<subseteq> B" | |
| 243 | using \<open>f \<in> A \<rightarrow> B\<close> by auto | |
| 39595 | 244 | moreover | 
| 58783 | 245 | have "B \<subseteq> f ` A" | 
| 246 | by auto (metis Pi_mem \<open>g \<in> B \<rightarrow> A\<close> f_g image_iff) | |
| 247 | ultimately show "f ` A = B" | |
| 248 | by blast | |
| 39595 | 249 | qed | 
| 250 | ||
| 14762 | 251 | lemma bij_betw_imp_funcset: "bij_betw f A B \<Longrightarrow> f \<in> A \<rightarrow> B" | 
| 58783 | 252 | by (auto simp add: bij_betw_def) | 
| 14762 | 253 | |
| 58783 | 254 | lemma inj_on_compose: "bij_betw f A B \<Longrightarrow> inj_on g B \<Longrightarrow> inj_on (compose A g f) A" | 
| 255 | by (auto simp add: bij_betw_def inj_on_def compose_eq) | |
| 14853 | 256 | |
| 58783 | 257 | lemma bij_betw_compose: "bij_betw f A B \<Longrightarrow> bij_betw g B C \<Longrightarrow> bij_betw (compose A g f) A C" | 
| 258 | apply (simp add: bij_betw_def compose_eq inj_on_compose) | |
| 259 | apply (auto simp add: compose_def image_def) | |
| 260 | done | |
| 14762 | 261 | |
| 58783 | 262 | lemma bij_betw_restrict_eq [simp]: "bij_betw (restrict f A) A B = bij_betw f A B" | 
| 263 | by (simp add: bij_betw_def) | |
| 14853 | 264 | |
| 265 | ||
| 58783 | 266 | subsection \<open>Extensionality\<close> | 
| 14853 | 267 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 268 | lemma extensional_empty[simp]: "extensional {} = {\<lambda>x. undefined}"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 269 | unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 270 | |
| 58783 | 271 | lemma extensional_arb: "f \<in> extensional A \<Longrightarrow> x \<notin> A \<Longrightarrow> f x = undefined" | 
| 272 | by (simp add: extensional_def) | |
| 14853 | 273 | |
| 274 | lemma restrict_extensional [simp]: "restrict f A \<in> extensional A" | |
| 58783 | 275 | by (simp add: restrict_def extensional_def) | 
| 14853 | 276 | |
| 277 | lemma compose_extensional [simp]: "compose A f g \<in> extensional A" | |
| 58783 | 278 | by (simp add: compose_def) | 
| 14853 | 279 | |
| 280 | lemma extensionalityI: | |
| 58783 | 281 | assumes "f \<in> extensional A" | 
| 282 | and "g \<in> extensional A" | |
| 283 | and "\<And>x. x \<in> A \<Longrightarrow> f x = g x" | |
| 284 | shows "f = g" | |
| 285 | using assms by (force simp add: fun_eq_iff extensional_def) | |
| 14853 | 286 | |
| 39595 | 287 | lemma extensional_restrict: "f \<in> extensional A \<Longrightarrow> restrict f A = f" | 
| 58783 | 288 | by (rule extensionalityI[OF restrict_extensional]) auto | 
| 39595 | 289 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 290 | lemma extensional_subset: "f \<in> extensional A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> f \<in> extensional B" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 291 | unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 292 | |
| 58783 | 293 | lemma inv_into_funcset: "f ` A = B \<Longrightarrow> (\<lambda>x\<in>B. inv_into A f x) \<in> B \<rightarrow> A" | 
| 294 | by (unfold inv_into_def) (fast intro: someI2) | |
| 14853 | 295 | |
| 58783 | 296 | lemma compose_inv_into_id: "bij_betw f A B \<Longrightarrow> compose A (\<lambda>y\<in>B. inv_into A f y) f = (\<lambda>x\<in>A. x)" | 
| 297 | apply (simp add: bij_betw_def compose_def) | |
| 298 | apply (rule restrict_ext, auto) | |
| 299 | done | |
| 14853 | 300 | |
| 58783 | 301 | lemma compose_id_inv_into: "f ` A = B \<Longrightarrow> compose B f (\<lambda>y\<in>B. inv_into A f y) = (\<lambda>x\<in>B. x)" | 
| 302 | apply (simp add: compose_def) | |
| 303 | apply (rule restrict_ext) | |
| 304 | apply (simp add: f_inv_into_f) | |
| 305 | done | |
| 14853 | 306 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 307 | lemma extensional_insert[intro, simp]: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 308 | assumes "a \<in> extensional (insert i I)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 309 | shows "a(i := b) \<in> extensional (insert i I)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 310 | using assms unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 311 | |
| 58783 | 312 | lemma extensional_Int[simp]: "extensional I \<inter> extensional I' = extensional (I \<inter> I')" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 313 | unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 314 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 315 | lemma extensional_UNIV[simp]: "extensional UNIV = UNIV" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 316 | by (auto simp: extensional_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 317 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 318 | lemma restrict_extensional_sub[intro]: "A \<subseteq> B \<Longrightarrow> restrict f A \<in> extensional B" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 319 | unfolding restrict_def extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 320 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 321 | lemma extensional_insert_undefined[intro, simp]: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 322 | "a \<in> extensional (insert i I) \<Longrightarrow> a(i := undefined) \<in> extensional I" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 323 | unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 324 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 325 | lemma extensional_insert_cancel[intro, simp]: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 326 | "a \<in> extensional I \<Longrightarrow> a \<in> extensional (insert i I)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 327 | unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 328 | |
| 14762 | 329 | |
| 58783 | 330 | subsection \<open>Cardinality\<close> | 
| 14745 | 331 | |
| 58783 | 332 | lemma card_inj: "f \<in> A \<rightarrow> B \<Longrightarrow> inj_on f A \<Longrightarrow> finite B \<Longrightarrow> card A \<le> card B" | 
| 333 | by (rule card_inj_on_le) auto | |
| 14745 | 334 | |
| 335 | lemma card_bij: | |
| 58783 | 336 | assumes "f \<in> A \<rightarrow> B" "inj_on f A" | 
| 337 | and "g \<in> B \<rightarrow> A" "inj_on g B" | |
| 338 | and "finite A" "finite B" | |
| 339 | shows "card A = card B" | |
| 340 | using assms by (blast intro: card_inj order_antisym) | |
| 14745 | 341 | |
| 58783 | 342 | |
| 343 | subsection \<open>Extensional Function Spaces\<close> | |
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 344 | |
| 58783 | 345 | definition PiE :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<Rightarrow> 'b) set"
 | 
| 346 | where "PiE S T = Pi S T \<inter> extensional S" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 347 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 348 | abbreviation "Pi\<^sub>E A B \<equiv> PiE A B" | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 349 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61585diff
changeset | 350 | syntax (ASCII) | 
| 58783 | 351 |   "_PiE" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set"  ("(3PIE _:_./ _)" 10)
 | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61585diff
changeset | 352 | syntax | 
| 58783 | 353 |   "_PiE" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set"  ("(3\<Pi>\<^sub>E _\<in>_./ _)" 10)
 | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61585diff
changeset | 354 | translations | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61585diff
changeset | 355 | "\<Pi>\<^sub>E x\<in>A. B" \<rightleftharpoons> "CONST Pi\<^sub>E A (\<lambda>x. B)" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 356 | |
| 61384 | 357 | abbreviation extensional_funcset :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set" (infixr "\<rightarrow>\<^sub>E" 60)
 | 
| 358 | where "A \<rightarrow>\<^sub>E B \<equiv> (\<Pi>\<^sub>E i\<in>A. B)" | |
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 359 | |
| 58783 | 360 | lemma extensional_funcset_def: "extensional_funcset S T = (S \<rightarrow> T) \<inter> extensional S" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 361 | by (simp add: PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 362 | |
| 58783 | 363 | lemma PiE_empty_domain[simp]: "PiE {} T = {\<lambda>x. undefined}"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 364 | unfolding PiE_def by simp | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 365 | |
| 54417 | 366 | lemma PiE_UNIV_domain: "PiE UNIV T = Pi UNIV T" | 
| 367 | unfolding PiE_def by simp | |
| 368 | ||
| 58783 | 369 | lemma PiE_empty_range[simp]: "i \<in> I \<Longrightarrow> F i = {} \<Longrightarrow> (\<Pi>\<^sub>E i\<in>I. F i) = {}"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 370 | unfolding PiE_def by auto | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 371 | |
| 58783 | 372 | lemma PiE_eq_empty_iff: "Pi\<^sub>E I F = {} \<longleftrightarrow> (\<exists>i\<in>I. F i = {})"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 373 | proof | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 374 |   assume "Pi\<^sub>E I F = {}"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 375 |   show "\<exists>i\<in>I. F i = {}"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 376 | proof (rule ccontr) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 377 | assume "\<not> ?thesis" | 
| 58783 | 378 | then have "\<forall>i. \<exists>y. (i \<in> I \<longrightarrow> y \<in> F i) \<and> (i \<notin> I \<longrightarrow> y = undefined)" | 
| 379 | by auto | |
| 53381 | 380 | from choice[OF this] | 
| 381 | obtain f where " \<forall>x. (x \<in> I \<longrightarrow> f x \<in> F x) \<and> (x \<notin> I \<longrightarrow> f x = undefined)" .. | |
| 58783 | 382 | then have "f \<in> Pi\<^sub>E I F" | 
| 383 | by (auto simp: extensional_def PiE_def) | |
| 384 |     with \<open>Pi\<^sub>E I F = {}\<close> show False
 | |
| 385 | by auto | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 386 | qed | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 387 | qed (auto simp: PiE_def) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 388 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 389 | lemma PiE_arb: "f \<in> PiE S T \<Longrightarrow> x \<notin> S \<Longrightarrow> f x = undefined" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 390 | unfolding PiE_def by auto (auto dest!: extensional_arb) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 391 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 392 | lemma PiE_mem: "f \<in> PiE S T \<Longrightarrow> x \<in> S \<Longrightarrow> f x \<in> T x" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 393 | unfolding PiE_def by auto | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 394 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 395 | lemma PiE_fun_upd: "y \<in> T x \<Longrightarrow> f \<in> PiE S T \<Longrightarrow> f(x := y) \<in> PiE (insert x S) T" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 396 | unfolding PiE_def extensional_def by auto | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 397 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 398 | lemma fun_upd_in_PiE: "x \<notin> S \<Longrightarrow> f \<in> PiE (insert x S) T \<Longrightarrow> f(x := undefined) \<in> PiE S T" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 399 | unfolding PiE_def extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 400 | |
| 59425 | 401 | lemma PiE_insert_eq: "PiE (insert x S) T = (\<lambda>(y, g). g(x := y)) ` (T x \<times> PiE S T)" | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 402 | proof - | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 403 |   {
 | 
| 59425 | 404 | fix f assume "f \<in> PiE (insert x S) T" "x \<notin> S" | 
| 63092 | 405 | then have "f \<in> (\<lambda>(y, g). g(x := y)) ` (T x \<times> PiE S T)" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 406 | by (auto intro!: image_eqI[where x="(f x, f(x := undefined))"] intro: fun_upd_in_PiE PiE_mem) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 407 | } | 
| 59425 | 408 | moreover | 
| 409 |   {
 | |
| 410 | fix f assume "f \<in> PiE (insert x S) T" "x \<in> S" | |
| 63092 | 411 | then have "f \<in> (\<lambda>(y, g). g(x := y)) ` (T x \<times> PiE S T)" | 
| 59425 | 412 | by (auto intro!: image_eqI[where x="(f x, f)"] intro: fun_upd_in_PiE PiE_mem simp: insert_absorb) | 
| 413 | } | |
| 414 | ultimately show ?thesis | |
| 63092 | 415 | by (auto intro: PiE_fun_upd) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 416 | qed | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 417 | |
| 58783 | 418 | lemma PiE_Int: "Pi\<^sub>E I A \<inter> Pi\<^sub>E I B = Pi\<^sub>E I (\<lambda>x. A x \<inter> B x)" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 419 | by (auto simp: PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 420 | |
| 58783 | 421 | lemma PiE_cong: "(\<And>i. i\<in>I \<Longrightarrow> A i = B i) \<Longrightarrow> Pi\<^sub>E I A = Pi\<^sub>E I B" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 422 | unfolding PiE_def by (auto simp: Pi_cong) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 423 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 424 | lemma PiE_E [elim]: | 
| 58783 | 425 | assumes "f \<in> PiE A B" | 
| 426 | obtains "x \<in> A" and "f x \<in> B x" | |
| 427 | | "x \<notin> A" and "f x = undefined" | |
| 428 | using assms by (auto simp: Pi_def PiE_def extensional_def) | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 429 | |
| 58783 | 430 | lemma PiE_I[intro!]: | 
| 431 | "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B x) \<Longrightarrow> (\<And>x. x \<notin> A \<Longrightarrow> f x = undefined) \<Longrightarrow> f \<in> PiE A B" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 432 | by (simp add: PiE_def extensional_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 433 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 434 | lemma PiE_mono: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C x) \<Longrightarrow> PiE A B \<subseteq> PiE A C" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 435 | by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 436 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 437 | lemma PiE_iff: "f \<in> PiE I X \<longleftrightarrow> (\<forall>i\<in>I. f i \<in> X i) \<and> f \<in> extensional I" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 438 | by (simp add: PiE_def Pi_iff) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 439 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 440 | lemma PiE_restrict[simp]: "f \<in> PiE A B \<Longrightarrow> restrict f A = f" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 441 | by (simp add: extensional_restrict PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 442 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 443 | lemma restrict_PiE[simp]: "restrict f I \<in> PiE I S \<longleftrightarrow> f \<in> Pi I S" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 444 | by (auto simp: PiE_iff) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 445 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 446 | lemma PiE_eq_subset: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 447 |   assumes ne: "\<And>i. i \<in> I \<Longrightarrow> F i \<noteq> {}" "\<And>i. i \<in> I \<Longrightarrow> F' i \<noteq> {}"
 | 
| 58783 | 448 | and eq: "Pi\<^sub>E I F = Pi\<^sub>E I F'" | 
| 449 | and "i \<in> I" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 450 | shows "F i \<subseteq> F' i" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 451 | proof | 
| 58783 | 452 | fix x | 
| 453 | assume "x \<in> F i" | |
| 454 | with ne have "\<forall>j. \<exists>y. (j \<in> I \<longrightarrow> y \<in> F j \<and> (i = j \<longrightarrow> x = y)) \<and> (j \<notin> I \<longrightarrow> y = undefined)" | |
| 53381 | 455 | by auto | 
| 456 | from choice[OF this] obtain f | |
| 457 | where f: " \<forall>j. (j \<in> I \<longrightarrow> f j \<in> F j \<and> (i = j \<longrightarrow> x = f j)) \<and> (j \<notin> I \<longrightarrow> f j = undefined)" .. | |
| 58783 | 458 | then have "f \<in> Pi\<^sub>E I F" | 
| 459 | by (auto simp: extensional_def PiE_def) | |
| 460 | then have "f \<in> Pi\<^sub>E I F'" | |
| 461 | using assms by simp | |
| 462 | then show "x \<in> F' i" | |
| 463 | using f \<open>i \<in> I\<close> by (auto simp: PiE_def) | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 464 | qed | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 465 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 466 | lemma PiE_eq_iff_not_empty: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 467 |   assumes ne: "\<And>i. i \<in> I \<Longrightarrow> F i \<noteq> {}" "\<And>i. i \<in> I \<Longrightarrow> F' i \<noteq> {}"
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 468 | shows "Pi\<^sub>E I F = Pi\<^sub>E I F' \<longleftrightarrow> (\<forall>i\<in>I. F i = F' i)" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 469 | proof (intro iffI ballI) | 
| 58783 | 470 | fix i | 
| 471 | assume eq: "Pi\<^sub>E I F = Pi\<^sub>E I F'" | |
| 472 | assume i: "i \<in> I" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 473 | show "F i = F' i" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 474 | using PiE_eq_subset[of I F F', OF ne eq i] | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 475 | using PiE_eq_subset[of I F' F, OF ne(2,1) eq[symmetric] i] | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 476 | by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 477 | qed (auto simp: PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 478 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 479 | lemma PiE_eq_iff: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 480 |   "Pi\<^sub>E I F = Pi\<^sub>E I F' \<longleftrightarrow> (\<forall>i\<in>I. F i = F' i) \<or> ((\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {}))"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 481 | proof (intro iffI disjCI) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 482 | assume eq[simp]: "Pi\<^sub>E I F = Pi\<^sub>E I F'" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 483 |   assume "\<not> ((\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {}))"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 484 |   then have "(\<forall>i\<in>I. F i \<noteq> {}) \<and> (\<forall>i\<in>I. F' i \<noteq> {})"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 485 | using PiE_eq_empty_iff[of I F] PiE_eq_empty_iff[of I F'] by auto | 
| 58783 | 486 | with PiE_eq_iff_not_empty[of I F F'] show "\<forall>i\<in>I. F i = F' i" | 
| 487 | by auto | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 488 | next | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 489 |   assume "(\<forall>i\<in>I. F i = F' i) \<or> (\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {})"
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 490 | then show "Pi\<^sub>E I F = Pi\<^sub>E I F'" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 491 | using PiE_eq_empty_iff[of I F] PiE_eq_empty_iff[of I F'] by (auto simp: PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 492 | qed | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 493 | |
| 58783 | 494 | lemma extensional_funcset_fun_upd_restricts_rangeI: | 
| 495 |   "\<forall>y \<in> S. f x \<noteq> f y \<Longrightarrow> f \<in> (insert x S) \<rightarrow>\<^sub>E T \<Longrightarrow> f(x := undefined) \<in> S \<rightarrow>\<^sub>E (T - {f x})"
 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 496 | unfolding extensional_funcset_def extensional_def | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 497 | apply auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 498 | apply (case_tac "x = xa") | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 499 | apply auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 500 | done | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 501 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 502 | lemma extensional_funcset_fun_upd_extends_rangeI: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 503 |   assumes "a \<in> T" "f \<in> S \<rightarrow>\<^sub>E (T - {a})"
 | 
| 58783 | 504 | shows "f(x := a) \<in> insert x S \<rightarrow>\<^sub>E T" | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 505 | using assms unfolding extensional_funcset_def extensional_def by auto | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 506 | |
| 58783 | 507 | |
| 508 | subsubsection \<open>Injective Extensional Function Spaces\<close> | |
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 509 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 510 | lemma extensional_funcset_fun_upd_inj_onI: | 
| 58783 | 511 |   assumes "f \<in> S \<rightarrow>\<^sub>E (T - {a})"
 | 
| 512 | and "inj_on f S" | |
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 513 | shows "inj_on (f(x := a)) S" | 
| 58783 | 514 | using assms | 
| 515 | unfolding extensional_funcset_def by (auto intro!: inj_on_fun_updI) | |
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 516 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 517 | lemma extensional_funcset_extend_domain_inj_on_eq: | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 518 | assumes "x \<notin> S" | 
| 58783 | 519 |   shows "{f. f \<in> (insert x S) \<rightarrow>\<^sub>E T \<and> inj_on f (insert x S)} =
 | 
| 520 |     (\<lambda>(y, g). g(x:=y)) ` {(y, g). y \<in> T \<and> g \<in> S \<rightarrow>\<^sub>E (T - {y}) \<and> inj_on g S}"
 | |
| 521 | using assms | |
| 522 | apply (auto del: PiE_I PiE_E) | |
| 523 | apply (auto intro: extensional_funcset_fun_upd_inj_onI | |
| 524 | extensional_funcset_fun_upd_extends_rangeI del: PiE_I PiE_E) | |
| 525 | apply (auto simp add: image_iff inj_on_def) | |
| 526 | apply (rule_tac x="xa x" in exI) | |
| 527 | apply (auto intro: PiE_mem del: PiE_I PiE_E) | |
| 528 | apply (rule_tac x="xa(x := undefined)" in exI) | |
| 529 | apply (auto intro!: extensional_funcset_fun_upd_restricts_rangeI) | |
| 62390 | 530 | apply (auto dest!: PiE_mem split: if_split_asm) | 
| 58783 | 531 | done | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 532 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 533 | lemma extensional_funcset_extend_domain_inj_onI: | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 534 | assumes "x \<notin> S" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 535 |   shows "inj_on (\<lambda>(y, g). g(x := y)) {(y, g). y \<in> T \<and> g \<in> S \<rightarrow>\<^sub>E (T - {y}) \<and> inj_on g S}"
 | 
| 58783 | 536 | using assms | 
| 537 | apply (auto intro!: inj_onI) | |
| 538 | apply (metis fun_upd_same) | |
| 539 | apply (metis assms PiE_arb fun_upd_triv fun_upd_upd) | |
| 540 | done | |
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 541 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 542 | |
| 58783 | 543 | subsubsection \<open>Cardinality\<close> | 
| 544 | ||
| 545 | lemma finite_PiE: "finite S \<Longrightarrow> (\<And>i. i \<in> S \<Longrightarrow> finite (T i)) \<Longrightarrow> finite (\<Pi>\<^sub>E i \<in> S. T i)" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 546 | by (induct S arbitrary: T rule: finite_induct) (simp_all add: PiE_insert_eq) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 547 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 548 | lemma inj_combinator: "x \<notin> S \<Longrightarrow> inj_on (\<lambda>(y, g). g(x := y)) (T x \<times> Pi\<^sub>E S T)" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 549 | proof (safe intro!: inj_onI ext) | 
| 58783 | 550 | fix f y g z | 
| 551 | assume "x \<notin> S" | |
| 552 | assume fg: "f \<in> Pi\<^sub>E S T" "g \<in> Pi\<^sub>E S T" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 553 | assume "f(x := y) = g(x := z)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 554 | then have *: "\<And>i. (f(x := y)) i = (g(x := z)) i" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 555 | unfolding fun_eq_iff by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 556 | from this[of x] show "y = z" by simp | 
| 58783 | 557 | fix i from *[of i] \<open>x \<notin> S\<close> fg show "f i = g i" | 
| 62390 | 558 | by (auto split: if_split_asm simp: PiE_def extensional_def) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 559 | qed | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 560 | |
| 58783 | 561 | lemma card_PiE: "finite S \<Longrightarrow> card (\<Pi>\<^sub>E i \<in> S. T i) = (\<Prod> i\<in>S. card (T i))" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 562 | proof (induct rule: finite_induct) | 
| 58783 | 563 | case empty | 
| 564 | then show ?case by auto | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 565 | next | 
| 58783 | 566 | case (insert x S) | 
| 567 | then show ?case | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 568 | by (simp add: PiE_insert_eq inj_combinator card_image card_cartesian_product) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 569 | qed | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 570 | |
| 13586 | 571 | end |