| author | lcp | 
| Fri, 15 Oct 1993 10:25:23 +0100 | |
| changeset 56 | 2caa6f49f06e | 
| parent 8 | c3d2c6dcf3f0 | 
| child 757 | 2ca12511676d | 
| permissions | -rw-r--r-- | 
| 0 | 1  | 
(* Title: CCL/subset  | 
2  | 
ID: $Id$  | 
|
3  | 
||
4  | 
Modified version of  | 
|
5  | 
Title: HOL/subset  | 
|
6  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
7  | 
Copyright 1991 University of Cambridge  | 
|
8  | 
||
9  | 
Derived rules involving subsets  | 
|
10  | 
Union and Intersection as lattice operations  | 
|
11  | 
*)  | 
|
12  | 
||
13  | 
(*** Big Union -- least upper bound of a set ***)  | 
|
14  | 
||
15  | 
val prems = goal Set.thy  | 
|
16  | 
"B:A ==> B <= Union(A)";  | 
|
17  | 
by (REPEAT (ares_tac (prems@[subsetI,UnionI]) 1));  | 
|
18  | 
val Union_upper = result();  | 
|
19  | 
||
20  | 
val prems = goal Set.thy  | 
|
21  | 
"[| !!X. X:A ==> X<=C |] ==> Union(A) <= C";  | 
|
22  | 
by (REPEAT (ares_tac [subsetI] 1  | 
|
23  | 
ORELSE eresolve_tac ([UnionE] @ (prems RL [subsetD])) 1));  | 
|
24  | 
val Union_least = result();  | 
|
25  | 
||
26  | 
||
27  | 
(*** Big Intersection -- greatest lower bound of a set ***)  | 
|
28  | 
||
29  | 
val prems = goal Set.thy  | 
|
30  | 
"B:A ==> Inter(A) <= B";  | 
|
31  | 
by (REPEAT (resolve_tac (prems@[subsetI]) 1  | 
|
32  | 
ORELSE etac InterD 1));  | 
|
33  | 
val Inter_lower = result();  | 
|
34  | 
||
35  | 
val prems = goal Set.thy  | 
|
36  | 
"[| !!X. X:A ==> C<=X |] ==> C <= Inter(A)";  | 
|
37  | 
by (REPEAT (ares_tac [subsetI,InterI] 1  | 
|
38  | 
ORELSE eresolve_tac (prems RL [subsetD]) 1));  | 
|
39  | 
val Inter_greatest = result();  | 
|
40  | 
||
41  | 
(*** Finite Union -- the least upper bound of 2 sets ***)  | 
|
42  | 
||
43  | 
goal Set.thy "A <= A Un B";  | 
|
44  | 
by (REPEAT (ares_tac [subsetI,UnI1] 1));  | 
|
45  | 
val Un_upper1 = result();  | 
|
46  | 
||
47  | 
goal Set.thy "B <= A Un B";  | 
|
48  | 
by (REPEAT (ares_tac [subsetI,UnI2] 1));  | 
|
49  | 
val Un_upper2 = result();  | 
|
50  | 
||
51  | 
val prems = goal Set.thy "[| A<=C; B<=C |] ==> A Un B <= C";  | 
|
52  | 
by (cut_facts_tac prems 1);  | 
|
53  | 
by (DEPTH_SOLVE (ares_tac [subsetI] 1  | 
|
54  | 
ORELSE eresolve_tac [UnE,subsetD] 1));  | 
|
55  | 
val Un_least = result();  | 
|
56  | 
||
57  | 
(*** Finite Intersection -- the greatest lower bound of 2 sets *)  | 
|
58  | 
||
59  | 
goal Set.thy "A Int B <= A";  | 
|
60  | 
by (REPEAT (ares_tac [subsetI] 1 ORELSE etac IntE 1));  | 
|
61  | 
val Int_lower1 = result();  | 
|
62  | 
||
63  | 
goal Set.thy "A Int B <= B";  | 
|
64  | 
by (REPEAT (ares_tac [subsetI] 1 ORELSE etac IntE 1));  | 
|
65  | 
val Int_lower2 = result();  | 
|
66  | 
||
67  | 
val prems = goal Set.thy "[| C<=A; C<=B |] ==> C <= A Int B";  | 
|
68  | 
by (cut_facts_tac prems 1);  | 
|
69  | 
by (REPEAT (ares_tac [subsetI,IntI] 1  | 
|
70  | 
ORELSE etac subsetD 1));  | 
|
71  | 
val Int_greatest = result();  | 
|
72  | 
||
73  | 
(*** Monotonicity ***)  | 
|
74  | 
||
75  | 
val [prem] = goalw Set.thy [mono_def]  | 
|
76  | 
"[| !!A B. A <= B ==> f(A) <= f(B) |] ==> mono(f)";  | 
|
77  | 
by (REPEAT (ares_tac [allI, impI, prem] 1));  | 
|
78  | 
val monoI = result();  | 
|
79  | 
||
80  | 
val [major,minor] = goalw Set.thy [mono_def]  | 
|
81  | 
"[| mono(f); A <= B |] ==> f(A) <= f(B)";  | 
|
82  | 
by (rtac (major RS spec RS spec RS mp) 1);  | 
|
83  | 
by (rtac minor 1);  | 
|
84  | 
val monoD = result();  | 
|
85  | 
||
86  | 
val [prem] = goal Set.thy "mono(f) ==> f(A) Un f(B) <= f(A Un B)";  | 
|
87  | 
by (rtac Un_least 1);  | 
|
88  | 
by (rtac (Un_upper1 RS (prem RS monoD)) 1);  | 
|
89  | 
by (rtac (Un_upper2 RS (prem RS monoD)) 1);  | 
|
90  | 
val mono_Un = result();  | 
|
91  | 
||
92  | 
val [prem] = goal Set.thy "mono(f) ==> f(A Int B) <= f(A) Int f(B)";  | 
|
93  | 
by (rtac Int_greatest 1);  | 
|
94  | 
by (rtac (Int_lower1 RS (prem RS monoD)) 1);  | 
|
95  | 
by (rtac (Int_lower2 RS (prem RS monoD)) 1);  | 
|
96  | 
val mono_Int = result();  | 
|
97  | 
||
98  | 
(****)  | 
|
99  | 
||
100  | 
val set_cs = FOL_cs  | 
|
101  | 
addSIs [ballI, subsetI, InterI, INT_I, CollectI,  | 
|
102  | 
ComplI, IntI, UnCI, singletonI]  | 
|
103  | 
addIs [bexI, UnionI, UN_I]  | 
|
104  | 
addSEs [bexE, UnionE, UN_E,  | 
|
105  | 
CollectE, ComplE, IntE, UnE, emptyE, singletonE]  | 
|
106  | 
addEs [ballE, InterD, InterE, INT_D, INT_E, subsetD, subsetCE];  | 
|
107  | 
||
108  | 
fun cfast_tac prems = cut_facts_tac prems THEN' fast_tac set_cs;  | 
|
109  | 
||
110  | 
fun prover s = prove_goal Set.thy s (fn _=>[fast_tac set_cs 1]);  | 
|
111  | 
||
112  | 
val mem_rews = [trivial_set,empty_eq] @ (map prover  | 
|
113  | 
[ "(a : A Un B) <-> (a:A | a:B)",  | 
|
114  | 
"(a : A Int B) <-> (a:A & a:B)",  | 
|
115  | 
"(a : Compl(B)) <-> (~a:B)",  | 
|
116  | 
   "(a : {b})      <->  (a=b)",
 | 
|
117  | 
   "(a : {})       <->   False",
 | 
|
118  | 
   "(a : {x.P(x)}) <->  P(a)" ]);
 | 
|
119  | 
||
| 
8
 
c3d2c6dcf3f0
Installation of new simplfier.  Previously appeared to set up the old
 
lcp 
parents: 
0 
diff
changeset
 | 
120  | 
val set_congs = [ball_cong, bex_cong, INT_cong, UN_cong];  | 
| 0 | 121  | 
|
| 
8
 
c3d2c6dcf3f0
Installation of new simplfier.  Previously appeared to set up the old
 
lcp 
parents: 
0 
diff
changeset
 | 
122  | 
val set_ss = FOL_ss addcongs set_congs addsimps mem_rews;  |