| author | haftmann | 
| Fri, 27 Mar 2009 10:05:13 +0100 | |
| changeset 30740 | 2d3ae5a7edb2 | 
| parent 30198 | 922f944f03b2 | 
| child 35216 | 7641e8d831d2 | 
| permissions | -rw-r--r-- | 
| 29655 
ac31940cfb69
Plain, Main form meeting points in import hierarchy
 haftmann parents: 
28562diff
changeset | 1 | (* Authors: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 15300 | 2 | Copyright 1996 University of Cambridge | 
| 3 | *) | |
| 4 | ||
| 5 | header {* Equivalence Relations in Higher-Order Set Theory *}
 | |
| 6 | ||
| 7 | theory Equiv_Relations | |
| 29655 
ac31940cfb69
Plain, Main form meeting points in import hierarchy
 haftmann parents: 
28562diff
changeset | 8 | imports Finite_Set Relation Plain | 
| 15300 | 9 | begin | 
| 10 | ||
| 11 | subsection {* Equivalence relations *}
 | |
| 12 | ||
| 13 | locale equiv = | |
| 14 | fixes A and r | |
| 30198 | 15 | assumes refl_on: "refl_on A r" | 
| 15300 | 16 | and sym: "sym r" | 
| 17 | and trans: "trans r" | |
| 18 | ||
| 19 | text {*
 | |
| 20 |   Suppes, Theorem 70: @{text r} is an equiv relation iff @{text "r\<inverse> O
 | |
| 21 | r = r"}. | |
| 22 | ||
| 23 |   First half: @{text "equiv A r ==> r\<inverse> O r = r"}.
 | |
| 24 | *} | |
| 25 | ||
| 26 | lemma sym_trans_comp_subset: | |
| 27 | "sym r ==> trans r ==> r\<inverse> O r \<subseteq> r" | |
| 28 | by (unfold trans_def sym_def converse_def) blast | |
| 29 | ||
| 30198 | 30 | lemma refl_on_comp_subset: "refl_on A r ==> r \<subseteq> r\<inverse> O r" | 
| 31 | by (unfold refl_on_def) blast | |
| 15300 | 32 | |
| 33 | lemma equiv_comp_eq: "equiv A r ==> r\<inverse> O r = r" | |
| 34 | apply (unfold equiv_def) | |
| 35 | apply clarify | |
| 36 | apply (rule equalityI) | |
| 30198 | 37 | apply (iprover intro: sym_trans_comp_subset refl_on_comp_subset)+ | 
| 15300 | 38 | done | 
| 39 | ||
| 40 | text {* Second half. *}
 | |
| 41 | ||
| 42 | lemma comp_equivI: | |
| 43 | "r\<inverse> O r = r ==> Domain r = A ==> equiv A r" | |
| 30198 | 44 | apply (unfold equiv_def refl_on_def sym_def trans_def) | 
| 15300 | 45 | apply (erule equalityE) | 
| 46 | apply (subgoal_tac "\<forall>x y. (x, y) \<in> r --> (y, x) \<in> r") | |
| 47 | apply fast | |
| 48 | apply fast | |
| 49 | done | |
| 50 | ||
| 51 | ||
| 52 | subsection {* Equivalence classes *}
 | |
| 53 | ||
| 54 | lemma equiv_class_subset: | |
| 55 |   "equiv A r ==> (a, b) \<in> r ==> r``{a} \<subseteq> r``{b}"
 | |
| 56 |   -- {* lemma for the next result *}
 | |
| 57 | by (unfold equiv_def trans_def sym_def) blast | |
| 58 | ||
| 59 | theorem equiv_class_eq: "equiv A r ==> (a, b) \<in> r ==> r``{a} = r``{b}"
 | |
| 60 | apply (assumption | rule equalityI equiv_class_subset)+ | |
| 61 | apply (unfold equiv_def sym_def) | |
| 62 | apply blast | |
| 63 | done | |
| 64 | ||
| 65 | lemma equiv_class_self: "equiv A r ==> a \<in> A ==> a \<in> r``{a}"
 | |
| 30198 | 66 | by (unfold equiv_def refl_on_def) blast | 
| 15300 | 67 | |
| 68 | lemma subset_equiv_class: | |
| 69 |     "equiv A r ==> r``{b} \<subseteq> r``{a} ==> b \<in> A ==> (a,b) \<in> r"
 | |
| 70 |   -- {* lemma for the next result *}
 | |
| 30198 | 71 | by (unfold equiv_def refl_on_def) blast | 
| 15300 | 72 | |
| 73 | lemma eq_equiv_class: | |
| 74 |     "r``{a} = r``{b} ==> equiv A r ==> b \<in> A ==> (a, b) \<in> r"
 | |
| 17589 | 75 | by (iprover intro: equalityD2 subset_equiv_class) | 
| 15300 | 76 | |
| 77 | lemma equiv_class_nondisjoint: | |
| 78 |     "equiv A r ==> x \<in> (r``{a} \<inter> r``{b}) ==> (a, b) \<in> r"
 | |
| 79 | by (unfold equiv_def trans_def sym_def) blast | |
| 80 | ||
| 81 | lemma equiv_type: "equiv A r ==> r \<subseteq> A \<times> A" | |
| 30198 | 82 | by (unfold equiv_def refl_on_def) blast | 
| 15300 | 83 | |
| 84 | theorem equiv_class_eq_iff: | |
| 85 |   "equiv A r ==> ((x, y) \<in> r) = (r``{x} = r``{y} & x \<in> A & y \<in> A)"
 | |
| 86 | by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type) | |
| 87 | ||
| 88 | theorem eq_equiv_class_iff: | |
| 89 |   "equiv A r ==> x \<in> A ==> y \<in> A ==> (r``{x} = r``{y}) = ((x, y) \<in> r)"
 | |
| 90 | by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type) | |
| 91 | ||
| 92 | ||
| 93 | subsection {* Quotients *}
 | |
| 94 | ||
| 28229 | 95 | definition quotient :: "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> 'a set set"  (infixl "'/'/" 90) where
 | 
| 28562 | 96 |   [code del]: "A//r = (\<Union>x \<in> A. {r``{x}})"  -- {* set of equiv classes *}
 | 
| 15300 | 97 | |
| 98 | lemma quotientI: "x \<in> A ==> r``{x} \<in> A//r"
 | |
| 99 | by (unfold quotient_def) blast | |
| 100 | ||
| 101 | lemma quotientE: | |
| 102 |   "X \<in> A//r ==> (!!x. X = r``{x} ==> x \<in> A ==> P) ==> P"
 | |
| 103 | by (unfold quotient_def) blast | |
| 104 | ||
| 105 | lemma Union_quotient: "equiv A r ==> Union (A//r) = A" | |
| 30198 | 106 | by (unfold equiv_def refl_on_def quotient_def) blast | 
| 15300 | 107 | |
| 108 | lemma quotient_disj: | |
| 109 |   "equiv A r ==> X \<in> A//r ==> Y \<in> A//r ==> X = Y | (X \<inter> Y = {})"
 | |
| 110 | apply (unfold quotient_def) | |
| 111 | apply clarify | |
| 112 | apply (rule equiv_class_eq) | |
| 113 | apply assumption | |
| 114 | apply (unfold equiv_def trans_def sym_def) | |
| 115 | apply blast | |
| 116 | done | |
| 117 | ||
| 118 | lemma quotient_eqI: | |
| 119 | "[|equiv A r; X \<in> A//r; Y \<in> A//r; x \<in> X; y \<in> Y; (x,y) \<in> r|] ==> X = Y" | |
| 120 | apply (clarify elim!: quotientE) | |
| 121 | apply (rule equiv_class_eq, assumption) | |
| 122 | apply (unfold equiv_def sym_def trans_def, blast) | |
| 123 | done | |
| 124 | ||
| 125 | lemma quotient_eq_iff: | |
| 126 | "[|equiv A r; X \<in> A//r; Y \<in> A//r; x \<in> X; y \<in> Y|] ==> (X = Y) = ((x,y) \<in> r)" | |
| 127 | apply (rule iffI) | |
| 128 | prefer 2 apply (blast del: equalityI intro: quotient_eqI) | |
| 129 | apply (clarify elim!: quotientE) | |
| 130 | apply (unfold equiv_def sym_def trans_def, blast) | |
| 131 | done | |
| 132 | ||
| 18493 | 133 | lemma eq_equiv_class_iff2: | 
| 134 |   "\<lbrakk> equiv A r; x \<in> A; y \<in> A \<rbrakk> \<Longrightarrow> ({x}//r = {y}//r) = ((x,y) : r)"
 | |
| 135 | by(simp add:quotient_def eq_equiv_class_iff) | |
| 136 | ||
| 15300 | 137 | |
| 138 | lemma quotient_empty [simp]: "{}//r = {}"
 | |
| 139 | by(simp add: quotient_def) | |
| 140 | ||
| 141 | lemma quotient_is_empty [iff]: "(A//r = {}) = (A = {})"
 | |
| 142 | by(simp add: quotient_def) | |
| 143 | ||
| 144 | lemma quotient_is_empty2 [iff]: "({} = A//r) = (A = {})"
 | |
| 145 | by(simp add: quotient_def) | |
| 146 | ||
| 147 | ||
| 15302 | 148 | lemma singleton_quotient: "{x}//r = {r `` {x}}"
 | 
| 149 | by(simp add:quotient_def) | |
| 150 | ||
| 151 | lemma quotient_diff1: | |
| 152 |   "\<lbrakk> inj_on (%a. {a}//r) A; a \<in> A \<rbrakk> \<Longrightarrow> (A - {a})//r = A//r - {a}//r"
 | |
| 153 | apply(simp add:quotient_def inj_on_def) | |
| 154 | apply blast | |
| 155 | done | |
| 156 | ||
| 15300 | 157 | subsection {* Defining unary operations upon equivalence classes *}
 | 
| 158 | ||
| 159 | text{*A congruence-preserving function*}
 | |
| 160 | locale congruent = | |
| 161 | fixes r and f | |
| 162 | assumes congruent: "(y,z) \<in> r ==> f y = f z" | |
| 163 | ||
| 19363 | 164 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
19979diff
changeset | 165 |   RESPECTS :: "('a => 'b) => ('a * 'a) set => bool"
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
19979diff
changeset | 166 | (infixr "respects" 80) where | 
| 19363 | 167 | "f respects r == congruent r f" | 
| 15300 | 168 | |
| 169 | ||
| 170 | lemma UN_constant_eq: "a \<in> A ==> \<forall>y \<in> A. f y = c ==> (\<Union>y \<in> A. f(y))=c" | |
| 171 |   -- {* lemma required to prove @{text UN_equiv_class} *}
 | |
| 172 | by auto | |
| 173 | ||
| 174 | lemma UN_equiv_class: | |
| 175 | "equiv A r ==> f respects r ==> a \<in> A | |
| 176 |     ==> (\<Union>x \<in> r``{a}. f x) = f a"
 | |
| 177 |   -- {* Conversion rule *}
 | |
| 178 | apply (rule equiv_class_self [THEN UN_constant_eq], assumption+) | |
| 179 | apply (unfold equiv_def congruent_def sym_def) | |
| 180 | apply (blast del: equalityI) | |
| 181 | done | |
| 182 | ||
| 183 | lemma UN_equiv_class_type: | |
| 184 | "equiv A r ==> f respects r ==> X \<in> A//r ==> | |
| 185 | (!!x. x \<in> A ==> f x \<in> B) ==> (\<Union>x \<in> X. f x) \<in> B" | |
| 186 | apply (unfold quotient_def) | |
| 187 | apply clarify | |
| 188 | apply (subst UN_equiv_class) | |
| 189 | apply auto | |
| 190 | done | |
| 191 | ||
| 192 | text {*
 | |
| 193 | Sufficient conditions for injectiveness. Could weaken premises! | |
| 194 |   major premise could be an inclusion; bcong could be @{text "!!y. y \<in>
 | |
| 195 | A ==> f y \<in> B"}. | |
| 196 | *} | |
| 197 | ||
| 198 | lemma UN_equiv_class_inject: | |
| 199 | "equiv A r ==> f respects r ==> | |
| 200 | (\<Union>x \<in> X. f x) = (\<Union>y \<in> Y. f y) ==> X \<in> A//r ==> Y \<in> A//r | |
| 201 | ==> (!!x y. x \<in> A ==> y \<in> A ==> f x = f y ==> (x, y) \<in> r) | |
| 202 | ==> X = Y" | |
| 203 | apply (unfold quotient_def) | |
| 204 | apply clarify | |
| 205 | apply (rule equiv_class_eq) | |
| 206 | apply assumption | |
| 207 | apply (subgoal_tac "f x = f xa") | |
| 208 | apply blast | |
| 209 | apply (erule box_equals) | |
| 210 | apply (assumption | rule UN_equiv_class)+ | |
| 211 | done | |
| 212 | ||
| 213 | ||
| 214 | subsection {* Defining binary operations upon equivalence classes *}
 | |
| 215 | ||
| 216 | text{*A congruence-preserving function of two arguments*}
 | |
| 217 | locale congruent2 = | |
| 218 | fixes r1 and r2 and f | |
| 219 | assumes congruent2: | |
| 220 | "(y1,z1) \<in> r1 ==> (y2,z2) \<in> r2 ==> f y1 y2 = f z1 z2" | |
| 221 | ||
| 222 | text{*Abbreviation for the common case where the relations are identical*}
 | |
| 19979 | 223 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
19979diff
changeset | 224 |   RESPECTS2:: "['a => 'a => 'b, ('a * 'a) set] => bool"
 | 
| 21749 | 225 | (infixr "respects2" 80) where | 
| 19979 | 226 | "f respects2 r == congruent2 r r f" | 
| 227 | ||
| 15300 | 228 | |
| 229 | lemma congruent2_implies_congruent: | |
| 230 | "equiv A r1 ==> congruent2 r1 r2 f ==> a \<in> A ==> congruent r2 (f a)" | |
| 30198 | 231 | by (unfold congruent_def congruent2_def equiv_def refl_on_def) blast | 
| 15300 | 232 | |
| 233 | lemma congruent2_implies_congruent_UN: | |
| 234 | "equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f ==> a \<in> A2 ==> | |
| 235 |     congruent r1 (\<lambda>x1. \<Union>x2 \<in> r2``{a}. f x1 x2)"
 | |
| 236 | apply (unfold congruent_def) | |
| 237 | apply clarify | |
| 238 | apply (rule equiv_type [THEN subsetD, THEN SigmaE2], assumption+) | |
| 239 | apply (simp add: UN_equiv_class congruent2_implies_congruent) | |
| 30198 | 240 | apply (unfold congruent2_def equiv_def refl_on_def) | 
| 15300 | 241 | apply (blast del: equalityI) | 
| 242 | done | |
| 243 | ||
| 244 | lemma UN_equiv_class2: | |
| 245 | "equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f ==> a1 \<in> A1 ==> a2 \<in> A2 | |
| 246 |     ==> (\<Union>x1 \<in> r1``{a1}. \<Union>x2 \<in> r2``{a2}. f x1 x2) = f a1 a2"
 | |
| 247 | by (simp add: UN_equiv_class congruent2_implies_congruent | |
| 248 | congruent2_implies_congruent_UN) | |
| 249 | ||
| 250 | lemma UN_equiv_class_type2: | |
| 251 | "equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f | |
| 252 | ==> X1 \<in> A1//r1 ==> X2 \<in> A2//r2 | |
| 253 | ==> (!!x1 x2. x1 \<in> A1 ==> x2 \<in> A2 ==> f x1 x2 \<in> B) | |
| 254 | ==> (\<Union>x1 \<in> X1. \<Union>x2 \<in> X2. f x1 x2) \<in> B" | |
| 255 | apply (unfold quotient_def) | |
| 256 | apply clarify | |
| 257 | apply (blast intro: UN_equiv_class_type congruent2_implies_congruent_UN | |
| 258 | congruent2_implies_congruent quotientI) | |
| 259 | done | |
| 260 | ||
| 261 | lemma UN_UN_split_split_eq: | |
| 262 | "(\<Union>(x1, x2) \<in> X. \<Union>(y1, y2) \<in> Y. A x1 x2 y1 y2) = | |
| 263 | (\<Union>x \<in> X. \<Union>y \<in> Y. (\<lambda>(x1, x2). (\<lambda>(y1, y2). A x1 x2 y1 y2) y) x)" | |
| 264 |   -- {* Allows a natural expression of binary operators, *}
 | |
| 265 |   -- {* without explicit calls to @{text split} *}
 | |
| 266 | by auto | |
| 267 | ||
| 268 | lemma congruent2I: | |
| 269 | "equiv A1 r1 ==> equiv A2 r2 | |
| 270 | ==> (!!y z w. w \<in> A2 ==> (y,z) \<in> r1 ==> f y w = f z w) | |
| 271 | ==> (!!y z w. w \<in> A1 ==> (y,z) \<in> r2 ==> f w y = f w z) | |
| 272 | ==> congruent2 r1 r2 f" | |
| 273 |   -- {* Suggested by John Harrison -- the two subproofs may be *}
 | |
| 274 |   -- {* \emph{much} simpler than the direct proof. *}
 | |
| 30198 | 275 | apply (unfold congruent2_def equiv_def refl_on_def) | 
| 15300 | 276 | apply clarify | 
| 277 | apply (blast intro: trans) | |
| 278 | done | |
| 279 | ||
| 280 | lemma congruent2_commuteI: | |
| 281 | assumes equivA: "equiv A r" | |
| 282 | and commute: "!!y z. y \<in> A ==> z \<in> A ==> f y z = f z y" | |
| 283 | and congt: "!!y z w. w \<in> A ==> (y,z) \<in> r ==> f w y = f w z" | |
| 284 | shows "f respects2 r" | |
| 285 | apply (rule congruent2I [OF equivA equivA]) | |
| 286 | apply (rule commute [THEN trans]) | |
| 287 | apply (rule_tac [3] commute [THEN trans, symmetric]) | |
| 288 | apply (rule_tac [5] sym) | |
| 25482 | 289 | apply (rule congt | assumption | | 
| 15300 | 290 | erule equivA [THEN equiv_type, THEN subsetD, THEN SigmaE2])+ | 
| 291 | done | |
| 292 | ||
| 24728 | 293 | |
| 294 | subsection {* Quotients and finiteness *}
 | |
| 295 | ||
| 296 | text {*Suggested by Florian Kammüller*}
 | |
| 297 | ||
| 298 | lemma finite_quotient: "finite A ==> r \<subseteq> A \<times> A ==> finite (A//r)" | |
| 299 |   -- {* recall @{thm equiv_type} *}
 | |
| 300 | apply (rule finite_subset) | |
| 301 | apply (erule_tac [2] finite_Pow_iff [THEN iffD2]) | |
| 302 | apply (unfold quotient_def) | |
| 303 | apply blast | |
| 304 | done | |
| 305 | ||
| 306 | lemma finite_equiv_class: | |
| 307 | "finite A ==> r \<subseteq> A \<times> A ==> X \<in> A//r ==> finite X" | |
| 308 | apply (unfold quotient_def) | |
| 309 | apply (rule finite_subset) | |
| 310 | prefer 2 apply assumption | |
| 311 | apply blast | |
| 312 | done | |
| 313 | ||
| 314 | lemma equiv_imp_dvd_card: | |
| 315 | "finite A ==> equiv A r ==> \<forall>X \<in> A//r. k dvd card X | |
| 316 | ==> k dvd card A" | |
| 26791 
3581a9c71909
Instantiated subst rule to avoid problems with HO unification.
 berghofe parents: 
25482diff
changeset | 317 | apply (rule Union_quotient [THEN subst [where P="\<lambda>A. k dvd card A"]]) | 
| 24728 | 318 | apply assumption | 
| 319 | apply (rule dvd_partition) | |
| 320 | prefer 3 apply (blast dest: quotient_disj) | |
| 321 | apply (simp_all add: Union_quotient equiv_type) | |
| 322 | done | |
| 323 | ||
| 324 | lemma card_quotient_disjoint: | |
| 325 |  "\<lbrakk> finite A; inj_on (\<lambda>x. {x} // r) A \<rbrakk> \<Longrightarrow> card(A//r) = card A"
 | |
| 326 | apply(simp add:quotient_def) | |
| 327 | apply(subst card_UN_disjoint) | |
| 328 | apply assumption | |
| 329 | apply simp | |
| 330 | apply(fastsimp simp add:inj_on_def) | |
| 331 | apply (simp add:setsum_constant) | |
| 332 | done | |
| 333 | ||
| 15300 | 334 | end |