| author | haftmann | 
| Fri, 27 Mar 2009 10:05:13 +0100 | |
| changeset 30740 | 2d3ae5a7edb2 | 
| parent 30198 | 922f944f03b2 | 
| child 32864 | a226f29d4bdc | 
| permissions | -rw-r--r-- | 
| 23449 | 1 | (* Title: HOL/MetisTest/Tarski.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | ||
| 5 | Testing the metis method | |
| 6 | *) | |
| 7 | ||
| 8 | header {* The Full Theorem of Tarski *}
 | |
| 9 | ||
| 27368 | 10 | theory Tarski | 
| 11 | imports Main FuncSet | |
| 12 | begin | |
| 23449 | 13 | |
| 14 | (*Many of these higher-order problems appear to be impossible using the | |
| 15 | current linkup. They often seem to need either higher-order unification | |
| 16 | or explicit reasoning about connectives such as conjunction. The numerous | |
| 17 | set comprehensions are to blame.*) | |
| 18 | ||
| 19 | ||
| 20 | record 'a potype = | |
| 21 | pset :: "'a set" | |
| 22 |   order :: "('a * 'a) set"
 | |
| 23 | ||
| 24 | constdefs | |
| 25 |   monotone :: "['a => 'a, 'a set, ('a *'a)set] => bool"
 | |
| 26 | "monotone f A r == \<forall>x\<in>A. \<forall>y\<in>A. (x, y): r --> ((f x), (f y)) : r" | |
| 27 | ||
| 28 | least :: "['a => bool, 'a potype] => 'a" | |
| 29 | "least P po == @ x. x: pset po & P x & | |
| 30 | (\<forall>y \<in> pset po. P y --> (x,y): order po)" | |
| 31 | ||
| 32 | greatest :: "['a => bool, 'a potype] => 'a" | |
| 33 | "greatest P po == @ x. x: pset po & P x & | |
| 34 | (\<forall>y \<in> pset po. P y --> (y,x): order po)" | |
| 35 | ||
| 36 | lub :: "['a set, 'a potype] => 'a" | |
| 37 | "lub S po == least (%x. \<forall>y\<in>S. (y,x): order po) po" | |
| 38 | ||
| 39 | glb :: "['a set, 'a potype] => 'a" | |
| 40 | "glb S po == greatest (%x. \<forall>y\<in>S. (x,y): order po) po" | |
| 41 | ||
| 42 | isLub :: "['a set, 'a potype, 'a] => bool" | |
| 43 | "isLub S po == %L. (L: pset po & (\<forall>y\<in>S. (y,L): order po) & | |
| 44 | (\<forall>z\<in>pset po. (\<forall>y\<in>S. (y,z): order po) --> (L,z): order po))" | |
| 45 | ||
| 46 | isGlb :: "['a set, 'a potype, 'a] => bool" | |
| 47 | "isGlb S po == %G. (G: pset po & (\<forall>y\<in>S. (G,y): order po) & | |
| 48 | (\<forall>z \<in> pset po. (\<forall>y\<in>S. (z,y): order po) --> (z,G): order po))" | |
| 49 | ||
| 50 |   "fix"    :: "[('a => 'a), 'a set] => 'a set"
 | |
| 51 |   "fix f A  == {x. x: A & f x = x}"
 | |
| 52 | ||
| 53 |   interval :: "[('a*'a) set,'a, 'a ] => 'a set"
 | |
| 54 |   "interval r a b == {x. (a,x): r & (x,b): r}"
 | |
| 55 | ||
| 56 | constdefs | |
| 57 | Bot :: "'a potype => 'a" | |
| 58 | "Bot po == least (%x. True) po" | |
| 59 | ||
| 60 | Top :: "'a potype => 'a" | |
| 61 | "Top po == greatest (%x. True) po" | |
| 62 | ||
| 63 |   PartialOrder :: "('a potype) set"
 | |
| 30198 | 64 |   "PartialOrder == {P. refl_on (pset P) (order P) & antisym (order P) &
 | 
| 23449 | 65 | trans (order P)}" | 
| 66 | ||
| 67 |   CompleteLattice :: "('a potype) set"
 | |
| 68 |   "CompleteLattice == {cl. cl: PartialOrder &
 | |
| 69 | (\<forall>S. S \<subseteq> pset cl --> (\<exists>L. isLub S cl L)) & | |
| 70 | (\<forall>S. S \<subseteq> pset cl --> (\<exists>G. isGlb S cl G))}" | |
| 71 | ||
| 72 |   induced :: "['a set, ('a * 'a) set] => ('a *'a)set"
 | |
| 73 |   "induced A r == {(a,b). a : A & b: A & (a,b): r}"
 | |
| 74 | ||
| 75 | constdefs | |
| 76 |   sublattice :: "('a potype * 'a set)set"
 | |
| 77 | "sublattice == | |
| 78 | SIGMA cl: CompleteLattice. | |
| 79 |           {S. S \<subseteq> pset cl &
 | |
| 80 | (| pset = S, order = induced S (order cl) |): CompleteLattice }" | |
| 81 | ||
| 82 | syntax | |
| 83 |   "@SL"  :: "['a set, 'a potype] => bool" ("_ <<= _" [51,50]50)
 | |
| 84 | ||
| 85 | translations | |
| 86 |   "S <<= cl" == "S : sublattice `` {cl}"
 | |
| 87 | ||
| 88 | constdefs | |
| 89 | dual :: "'a potype => 'a potype" | |
| 90 | "dual po == (| pset = pset po, order = converse (order po) |)" | |
| 91 | ||
| 27681 | 92 | locale PO = | 
| 23449 | 93 | fixes cl :: "'a potype" | 
| 94 | and A :: "'a set" | |
| 95 |     and r  :: "('a * 'a) set"
 | |
| 96 | assumes cl_po: "cl : PartialOrder" | |
| 97 | defines A_def: "A == pset cl" | |
| 98 | and r_def: "r == order cl" | |
| 99 | ||
| 27681 | 100 | locale CL = PO + | 
| 23449 | 101 | assumes cl_co: "cl : CompleteLattice" | 
| 102 | ||
| 27681 | 103 | definition CLF_set :: "('a potype * ('a => 'a)) set" where
 | 
| 104 | "CLF_set = (SIGMA cl: CompleteLattice. | |
| 105 |             {f. f: pset cl -> pset cl & monotone f (pset cl) (order cl)})"
 | |
| 106 | ||
| 107 | locale CLF = CL + | |
| 23449 | 108 | fixes f :: "'a => 'a" | 
| 109 | and P :: "'a set" | |
| 27681 | 110 |   assumes f_cl:  "(cl,f) : CLF_set" (*was the equivalent "f : CLF``{cl}"*)
 | 
| 23449 | 111 | defines P_def: "P == fix f A" | 
| 112 | ||
| 113 | ||
| 27681 | 114 | locale Tarski = CLF + | 
| 23449 | 115 | fixes Y :: "'a set" | 
| 116 | and intY1 :: "'a set" | |
| 117 | and v :: "'a" | |
| 118 | assumes | |
| 119 | Y_ss: "Y \<subseteq> P" | |
| 120 | defines | |
| 121 | intY1_def: "intY1 == interval r (lub Y cl) (Top cl)" | |
| 122 |     and v_def: "v == glb {x. ((%x: intY1. f x) x, x): induced intY1 r &
 | |
| 123 | x: intY1} | |
| 124 | (| pset=intY1, order=induced intY1 r|)" | |
| 125 | ||
| 126 | ||
| 127 | subsection {* Partial Order *}
 | |
| 128 | ||
| 30198 | 129 | lemma (in PO) PO_imp_refl_on: "refl_on A r" | 
| 23449 | 130 | apply (insert cl_po) | 
| 131 | apply (simp add: PartialOrder_def A_def r_def) | |
| 132 | done | |
| 133 | ||
| 134 | lemma (in PO) PO_imp_sym: "antisym r" | |
| 135 | apply (insert cl_po) | |
| 136 | apply (simp add: PartialOrder_def r_def) | |
| 137 | done | |
| 138 | ||
| 139 | lemma (in PO) PO_imp_trans: "trans r" | |
| 140 | apply (insert cl_po) | |
| 141 | apply (simp add: PartialOrder_def r_def) | |
| 142 | done | |
| 143 | ||
| 144 | lemma (in PO) reflE: "x \<in> A ==> (x, x) \<in> r" | |
| 145 | apply (insert cl_po) | |
| 30198 | 146 | apply (simp add: PartialOrder_def refl_on_def A_def r_def) | 
| 23449 | 147 | done | 
| 148 | ||
| 149 | lemma (in PO) antisymE: "[| (a, b) \<in> r; (b, a) \<in> r |] ==> a = b" | |
| 150 | apply (insert cl_po) | |
| 151 | apply (simp add: PartialOrder_def antisym_def r_def) | |
| 152 | done | |
| 153 | ||
| 154 | lemma (in PO) transE: "[| (a, b) \<in> r; (b, c) \<in> r|] ==> (a,c) \<in> r" | |
| 155 | apply (insert cl_po) | |
| 156 | apply (simp add: PartialOrder_def r_def) | |
| 157 | apply (unfold trans_def, fast) | |
| 158 | done | |
| 159 | ||
| 160 | lemma (in PO) monotoneE: | |
| 161 | "[| monotone f A r; x \<in> A; y \<in> A; (x, y) \<in> r |] ==> (f x, f y) \<in> r" | |
| 162 | by (simp add: monotone_def) | |
| 163 | ||
| 164 | lemma (in PO) po_subset_po: | |
| 165 | "S \<subseteq> A ==> (| pset = S, order = induced S r |) \<in> PartialOrder" | |
| 166 | apply (simp (no_asm) add: PartialOrder_def) | |
| 167 | apply auto | |
| 168 | -- {* refl *}
 | |
| 30198 | 169 | apply (simp add: refl_on_def induced_def) | 
| 23449 | 170 | apply (blast intro: reflE) | 
| 171 | -- {* antisym *}
 | |
| 172 | apply (simp add: antisym_def induced_def) | |
| 173 | apply (blast intro: antisymE) | |
| 174 | -- {* trans *}
 | |
| 175 | apply (simp add: trans_def induced_def) | |
| 176 | apply (blast intro: transE) | |
| 177 | done | |
| 178 | ||
| 179 | lemma (in PO) indE: "[| (x, y) \<in> induced S r; S \<subseteq> A |] ==> (x, y) \<in> r" | |
| 180 | by (simp add: add: induced_def) | |
| 181 | ||
| 182 | lemma (in PO) indI: "[| (x, y) \<in> r; x \<in> S; y \<in> S |] ==> (x, y) \<in> induced S r" | |
| 183 | by (simp add: add: induced_def) | |
| 184 | ||
| 185 | lemma (in CL) CL_imp_ex_isLub: "S \<subseteq> A ==> \<exists>L. isLub S cl L" | |
| 186 | apply (insert cl_co) | |
| 187 | apply (simp add: CompleteLattice_def A_def) | |
| 188 | done | |
| 189 | ||
| 190 | declare (in CL) cl_co [simp] | |
| 191 | ||
| 192 | lemma isLub_lub: "(\<exists>L. isLub S cl L) = isLub S cl (lub S cl)" | |
| 193 | by (simp add: lub_def least_def isLub_def some_eq_ex [symmetric]) | |
| 194 | ||
| 195 | lemma isGlb_glb: "(\<exists>G. isGlb S cl G) = isGlb S cl (glb S cl)" | |
| 196 | by (simp add: glb_def greatest_def isGlb_def some_eq_ex [symmetric]) | |
| 197 | ||
| 198 | lemma isGlb_dual_isLub: "isGlb S cl = isLub S (dual cl)" | |
| 199 | by (simp add: isLub_def isGlb_def dual_def converse_def) | |
| 200 | ||
| 201 | lemma isLub_dual_isGlb: "isLub S cl = isGlb S (dual cl)" | |
| 202 | by (simp add: isLub_def isGlb_def dual_def converse_def) | |
| 203 | ||
| 204 | lemma (in PO) dualPO: "dual cl \<in> PartialOrder" | |
| 205 | apply (insert cl_po) | |
| 30198 | 206 | apply (simp add: PartialOrder_def dual_def refl_on_converse | 
| 23449 | 207 | trans_converse antisym_converse) | 
| 208 | done | |
| 209 | ||
| 210 | lemma Rdual: | |
| 211 | "\<forall>S. (S \<subseteq> A -->( \<exists>L. isLub S (| pset = A, order = r|) L)) | |
| 212 | ==> \<forall>S. (S \<subseteq> A --> (\<exists>G. isGlb S (| pset = A, order = r|) G))" | |
| 213 | apply safe | |
| 214 | apply (rule_tac x = "lub {y. y \<in> A & (\<forall>k \<in> S. (y, k) \<in> r)}
 | |
| 215 | (|pset = A, order = r|) " in exI) | |
| 216 | apply (drule_tac x = "{y. y \<in> A & (\<forall>k \<in> S. (y,k) \<in> r) }" in spec)
 | |
| 217 | apply (drule mp, fast) | |
| 218 | apply (simp add: isLub_lub isGlb_def) | |
| 219 | apply (simp add: isLub_def, blast) | |
| 220 | done | |
| 221 | ||
| 222 | lemma lub_dual_glb: "lub S cl = glb S (dual cl)" | |
| 223 | by (simp add: lub_def glb_def least_def greatest_def dual_def converse_def) | |
| 224 | ||
| 225 | lemma glb_dual_lub: "glb S cl = lub S (dual cl)" | |
| 226 | by (simp add: lub_def glb_def least_def greatest_def dual_def converse_def) | |
| 227 | ||
| 228 | lemma CL_subset_PO: "CompleteLattice \<subseteq> PartialOrder" | |
| 229 | by (simp add: PartialOrder_def CompleteLattice_def, fast) | |
| 230 | ||
| 231 | lemmas CL_imp_PO = CL_subset_PO [THEN subsetD] | |
| 232 | ||
| 30198 | 233 | declare PO.PO_imp_refl_on [OF PO.intro [OF CL_imp_PO], simp] | 
| 27681 | 234 | declare PO.PO_imp_sym [OF PO.intro [OF CL_imp_PO], simp] | 
| 235 | declare PO.PO_imp_trans [OF PO.intro [OF CL_imp_PO], simp] | |
| 23449 | 236 | |
| 30198 | 237 | lemma (in CL) CO_refl_on: "refl_on A r" | 
| 238 | by (rule PO_imp_refl_on) | |
| 23449 | 239 | |
| 240 | lemma (in CL) CO_antisym: "antisym r" | |
| 241 | by (rule PO_imp_sym) | |
| 242 | ||
| 243 | lemma (in CL) CO_trans: "trans r" | |
| 244 | by (rule PO_imp_trans) | |
| 245 | ||
| 246 | lemma CompleteLatticeI: | |
| 247 | "[| po \<in> PartialOrder; (\<forall>S. S \<subseteq> pset po --> (\<exists>L. isLub S po L)); | |
| 248 | (\<forall>S. S \<subseteq> pset po --> (\<exists>G. isGlb S po G))|] | |
| 249 | ==> po \<in> CompleteLattice" | |
| 250 | apply (unfold CompleteLattice_def, blast) | |
| 251 | done | |
| 252 | ||
| 253 | lemma (in CL) CL_dualCL: "dual cl \<in> CompleteLattice" | |
| 254 | apply (insert cl_co) | |
| 255 | apply (simp add: CompleteLattice_def dual_def) | |
| 256 | apply (fold dual_def) | |
| 257 | apply (simp add: isLub_dual_isGlb [symmetric] isGlb_dual_isLub [symmetric] | |
| 258 | dualPO) | |
| 259 | done | |
| 260 | ||
| 261 | lemma (in PO) dualA_iff: "pset (dual cl) = pset cl" | |
| 262 | by (simp add: dual_def) | |
| 263 | ||
| 264 | lemma (in PO) dualr_iff: "((x, y) \<in> (order(dual cl))) = ((y, x) \<in> order cl)" | |
| 265 | by (simp add: dual_def) | |
| 266 | ||
| 267 | lemma (in PO) monotone_dual: | |
| 268 | "monotone f (pset cl) (order cl) | |
| 269 | ==> monotone f (pset (dual cl)) (order(dual cl))" | |
| 270 | by (simp add: monotone_def dualA_iff dualr_iff) | |
| 271 | ||
| 272 | lemma (in PO) interval_dual: | |
| 273 | "[| x \<in> A; y \<in> A|] ==> interval r x y = interval (order(dual cl)) y x" | |
| 274 | apply (simp add: interval_def dualr_iff) | |
| 275 | apply (fold r_def, fast) | |
| 276 | done | |
| 277 | ||
| 278 | lemma (in PO) interval_not_empty: | |
| 279 |      "[| trans r; interval r a b \<noteq> {} |] ==> (a, b) \<in> r"
 | |
| 280 | apply (simp add: interval_def) | |
| 281 | apply (unfold trans_def, blast) | |
| 282 | done | |
| 283 | ||
| 284 | lemma (in PO) interval_imp_mem: "x \<in> interval r a b ==> (a, x) \<in> r" | |
| 285 | by (simp add: interval_def) | |
| 286 | ||
| 287 | lemma (in PO) left_in_interval: | |
| 288 |      "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] ==> a \<in> interval r a b"
 | |
| 289 | apply (simp (no_asm_simp) add: interval_def) | |
| 290 | apply (simp add: PO_imp_trans interval_not_empty) | |
| 291 | apply (simp add: reflE) | |
| 292 | done | |
| 293 | ||
| 294 | lemma (in PO) right_in_interval: | |
| 295 |      "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] ==> b \<in> interval r a b"
 | |
| 296 | apply (simp (no_asm_simp) add: interval_def) | |
| 297 | apply (simp add: PO_imp_trans interval_not_empty) | |
| 298 | apply (simp add: reflE) | |
| 299 | done | |
| 300 | ||
| 301 | ||
| 302 | subsection {* sublattice *}
 | |
| 303 | ||
| 304 | lemma (in PO) sublattice_imp_CL: | |
| 305 | "S <<= cl ==> (| pset = S, order = induced S r |) \<in> CompleteLattice" | |
| 306 | by (simp add: sublattice_def CompleteLattice_def A_def r_def) | |
| 307 | ||
| 308 | lemma (in CL) sublatticeI: | |
| 309 | "[| S \<subseteq> A; (| pset = S, order = induced S r |) \<in> CompleteLattice |] | |
| 310 | ==> S <<= cl" | |
| 311 | by (simp add: sublattice_def A_def r_def) | |
| 312 | ||
| 313 | ||
| 314 | subsection {* lub *}
 | |
| 315 | ||
| 316 | lemma (in CL) lub_unique: "[| S \<subseteq> A; isLub S cl x; isLub S cl L|] ==> x = L" | |
| 317 | apply (rule antisymE) | |
| 318 | apply (auto simp add: isLub_def r_def) | |
| 319 | done | |
| 320 | ||
| 321 | lemma (in CL) lub_upper: "[|S \<subseteq> A; x \<in> S|] ==> (x, lub S cl) \<in> r" | |
| 322 | apply (rule CL_imp_ex_isLub [THEN exE], assumption) | |
| 323 | apply (unfold lub_def least_def) | |
| 324 | apply (rule some_equality [THEN ssubst]) | |
| 325 | apply (simp add: isLub_def) | |
| 326 | apply (simp add: lub_unique A_def isLub_def) | |
| 327 | apply (simp add: isLub_def r_def) | |
| 328 | done | |
| 329 | ||
| 330 | lemma (in CL) lub_least: | |
| 331 | "[| S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r |] ==> (lub S cl, L) \<in> r" | |
| 332 | apply (rule CL_imp_ex_isLub [THEN exE], assumption) | |
| 333 | apply (unfold lub_def least_def) | |
| 334 | apply (rule_tac s=x in some_equality [THEN ssubst]) | |
| 335 | apply (simp add: isLub_def) | |
| 336 | apply (simp add: lub_unique A_def isLub_def) | |
| 337 | apply (simp add: isLub_def r_def A_def) | |
| 338 | done | |
| 339 | ||
| 340 | lemma (in CL) lub_in_lattice: "S \<subseteq> A ==> lub S cl \<in> A" | |
| 341 | apply (rule CL_imp_ex_isLub [THEN exE], assumption) | |
| 342 | apply (unfold lub_def least_def) | |
| 343 | apply (subst some_equality) | |
| 344 | apply (simp add: isLub_def) | |
| 345 | prefer 2 apply (simp add: isLub_def A_def) | |
| 346 | apply (simp add: lub_unique A_def isLub_def) | |
| 347 | done | |
| 348 | ||
| 349 | lemma (in CL) lubI: | |
| 350 | "[| S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r; | |
| 351 | \<forall>z \<in> A. (\<forall>y \<in> S. (y,z) \<in> r) --> (L,z) \<in> r |] ==> L = lub S cl" | |
| 352 | apply (rule lub_unique, assumption) | |
| 353 | apply (simp add: isLub_def A_def r_def) | |
| 354 | apply (unfold isLub_def) | |
| 355 | apply (rule conjI) | |
| 356 | apply (fold A_def r_def) | |
| 357 | apply (rule lub_in_lattice, assumption) | |
| 358 | apply (simp add: lub_upper lub_least) | |
| 359 | done | |
| 360 | ||
| 361 | lemma (in CL) lubIa: "[| S \<subseteq> A; isLub S cl L |] ==> L = lub S cl" | |
| 362 | by (simp add: lubI isLub_def A_def r_def) | |
| 363 | ||
| 364 | lemma (in CL) isLub_in_lattice: "isLub S cl L ==> L \<in> A" | |
| 365 | by (simp add: isLub_def A_def) | |
| 366 | ||
| 367 | lemma (in CL) isLub_upper: "[|isLub S cl L; y \<in> S|] ==> (y, L) \<in> r" | |
| 368 | by (simp add: isLub_def r_def) | |
| 369 | ||
| 370 | lemma (in CL) isLub_least: | |
| 371 | "[| isLub S cl L; z \<in> A; \<forall>y \<in> S. (y, z) \<in> r|] ==> (L, z) \<in> r" | |
| 372 | by (simp add: isLub_def A_def r_def) | |
| 373 | ||
| 374 | lemma (in CL) isLubI: | |
| 375 | "[| L \<in> A; \<forall>y \<in> S. (y, L) \<in> r; | |
| 376 | (\<forall>z \<in> A. (\<forall>y \<in> S. (y, z):r) --> (L, z) \<in> r)|] ==> isLub S cl L" | |
| 377 | by (simp add: isLub_def A_def r_def) | |
| 378 | ||
| 379 | ||
| 380 | ||
| 381 | subsection {* glb *}
 | |
| 382 | ||
| 383 | lemma (in CL) glb_in_lattice: "S \<subseteq> A ==> glb S cl \<in> A" | |
| 384 | apply (subst glb_dual_lub) | |
| 385 | apply (simp add: A_def) | |
| 386 | apply (rule dualA_iff [THEN subst]) | |
| 387 | apply (rule CL.lub_in_lattice) | |
| 27681 | 388 | apply (rule CL.intro) | 
| 389 | apply (rule PO.intro) | |
| 23449 | 390 | apply (rule dualPO) | 
| 27681 | 391 | apply (rule CL_axioms.intro) | 
| 23449 | 392 | apply (rule CL_dualCL) | 
| 393 | apply (simp add: dualA_iff) | |
| 394 | done | |
| 395 | ||
| 396 | lemma (in CL) glb_lower: "[|S \<subseteq> A; x \<in> S|] ==> (glb S cl, x) \<in> r" | |
| 397 | apply (subst glb_dual_lub) | |
| 398 | apply (simp add: r_def) | |
| 399 | apply (rule dualr_iff [THEN subst]) | |
| 400 | apply (rule CL.lub_upper) | |
| 27681 | 401 | apply (rule CL.intro) | 
| 402 | apply (rule PO.intro) | |
| 23449 | 403 | apply (rule dualPO) | 
| 27681 | 404 | apply (rule CL_axioms.intro) | 
| 23449 | 405 | apply (rule CL_dualCL) | 
| 406 | apply (simp add: dualA_iff A_def, assumption) | |
| 407 | done | |
| 408 | ||
| 409 | text {*
 | |
| 410 | Reduce the sublattice property by using substructural properties; | |
| 411 |   abandoned see @{text "Tarski_4.ML"}.
 | |
| 412 | *} | |
| 413 | ||
| 414 | declare (in CLF) f_cl [simp] | |
| 415 | ||
| 416 | (*never proved, 2007-01-22: Tarski__CLF_unnamed_lemma | |
| 417 | NOT PROVABLE because of the conjunction used in the definition: we don't | |
| 418 | allow reasoning with rules like conjE, which is essential here.*) | |
| 28592 | 419 | ML_command{*AtpWrapper.problem_name:="Tarski__CLF_unnamed_lemma"*}
 | 
| 23449 | 420 | lemma (in CLF) [simp]: | 
| 421 | "f: pset cl -> pset cl & monotone f (pset cl) (order cl)" | |
| 422 | apply (insert f_cl) | |
| 27681 | 423 | apply (unfold CLF_set_def) | 
| 23449 | 424 | apply (erule SigmaE2) | 
| 425 | apply (erule CollectE) | |
| 27681 | 426 | apply assumption | 
| 23449 | 427 | done | 
| 428 | ||
| 429 | lemma (in CLF) f_in_funcset: "f \<in> A -> A" | |
| 430 | by (simp add: A_def) | |
| 431 | ||
| 432 | lemma (in CLF) monotone_f: "monotone f A r" | |
| 433 | by (simp add: A_def r_def) | |
| 434 | ||
| 435 | (*never proved, 2007-01-22*) | |
| 28592 | 436 | ML_command{*AtpWrapper.problem_name:="Tarski__CLF_CLF_dual"*}
 | 
| 27681 | 437 | declare (in CLF) CLF_set_def [simp] CL_dualCL [simp] monotone_dual [simp] dualA_iff [simp] | 
| 438 | ||
| 439 | lemma (in CLF) CLF_dual: "(dual cl, f) \<in> CLF_set" | |
| 23449 | 440 | apply (simp del: dualA_iff) | 
| 441 | apply (simp) | |
| 442 | done | |
| 27681 | 443 | |
| 444 | declare (in CLF) CLF_set_def[simp del] CL_dualCL[simp del] monotone_dual[simp del] | |
| 23449 | 445 | dualA_iff[simp del] | 
| 446 | ||
| 447 | ||
| 448 | subsection {* fixed points *}
 | |
| 449 | ||
| 450 | lemma fix_subset: "fix f A \<subseteq> A" | |
| 451 | by (simp add: fix_def, fast) | |
| 452 | ||
| 453 | lemma fix_imp_eq: "x \<in> fix f A ==> f x = x" | |
| 454 | by (simp add: fix_def) | |
| 455 | ||
| 456 | lemma fixf_subset: | |
| 457 | "[| A \<subseteq> B; x \<in> fix (%y: A. f y) A |] ==> x \<in> fix f B" | |
| 458 | by (simp add: fix_def, auto) | |
| 459 | ||
| 460 | ||
| 461 | subsection {* lemmas for Tarski, lub *}
 | |
| 462 | ||
| 463 | (*never proved, 2007-01-22*) | |
| 28592 | 464 | ML{*AtpWrapper.problem_name:="Tarski__CLF_lubH_le_flubH"*}
 | 
| 23449 | 465 | declare CL.lub_least[intro] CLF.f_in_funcset[intro] funcset_mem[intro] CL.lub_in_lattice[intro] PO.transE[intro] PO.monotoneE[intro] CLF.monotone_f[intro] CL.lub_upper[intro] | 
| 466 | lemma (in CLF) lubH_le_flubH: | |
| 467 |      "H = {x. (x, f x) \<in> r & x \<in> A} ==> (lub H cl, f (lub H cl)) \<in> r"
 | |
| 468 | apply (rule lub_least, fast) | |
| 469 | apply (rule f_in_funcset [THEN funcset_mem]) | |
| 470 | apply (rule lub_in_lattice, fast) | |
| 471 | -- {* @{text "\<forall>x:H. (x, f (lub H r)) \<in> r"} *}
 | |
| 472 | apply (rule ballI) | |
| 473 | (*never proved, 2007-01-22*) | |
| 28592 | 474 | ML_command{*AtpWrapper.problem_name:="Tarski__CLF_lubH_le_flubH_simpler"*}
 | 
| 23449 | 475 | apply (rule transE) | 
| 476 | -- {* instantiates @{text "(x, ?z) \<in> order cl to (x, f x)"}, *}
 | |
| 477 | -- {* because of the def of @{text H} *}
 | |
| 478 | apply fast | |
| 479 | -- {* so it remains to show @{text "(f x, f (lub H cl)) \<in> r"} *}
 | |
| 480 | apply (rule_tac f = "f" in monotoneE) | |
| 481 | apply (rule monotone_f, fast) | |
| 482 | apply (rule lub_in_lattice, fast) | |
| 483 | apply (rule lub_upper, fast) | |
| 484 | apply assumption | |
| 485 | done | |
| 486 | declare CL.lub_least[rule del] CLF.f_in_funcset[rule del] | |
| 487 | funcset_mem[rule del] CL.lub_in_lattice[rule del] | |
| 488 | PO.transE[rule del] PO.monotoneE[rule del] | |
| 489 | CLF.monotone_f[rule del] CL.lub_upper[rule del] | |
| 490 | ||
| 491 | (*never proved, 2007-01-22*) | |
| 28592 | 492 | ML{*AtpWrapper.problem_name:="Tarski__CLF_flubH_le_lubH"*}
 | 
| 23449 | 493 | declare CLF.f_in_funcset[intro] funcset_mem[intro] CL.lub_in_lattice[intro] | 
| 494 | PO.monotoneE[intro] CLF.monotone_f[intro] CL.lub_upper[intro] | |
| 495 | CLF.lubH_le_flubH[simp] | |
| 496 | lemma (in CLF) flubH_le_lubH: | |
| 497 |      "[|  H = {x. (x, f x) \<in> r & x \<in> A} |] ==> (f (lub H cl), lub H cl) \<in> r"
 | |
| 498 | apply (rule lub_upper, fast) | |
| 499 | apply (rule_tac t = "H" in ssubst, assumption) | |
| 500 | apply (rule CollectI) | |
| 501 | apply (rule conjI) | |
| 28592 | 502 | ML_command{*AtpWrapper.problem_name:="Tarski__CLF_flubH_le_lubH_simpler"*}
 | 
| 24827 | 503 | (*??no longer terminates, with combinators | 
| 30198 | 504 | apply (metis CO_refl_on lubH_le_flubH monotone_def monotone_f reflD1 reflD2) | 
| 24827 | 505 | *) | 
| 30198 | 506 | apply (metis CO_refl_on lubH_le_flubH monotoneE [OF monotone_f] refl_onD1 refl_onD2) | 
| 507 | apply (metis CO_refl_on lubH_le_flubH refl_onD2) | |
| 23449 | 508 | done | 
| 509 | declare CLF.f_in_funcset[rule del] funcset_mem[rule del] | |
| 510 | CL.lub_in_lattice[rule del] PO.monotoneE[rule del] | |
| 511 | CLF.monotone_f[rule del] CL.lub_upper[rule del] | |
| 512 | CLF.lubH_le_flubH[simp del] | |
| 513 | ||
| 514 | ||
| 515 | (*never proved, 2007-01-22*) | |
| 28592 | 516 | ML{*AtpWrapper.problem_name:="Tarski__CLF_lubH_is_fixp"*}
 | 
| 23449 | 517 | (*Single-step version fails. The conjecture clauses refer to local abstraction | 
| 518 | functions (Frees), which prevents expand_defs_tac from removing those | |
| 24827 | 519 | "definitions" at the end of the proof. *) | 
| 23449 | 520 | lemma (in CLF) lubH_is_fixp: | 
| 521 |      "H = {x. (x, f x) \<in> r & x \<in> A} ==> lub H cl \<in> fix f A"
 | |
| 522 | apply (simp add: fix_def) | |
| 523 | apply (rule conjI) | |
| 24827 | 524 | proof (neg_clausify) | 
| 525 | assume 0: "H = | |
| 526 | Collect | |
| 527 | (COMBS (COMBB op \<and> (COMBC (COMBB op \<in> (COMBS Pair f)) r)) (COMBC op \<in> A))" | |
| 528 | assume 1: "lub (Collect | |
| 529 | (COMBS (COMBB op \<and> (COMBC (COMBB op \<in> (COMBS Pair f)) r)) | |
| 530 | (COMBC op \<in> A))) | |
| 531 | cl | |
| 532 | \<notin> A" | |
| 533 | have 2: "lub H cl \<notin> A" | |
| 534 | by (metis 1 0) | |
| 535 | have 3: "(lub H cl, f (lub H cl)) \<in> r" | |
| 536 | by (metis lubH_le_flubH 0) | |
| 537 | have 4: "(f (lub H cl), lub H cl) \<in> r" | |
| 538 | by (metis flubH_le_lubH 0) | |
| 539 | have 5: "lub H cl = f (lub H cl) \<or> (lub H cl, f (lub H cl)) \<notin> r" | |
| 540 | by (metis antisymE 4) | |
| 541 | have 6: "lub H cl = f (lub H cl)" | |
| 542 | by (metis 5 3) | |
| 543 | have 7: "(lub H cl, lub H cl) \<in> r" | |
| 544 | by (metis 6 4) | |
| 30198 | 545 | have 8: "\<And>X1. lub H cl \<in> X1 \<or> \<not> refl_on X1 r" | 
| 546 | by (metis 7 refl_onD2) | |
| 547 | have 9: "\<not> refl_on A r" | |
| 24827 | 548 | by (metis 8 2) | 
| 23449 | 549 | show "False" | 
| 30198 | 550 | by (metis CO_refl_on 9); | 
| 24827 | 551 | next --{*apparently the way to insert a second structured proof*}
 | 
| 552 |   show "H = {x. (x, f x) \<in> r \<and> x \<in> A} \<Longrightarrow>
 | |
| 553 |   f (lub {x. (x, f x) \<in> r \<and> x \<in> A} cl) = lub {x. (x, f x) \<in> r \<and> x \<in> A} cl"
 | |
| 554 | proof (neg_clausify) | |
| 555 | assume 0: "H = | |
| 556 | Collect | |
| 557 | (COMBS (COMBB op \<and> (COMBC (COMBB op \<in> (COMBS Pair f)) r)) (COMBC op \<in> A))" | |
| 558 | assume 1: "f (lub (Collect | |
| 559 | (COMBS (COMBB op \<and> (COMBC (COMBB op \<in> (COMBS Pair f)) r)) | |
| 560 | (COMBC op \<in> A))) | |
| 561 | cl) \<noteq> | |
| 562 | lub (Collect | |
| 563 | (COMBS (COMBB op \<and> (COMBC (COMBB op \<in> (COMBS Pair f)) r)) | |
| 564 | (COMBC op \<in> A))) | |
| 565 | cl" | |
| 566 | have 2: "f (lub H cl) \<noteq> | |
| 567 | lub (Collect | |
| 568 | (COMBS (COMBB op \<and> (COMBC (COMBB op \<in> (COMBS Pair f)) r)) | |
| 569 | (COMBC op \<in> A))) | |
| 570 | cl" | |
| 571 | by (metis 1 0) | |
| 572 | have 3: "f (lub H cl) \<noteq> lub H cl" | |
| 573 | by (metis 2 0) | |
| 574 | have 4: "(lub H cl, f (lub H cl)) \<in> r" | |
| 575 | by (metis lubH_le_flubH 0) | |
| 576 | have 5: "(f (lub H cl), lub H cl) \<in> r" | |
| 577 | by (metis flubH_le_lubH 0) | |
| 578 | have 6: "lub H cl = f (lub H cl) \<or> (lub H cl, f (lub H cl)) \<notin> r" | |
| 579 | by (metis antisymE 5) | |
| 580 | have 7: "lub H cl = f (lub H cl)" | |
| 581 | by (metis 6 4) | |
| 582 | show "False" | |
| 583 | by (metis 3 7) | |
| 584 | qed | |
| 585 | qed | |
| 23449 | 586 | |
| 25710 
4cdf7de81e1b
Replaced refs by config params; finer critical section in mets method
 paulson parents: 
24855diff
changeset | 587 | lemma (in CLF) (*lubH_is_fixp:*) | 
| 23449 | 588 |      "H = {x. (x, f x) \<in> r & x \<in> A} ==> lub H cl \<in> fix f A"
 | 
| 589 | apply (simp add: fix_def) | |
| 590 | apply (rule conjI) | |
| 28592 | 591 | ML_command{*AtpWrapper.problem_name:="Tarski__CLF_lubH_is_fixp_simpler"*} 
 | 
| 30198 | 592 | apply (metis CO_refl_on lubH_le_flubH refl_onD1) | 
| 23449 | 593 | apply (metis antisymE flubH_le_lubH lubH_le_flubH) | 
| 594 | done | |
| 595 | ||
| 596 | lemma (in CLF) fix_in_H: | |
| 597 |      "[| H = {x. (x, f x) \<in> r & x \<in> A};  x \<in> P |] ==> x \<in> H"
 | |
| 30198 | 598 | by (simp add: P_def fix_imp_eq [of _ f A] reflE CO_refl_on | 
| 23449 | 599 | fix_subset [of f A, THEN subsetD]) | 
| 600 | ||
| 601 | ||
| 602 | lemma (in CLF) fixf_le_lubH: | |
| 603 |      "H = {x. (x, f x) \<in> r & x \<in> A} ==> \<forall>x \<in> fix f A. (x, lub H cl) \<in> r"
 | |
| 604 | apply (rule ballI) | |
| 605 | apply (rule lub_upper, fast) | |
| 606 | apply (rule fix_in_H) | |
| 607 | apply (simp_all add: P_def) | |
| 608 | done | |
| 609 | ||
| 28592 | 610 | ML{*AtpWrapper.problem_name:="Tarski__CLF_lubH_least_fixf"*}
 | 
| 23449 | 611 | lemma (in CLF) lubH_least_fixf: | 
| 612 |      "H = {x. (x, f x) \<in> r & x \<in> A}
 | |
| 613 | ==> \<forall>L. (\<forall>y \<in> fix f A. (y,L) \<in> r) --> (lub H cl, L) \<in> r" | |
| 614 | apply (metis P_def lubH_is_fixp) | |
| 615 | done | |
| 616 | ||
| 617 | subsection {* Tarski fixpoint theorem 1, first part *}
 | |
| 28592 | 618 | ML{*AtpWrapper.problem_name:="Tarski__CLF_T_thm_1_lub"*}
 | 
| 23449 | 619 | declare CL.lubI[intro] fix_subset[intro] CL.lub_in_lattice[intro] | 
| 620 | CLF.fixf_le_lubH[simp] CLF.lubH_least_fixf[simp] | |
| 621 | lemma (in CLF) T_thm_1_lub: "lub P cl = lub {x. (x, f x) \<in> r & x \<in> A} cl"
 | |
| 622 | (*sledgehammer;*) | |
| 623 | apply (rule sym) | |
| 624 | apply (simp add: P_def) | |
| 625 | apply (rule lubI) | |
| 28592 | 626 | ML_command{*AtpWrapper.problem_name:="Tarski__CLF_T_thm_1_lub_simpler"*}
 | 
| 24855 | 627 | apply (metis P_def fix_subset) | 
| 24827 | 628 | apply (metis Collect_conj_eq Collect_mem_eq Int_commute Int_lower1 lub_in_lattice vimage_def) | 
| 629 | (*??no longer terminates, with combinators | |
| 630 | apply (metis P_def fix_def fixf_le_lubH) | |
| 631 | apply (metis P_def fix_def lubH_least_fixf) | |
| 632 | *) | |
| 633 | apply (simp add: fixf_le_lubH) | |
| 634 | apply (simp add: lubH_least_fixf) | |
| 23449 | 635 | done | 
| 636 | declare CL.lubI[rule del] fix_subset[rule del] CL.lub_in_lattice[rule del] | |
| 637 | CLF.fixf_le_lubH[simp del] CLF.lubH_least_fixf[simp del] | |
| 638 | ||
| 639 | ||
| 640 | (*never proved, 2007-01-22*) | |
| 28592 | 641 | ML{*AtpWrapper.problem_name:="Tarski__CLF_glbH_is_fixp"*}
 | 
| 23449 | 642 | declare glb_dual_lub[simp] PO.dualA_iff[intro] CLF.lubH_is_fixp[intro] | 
| 643 | PO.dualPO[intro] CL.CL_dualCL[intro] PO.dualr_iff[simp] | |
| 644 | lemma (in CLF) glbH_is_fixp: "H = {x. (f x, x) \<in> r & x \<in> A} ==> glb H cl \<in> P"
 | |
| 645 |   -- {* Tarski for glb *}
 | |
| 646 | (*sledgehammer;*) | |
| 647 | apply (simp add: glb_dual_lub P_def A_def r_def) | |
| 648 | apply (rule dualA_iff [THEN subst]) | |
| 649 | apply (rule CLF.lubH_is_fixp) | |
| 27681 | 650 | apply (rule CLF.intro) | 
| 651 | apply (rule CL.intro) | |
| 652 | apply (rule PO.intro) | |
| 23449 | 653 | apply (rule dualPO) | 
| 27681 | 654 | apply (rule CL_axioms.intro) | 
| 23449 | 655 | apply (rule CL_dualCL) | 
| 27681 | 656 | apply (rule CLF_axioms.intro) | 
| 23449 | 657 | apply (rule CLF_dual) | 
| 658 | apply (simp add: dualr_iff dualA_iff) | |
| 659 | done | |
| 660 | declare glb_dual_lub[simp del] PO.dualA_iff[rule del] CLF.lubH_is_fixp[rule del] | |
| 661 | PO.dualPO[rule del] CL.CL_dualCL[rule del] PO.dualr_iff[simp del] | |
| 662 | ||
| 663 | ||
| 664 | (*never proved, 2007-01-22*) | |
| 28592 | 665 | ML{*AtpWrapper.problem_name:="Tarski__T_thm_1_glb"*}  (*ALL THEOREMS*)
 | 
| 23449 | 666 | lemma (in CLF) T_thm_1_glb: "glb P cl = glb {x. (f x, x) \<in> r & x \<in> A} cl"
 | 
| 667 | (*sledgehammer;*) | |
| 668 | apply (simp add: glb_dual_lub P_def A_def r_def) | |
| 669 | apply (rule dualA_iff [THEN subst]) | |
| 670 | (*never proved, 2007-01-22*) | |
| 28592 | 671 | ML_command{*AtpWrapper.problem_name:="Tarski__T_thm_1_glb_simpler"*}  (*ALL THEOREMS*)
 | 
| 23449 | 672 | (*sledgehammer;*) | 
| 27681 | 673 | apply (simp add: CLF.T_thm_1_lub [of _ f, OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro, | 
| 674 | OF dualPO CL_dualCL] dualPO CL_dualCL CLF_dual dualr_iff) | |
| 23449 | 675 | done | 
| 676 | ||
| 677 | subsection {* interval *}
 | |
| 678 | ||
| 679 | ||
| 28592 | 680 | ML{*AtpWrapper.problem_name:="Tarski__rel_imp_elem"*}
 | 
| 30198 | 681 | declare (in CLF) CO_refl_on[simp] refl_on_def [simp] | 
| 23449 | 682 | lemma (in CLF) rel_imp_elem: "(x, y) \<in> r ==> x \<in> A" | 
| 30198 | 683 | by (metis CO_refl_on refl_onD1) | 
| 684 | declare (in CLF) CO_refl_on[simp del] refl_on_def [simp del] | |
| 23449 | 685 | |
| 28592 | 686 | ML{*AtpWrapper.problem_name:="Tarski__interval_subset"*}
 | 
| 23449 | 687 | declare (in CLF) rel_imp_elem[intro] | 
| 688 | declare interval_def [simp] | |
| 689 | lemma (in CLF) interval_subset: "[| a \<in> A; b \<in> A |] ==> interval r a b \<subseteq> A" | |
| 30198 | 690 | by (metis CO_refl_on interval_imp_mem refl_onD refl_onD2 rel_imp_elem subset_eq) | 
| 23449 | 691 | declare (in CLF) rel_imp_elem[rule del] | 
| 692 | declare interval_def [simp del] | |
| 693 | ||
| 694 | ||
| 695 | lemma (in CLF) intervalI: | |
| 696 | "[| (a, x) \<in> r; (x, b) \<in> r |] ==> x \<in> interval r a b" | |
| 697 | by (simp add: interval_def) | |
| 698 | ||
| 699 | lemma (in CLF) interval_lemma1: | |
| 700 | "[| S \<subseteq> interval r a b; x \<in> S |] ==> (a, x) \<in> r" | |
| 701 | by (unfold interval_def, fast) | |
| 702 | ||
| 703 | lemma (in CLF) interval_lemma2: | |
| 704 | "[| S \<subseteq> interval r a b; x \<in> S |] ==> (x, b) \<in> r" | |
| 705 | by (unfold interval_def, fast) | |
| 706 | ||
| 707 | lemma (in CLF) a_less_lub: | |
| 708 |      "[| S \<subseteq> A; S \<noteq> {};
 | |
| 709 | \<forall>x \<in> S. (a,x) \<in> r; \<forall>y \<in> S. (y, L) \<in> r |] ==> (a,L) \<in> r" | |
| 710 | by (blast intro: transE) | |
| 711 | ||
| 712 | lemma (in CLF) glb_less_b: | |
| 713 |      "[| S \<subseteq> A; S \<noteq> {};
 | |
| 714 | \<forall>x \<in> S. (x,b) \<in> r; \<forall>y \<in> S. (G, y) \<in> r |] ==> (G,b) \<in> r" | |
| 715 | by (blast intro: transE) | |
| 716 | ||
| 717 | lemma (in CLF) S_intv_cl: | |
| 718 | "[| a \<in> A; b \<in> A; S \<subseteq> interval r a b |]==> S \<subseteq> A" | |
| 719 | by (simp add: subset_trans [OF _ interval_subset]) | |
| 720 | ||
| 28592 | 721 | ML{*AtpWrapper.problem_name:="Tarski__L_in_interval"*}  (*ALL THEOREMS*)
 | 
| 23449 | 722 | lemma (in CLF) L_in_interval: | 
| 723 | "[| a \<in> A; b \<in> A; S \<subseteq> interval r a b; | |
| 724 |          S \<noteq> {}; isLub S cl L; interval r a b \<noteq> {} |] ==> L \<in> interval r a b" 
 | |
| 725 | (*WON'T TERMINATE | |
| 726 | apply (metis CO_trans intervalI interval_lemma1 interval_lemma2 isLub_least isLub_upper subset_empty subset_iff trans_def) | |
| 727 | *) | |
| 728 | apply (rule intervalI) | |
| 729 | apply (rule a_less_lub) | |
| 730 | prefer 2 apply assumption | |
| 731 | apply (simp add: S_intv_cl) | |
| 732 | apply (rule ballI) | |
| 733 | apply (simp add: interval_lemma1) | |
| 734 | apply (simp add: isLub_upper) | |
| 735 | -- {* @{text "(L, b) \<in> r"} *}
 | |
| 736 | apply (simp add: isLub_least interval_lemma2) | |
| 737 | done | |
| 738 | ||
| 739 | (*never proved, 2007-01-22*) | |
| 28592 | 740 | ML{*AtpWrapper.problem_name:="Tarski__G_in_interval"*}  (*ALL THEOREMS*)
 | 
| 23449 | 741 | lemma (in CLF) G_in_interval: | 
| 742 |      "[| a \<in> A; b \<in> A; interval r a b \<noteq> {}; S \<subseteq> interval r a b; isGlb S cl G;
 | |
| 743 |          S \<noteq> {} |] ==> G \<in> interval r a b"
 | |
| 744 | apply (simp add: interval_dual) | |
| 27681 | 745 | apply (simp add: CLF.L_in_interval [of _ f, OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro] | 
| 23449 | 746 | dualA_iff A_def dualPO CL_dualCL CLF_dual isGlb_dual_isLub) | 
| 747 | done | |
| 748 | ||
| 28592 | 749 | ML{*AtpWrapper.problem_name:="Tarski__intervalPO"*}  (*ALL THEOREMS*)
 | 
| 23449 | 750 | lemma (in CLF) intervalPO: | 
| 751 |      "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
 | |
| 752 | ==> (| pset = interval r a b, order = induced (interval r a b) r |) | |
| 753 | \<in> PartialOrder" | |
| 754 | proof (neg_clausify) | |
| 755 | assume 0: "a \<in> A" | |
| 756 | assume 1: "b \<in> A" | |
| 757 | assume 2: "\<lparr>pset = interval r a b, order = induced (interval r a b) r\<rparr> \<notin> PartialOrder" | |
| 758 | have 3: "\<not> interval r a b \<subseteq> A" | |
| 759 | by (metis 2 po_subset_po) | |
| 760 | have 4: "b \<notin> A \<or> a \<notin> A" | |
| 761 | by (metis 3 interval_subset) | |
| 762 | have 5: "a \<notin> A" | |
| 763 | by (metis 4 1) | |
| 764 | show "False" | |
| 765 | by (metis 5 0) | |
| 766 | qed | |
| 767 | ||
| 768 | lemma (in CLF) intv_CL_lub: | |
| 769 |  "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
 | |
| 770 | ==> \<forall>S. S \<subseteq> interval r a b --> | |
| 771 | (\<exists>L. isLub S (| pset = interval r a b, | |
| 772 | order = induced (interval r a b) r |) L)" | |
| 773 | apply (intro strip) | |
| 774 | apply (frule S_intv_cl [THEN CL_imp_ex_isLub]) | |
| 775 | prefer 2 apply assumption | |
| 776 | apply assumption | |
| 777 | apply (erule exE) | |
| 778 | -- {* define the lub for the interval as *}
 | |
| 779 | apply (rule_tac x = "if S = {} then a else L" in exI)
 | |
| 780 | apply (simp (no_asm_simp) add: isLub_def split del: split_if) | |
| 781 | apply (intro impI conjI) | |
| 782 | -- {* @{text "(if S = {} then a else L) \<in> interval r a b"} *}
 | |
| 783 | apply (simp add: CL_imp_PO L_in_interval) | |
| 784 | apply (simp add: left_in_interval) | |
| 785 | -- {* lub prop 1 *}
 | |
| 786 | apply (case_tac "S = {}")
 | |
| 787 | -- {* @{text "S = {}, y \<in> S = False => everything"} *}
 | |
| 788 | apply fast | |
| 789 | -- {* @{text "S \<noteq> {}"} *}
 | |
| 790 | apply simp | |
| 791 | -- {* @{text "\<forall>y:S. (y, L) \<in> induced (interval r a b) r"} *}
 | |
| 792 | apply (rule ballI) | |
| 793 | apply (simp add: induced_def L_in_interval) | |
| 794 | apply (rule conjI) | |
| 795 | apply (rule subsetD) | |
| 796 | apply (simp add: S_intv_cl, assumption) | |
| 797 | apply (simp add: isLub_upper) | |
| 798 | -- {* @{text "\<forall>z:interval r a b. (\<forall>y:S. (y, z) \<in> induced (interval r a b) r \<longrightarrow> (if S = {} then a else L, z) \<in> induced (interval r a b) r"} *}
 | |
| 799 | apply (rule ballI) | |
| 800 | apply (rule impI) | |
| 801 | apply (case_tac "S = {}")
 | |
| 802 | -- {* @{text "S = {}"} *}
 | |
| 803 | apply simp | |
| 804 | apply (simp add: induced_def interval_def) | |
| 805 | apply (rule conjI) | |
| 806 | apply (rule reflE, assumption) | |
| 807 | apply (rule interval_not_empty) | |
| 808 | apply (rule CO_trans) | |
| 809 | apply (simp add: interval_def) | |
| 810 | -- {* @{text "S \<noteq> {}"} *}
 | |
| 811 | apply simp | |
| 812 | apply (simp add: induced_def L_in_interval) | |
| 813 | apply (rule isLub_least, assumption) | |
| 814 | apply (rule subsetD) | |
| 815 | prefer 2 apply assumption | |
| 816 | apply (simp add: S_intv_cl, fast) | |
| 817 | done | |
| 818 | ||
| 819 | lemmas (in CLF) intv_CL_glb = intv_CL_lub [THEN Rdual] | |
| 820 | ||
| 821 | (*never proved, 2007-01-22*) | |
| 28592 | 822 | ML{*AtpWrapper.problem_name:="Tarski__interval_is_sublattice"*}  (*ALL THEOREMS*)
 | 
| 23449 | 823 | lemma (in CLF) interval_is_sublattice: | 
| 824 |      "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
 | |
| 825 | ==> interval r a b <<= cl" | |
| 826 | (*sledgehammer *) | |
| 827 | apply (rule sublatticeI) | |
| 828 | apply (simp add: interval_subset) | |
| 829 | (*never proved, 2007-01-22*) | |
| 28592 | 830 | ML_command{*AtpWrapper.problem_name:="Tarski__interval_is_sublattice_simpler"*}  
 | 
| 23449 | 831 | (*sledgehammer *) | 
| 832 | apply (rule CompleteLatticeI) | |
| 833 | apply (simp add: intervalPO) | |
| 834 | apply (simp add: intv_CL_lub) | |
| 835 | apply (simp add: intv_CL_glb) | |
| 836 | done | |
| 837 | ||
| 838 | lemmas (in CLF) interv_is_compl_latt = | |
| 839 | interval_is_sublattice [THEN sublattice_imp_CL] | |
| 840 | ||
| 841 | ||
| 842 | subsection {* Top and Bottom *}
 | |
| 843 | lemma (in CLF) Top_dual_Bot: "Top cl = Bot (dual cl)" | |
| 844 | by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff) | |
| 845 | ||
| 846 | lemma (in CLF) Bot_dual_Top: "Bot cl = Top (dual cl)" | |
| 847 | by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff) | |
| 848 | ||
| 28592 | 849 | ML_command{*AtpWrapper.problem_name:="Tarski__Bot_in_lattice"*}  (*ALL THEOREMS*)
 | 
| 23449 | 850 | lemma (in CLF) Bot_in_lattice: "Bot cl \<in> A" | 
| 851 | (*sledgehammer; *) | |
| 852 | apply (simp add: Bot_def least_def) | |
| 853 | apply (rule_tac a="glb A cl" in someI2) | |
| 854 | apply (simp_all add: glb_in_lattice glb_lower | |
| 855 | r_def [symmetric] A_def [symmetric]) | |
| 856 | done | |
| 857 | ||
| 858 | (*first proved 2007-01-25 after relaxing relevance*) | |
| 28592 | 859 | ML_command{*AtpWrapper.problem_name:="Tarski__Top_in_lattice"*}  (*ALL THEOREMS*)
 | 
| 23449 | 860 | lemma (in CLF) Top_in_lattice: "Top cl \<in> A" | 
| 861 | (*sledgehammer;*) | |
| 862 | apply (simp add: Top_dual_Bot A_def) | |
| 863 | (*first proved 2007-01-25 after relaxing relevance*) | |
| 28592 | 864 | ML_command{*AtpWrapper.problem_name:="Tarski__Top_in_lattice_simpler"*}  (*ALL THEOREMS*)
 | 
| 23449 | 865 | (*sledgehammer*) | 
| 866 | apply (rule dualA_iff [THEN subst]) | |
| 27681 | 867 | apply (blast intro!: CLF.Bot_in_lattice [OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro] dualPO CL_dualCL CLF_dual) | 
| 23449 | 868 | done | 
| 869 | ||
| 870 | lemma (in CLF) Top_prop: "x \<in> A ==> (x, Top cl) \<in> r" | |
| 871 | apply (simp add: Top_def greatest_def) | |
| 872 | apply (rule_tac a="lub A cl" in someI2) | |
| 873 | apply (rule someI2) | |
| 874 | apply (simp_all add: lub_in_lattice lub_upper | |
| 875 | r_def [symmetric] A_def [symmetric]) | |
| 876 | done | |
| 877 | ||
| 878 | (*never proved, 2007-01-22*) | |
| 28592 | 879 | ML_command{*AtpWrapper.problem_name:="Tarski__Bot_prop"*}  (*ALL THEOREMS*) 
 | 
| 23449 | 880 | lemma (in CLF) Bot_prop: "x \<in> A ==> (Bot cl, x) \<in> r" | 
| 881 | (*sledgehammer*) | |
| 882 | apply (simp add: Bot_dual_Top r_def) | |
| 883 | apply (rule dualr_iff [THEN subst]) | |
| 27681 | 884 | apply (simp add: CLF.Top_prop [of _ f, OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro] | 
| 23449 | 885 | dualA_iff A_def dualPO CL_dualCL CLF_dual) | 
| 886 | done | |
| 887 | ||
| 28592 | 888 | ML_command{*AtpWrapper.problem_name:="Tarski__Bot_in_lattice"*}  (*ALL THEOREMS*)
 | 
| 23449 | 889 | lemma (in CLF) Top_intv_not_empty: "x \<in> A  ==> interval r x (Top cl) \<noteq> {}" 
 | 
| 890 | apply (metis Top_in_lattice Top_prop empty_iff intervalI reflE) | |
| 891 | done | |
| 892 | ||
| 28592 | 893 | ML_command{*AtpWrapper.problem_name:="Tarski__Bot_intv_not_empty"*}  (*ALL THEOREMS*)
 | 
| 23449 | 894 | lemma (in CLF) Bot_intv_not_empty: "x \<in> A ==> interval r (Bot cl) x \<noteq> {}" 
 | 
| 895 | apply (metis Bot_prop ex_in_conv intervalI reflE rel_imp_elem) | |
| 896 | done | |
| 897 | ||
| 898 | ||
| 899 | subsection {* fixed points form a partial order *}
 | |
| 900 | ||
| 901 | lemma (in CLF) fixf_po: "(| pset = P, order = induced P r|) \<in> PartialOrder" | |
| 902 | by (simp add: P_def fix_subset po_subset_po) | |
| 903 | ||
| 904 | (*first proved 2007-01-25 after relaxing relevance*) | |
| 28592 | 905 | ML_command{*AtpWrapper.problem_name:="Tarski__Y_subset_A"*}
 | 
| 23449 | 906 | declare (in Tarski) P_def[simp] Y_ss [simp] | 
| 907 | declare fix_subset [intro] subset_trans [intro] | |
| 908 | lemma (in Tarski) Y_subset_A: "Y \<subseteq> A" | |
| 909 | (*sledgehammer*) | |
| 910 | apply (rule subset_trans [OF _ fix_subset]) | |
| 911 | apply (rule Y_ss [simplified P_def]) | |
| 912 | done | |
| 913 | declare (in Tarski) P_def[simp del] Y_ss [simp del] | |
| 914 | declare fix_subset [rule del] subset_trans [rule del] | |
| 915 | ||
| 916 | ||
| 917 | lemma (in Tarski) lubY_in_A: "lub Y cl \<in> A" | |
| 918 | by (rule Y_subset_A [THEN lub_in_lattice]) | |
| 919 | ||
| 920 | (*never proved, 2007-01-22*) | |
| 28592 | 921 | ML_command{*AtpWrapper.problem_name:="Tarski__lubY_le_flubY"*}  (*ALL THEOREMS*)
 | 
| 23449 | 922 | lemma (in Tarski) lubY_le_flubY: "(lub Y cl, f (lub Y cl)) \<in> r" | 
| 923 | (*sledgehammer*) | |
| 924 | apply (rule lub_least) | |
| 925 | apply (rule Y_subset_A) | |
| 926 | apply (rule f_in_funcset [THEN funcset_mem]) | |
| 927 | apply (rule lubY_in_A) | |
| 928 | -- {* @{text "Y \<subseteq> P ==> f x = x"} *}
 | |
| 929 | apply (rule ballI) | |
| 28592 | 930 | ML_command{*AtpWrapper.problem_name:="Tarski__lubY_le_flubY_simpler"*}  (*ALL THEOREMS*)
 | 
| 23449 | 931 | (*sledgehammer *) | 
| 932 | apply (rule_tac t = "x" in fix_imp_eq [THEN subst]) | |
| 933 | apply (erule Y_ss [simplified P_def, THEN subsetD]) | |
| 934 | -- {* @{text "reduce (f x, f (lub Y cl)) \<in> r to (x, lub Y cl) \<in> r"} by monotonicity *}
 | |
| 28592 | 935 | ML_command{*AtpWrapper.problem_name:="Tarski__lubY_le_flubY_simplest"*}  (*ALL THEOREMS*)
 | 
| 23449 | 936 | (*sledgehammer*) | 
| 937 | apply (rule_tac f = "f" in monotoneE) | |
| 938 | apply (rule monotone_f) | |
| 939 | apply (simp add: Y_subset_A [THEN subsetD]) | |
| 940 | apply (rule lubY_in_A) | |
| 941 | apply (simp add: lub_upper Y_subset_A) | |
| 942 | done | |
| 943 | ||
| 944 | (*first proved 2007-01-25 after relaxing relevance*) | |
| 28592 | 945 | ML_command{*AtpWrapper.problem_name:="Tarski__intY1_subset"*}  (*ALL THEOREMS*)
 | 
| 23449 | 946 | lemma (in Tarski) intY1_subset: "intY1 \<subseteq> A" | 
| 947 | (*sledgehammer*) | |
| 948 | apply (unfold intY1_def) | |
| 949 | apply (rule interval_subset) | |
| 950 | apply (rule lubY_in_A) | |
| 951 | apply (rule Top_in_lattice) | |
| 952 | done | |
| 953 | ||
| 954 | lemmas (in Tarski) intY1_elem = intY1_subset [THEN subsetD] | |
| 955 | ||
| 956 | (*never proved, 2007-01-22*) | |
| 28592 | 957 | ML_command{*AtpWrapper.problem_name:="Tarski__intY1_f_closed"*}  (*ALL THEOREMS*)
 | 
| 23449 | 958 | lemma (in Tarski) intY1_f_closed: "x \<in> intY1 \<Longrightarrow> f x \<in> intY1" | 
| 959 | (*sledgehammer*) | |
| 960 | apply (simp add: intY1_def interval_def) | |
| 961 | apply (rule conjI) | |
| 962 | apply (rule transE) | |
| 963 | apply (rule lubY_le_flubY) | |
| 964 | -- {* @{text "(f (lub Y cl), f x) \<in> r"} *}
 | |
| 28592 | 965 | ML_command{*AtpWrapper.problem_name:="Tarski__intY1_f_closed_simpler"*}  (*ALL THEOREMS*)
 | 
| 23449 | 966 | (*sledgehammer [has been proved before now...]*) | 
| 967 | apply (rule_tac f=f in monotoneE) | |
| 968 | apply (rule monotone_f) | |
| 969 | apply (rule lubY_in_A) | |
| 970 | apply (simp add: intY1_def interval_def intY1_elem) | |
| 971 | apply (simp add: intY1_def interval_def) | |
| 972 | -- {* @{text "(f x, Top cl) \<in> r"} *} 
 | |
| 973 | apply (rule Top_prop) | |
| 974 | apply (rule f_in_funcset [THEN funcset_mem]) | |
| 975 | apply (simp add: intY1_def interval_def intY1_elem) | |
| 976 | done | |
| 977 | ||
| 28592 | 978 | ML_command{*AtpWrapper.problem_name:="Tarski__intY1_func"*}  (*ALL THEOREMS*)
 | 
| 27368 | 979 | lemma (in Tarski) intY1_func: "(%x: intY1. f x) \<in> intY1 -> intY1" | 
| 980 | apply (rule restrict_in_funcset) | |
| 981 | apply (metis intY1_f_closed restrict_in_funcset) | |
| 982 | done | |
| 23449 | 983 | |
| 28592 | 984 | ML_command{*AtpWrapper.problem_name:="Tarski__intY1_mono"*}  (*ALL THEOREMS*)
 | 
| 24855 | 985 | lemma (in Tarski) intY1_mono: | 
| 23449 | 986 | "monotone (%x: intY1. f x) intY1 (induced intY1 r)" | 
| 987 | (*sledgehammer *) | |
| 988 | apply (auto simp add: monotone_def induced_def intY1_f_closed) | |
| 989 | apply (blast intro: intY1_elem monotone_f [THEN monotoneE]) | |
| 990 | done | |
| 991 | ||
| 992 | (*proof requires relaxing relevance: 2007-01-25*) | |
| 28592 | 993 | ML_command{*AtpWrapper.problem_name:="Tarski__intY1_is_cl"*}  (*ALL THEOREMS*)
 | 
| 23449 | 994 | lemma (in Tarski) intY1_is_cl: | 
| 995 | "(| pset = intY1, order = induced intY1 r |) \<in> CompleteLattice" | |
| 996 | (*sledgehammer*) | |
| 997 | apply (unfold intY1_def) | |
| 998 | apply (rule interv_is_compl_latt) | |
| 999 | apply (rule lubY_in_A) | |
| 1000 | apply (rule Top_in_lattice) | |
| 1001 | apply (rule Top_intv_not_empty) | |
| 1002 | apply (rule lubY_in_A) | |
| 1003 | done | |
| 1004 | ||
| 1005 | (*never proved, 2007-01-22*) | |
| 28592 | 1006 | ML_command{*AtpWrapper.problem_name:="Tarski__v_in_P"*}  (*ALL THEOREMS*)
 | 
| 23449 | 1007 | lemma (in Tarski) v_in_P: "v \<in> P" | 
| 1008 | (*sledgehammer*) | |
| 1009 | apply (unfold P_def) | |
| 1010 | apply (rule_tac A = "intY1" in fixf_subset) | |
| 1011 | apply (rule intY1_subset) | |
| 27681 | 1012 | apply (simp add: CLF.glbH_is_fixp [OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro, OF _ intY1_is_cl, simplified] | 
| 1013 | v_def CL_imp_PO intY1_is_cl CLF_set_def intY1_func intY1_mono) | |
| 23449 | 1014 | done | 
| 1015 | ||
| 28592 | 1016 | ML_command{*AtpWrapper.problem_name:="Tarski__z_in_interval"*}  (*ALL THEOREMS*)
 | 
| 23449 | 1017 | lemma (in Tarski) z_in_interval: | 
| 1018 | "[| z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r |] ==> z \<in> intY1" | |
| 1019 | (*sledgehammer *) | |
| 1020 | apply (unfold intY1_def P_def) | |
| 1021 | apply (rule intervalI) | |
| 1022 | prefer 2 | |
| 1023 | apply (erule fix_subset [THEN subsetD, THEN Top_prop]) | |
| 1024 | apply (rule lub_least) | |
| 1025 | apply (rule Y_subset_A) | |
| 1026 | apply (fast elim!: fix_subset [THEN subsetD]) | |
| 1027 | apply (simp add: induced_def) | |
| 1028 | done | |
| 1029 | ||
| 28592 | 1030 | ML_command{*AtpWrapper.problem_name:="Tarski__fz_in_int_rel"*}  (*ALL THEOREMS*)
 | 
| 23449 | 1031 | lemma (in Tarski) f'z_in_int_rel: "[| z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r |] | 
| 1032 | ==> ((%x: intY1. f x) z, z) \<in> induced intY1 r" | |
| 26806 | 1033 | apply (metis P_def acc_def fix_imp_eq fix_subset indI reflE restrict_apply subset_eq z_in_interval) | 
| 23449 | 1034 | done | 
| 1035 | ||
| 1036 | (*never proved, 2007-01-22*) | |
| 28592 | 1037 | ML_command{*AtpWrapper.problem_name:="Tarski__tarski_full_lemma"*}  (*ALL THEOREMS*)
 | 
| 23449 | 1038 | lemma (in Tarski) tarski_full_lemma: | 
| 1039 | "\<exists>L. isLub Y (| pset = P, order = induced P r |) L" | |
| 1040 | apply (rule_tac x = "v" in exI) | |
| 1041 | apply (simp add: isLub_def) | |
| 1042 | -- {* @{text "v \<in> P"} *}
 | |
| 1043 | apply (simp add: v_in_P) | |
| 1044 | apply (rule conjI) | |
| 1045 | (*sledgehammer*) | |
| 1046 | -- {* @{text v} is lub *}
 | |
| 1047 | -- {* @{text "1. \<forall>y:Y. (y, v) \<in> induced P r"} *}
 | |
| 1048 | apply (rule ballI) | |
| 1049 | apply (simp add: induced_def subsetD v_in_P) | |
| 1050 | apply (rule conjI) | |
| 1051 | apply (erule Y_ss [THEN subsetD]) | |
| 1052 | apply (rule_tac b = "lub Y cl" in transE) | |
| 1053 | apply (rule lub_upper) | |
| 1054 | apply (rule Y_subset_A, assumption) | |
| 1055 | apply (rule_tac b = "Top cl" in interval_imp_mem) | |
| 1056 | apply (simp add: v_def) | |
| 1057 | apply (fold intY1_def) | |
| 27681 | 1058 | apply (rule CL.glb_in_lattice [OF CL.intro, OF PO.intro CL_axioms.intro, OF _ intY1_is_cl, simplified]) | 
| 23449 | 1059 | apply (simp add: CL_imp_PO intY1_is_cl, force) | 
| 1060 | -- {* @{text v} is LEAST ub *}
 | |
| 1061 | apply clarify | |
| 1062 | apply (rule indI) | |
| 1063 | prefer 3 apply assumption | |
| 1064 | prefer 2 apply (simp add: v_in_P) | |
| 1065 | apply (unfold v_def) | |
| 1066 | (*never proved, 2007-01-22*) | |
| 28592 | 1067 | ML_command{*AtpWrapper.problem_name:="Tarski__tarski_full_lemma_simpler"*} 
 | 
| 23449 | 1068 | (*sledgehammer*) | 
| 1069 | apply (rule indE) | |
| 1070 | apply (rule_tac [2] intY1_subset) | |
| 1071 | (*never proved, 2007-01-22*) | |
| 28592 | 1072 | ML_command{*AtpWrapper.problem_name:="Tarski__tarski_full_lemma_simplest"*} 
 | 
| 23449 | 1073 | (*sledgehammer*) | 
| 27681 | 1074 | apply (rule CL.glb_lower [OF CL.intro, OF PO.intro CL_axioms.intro, OF _ intY1_is_cl, simplified]) | 
| 23449 | 1075 | apply (simp add: CL_imp_PO intY1_is_cl) | 
| 1076 | apply force | |
| 1077 | apply (simp add: induced_def intY1_f_closed z_in_interval) | |
| 1078 | apply (simp add: P_def fix_imp_eq [of _ f A] reflE | |
| 1079 | fix_subset [of f A, THEN subsetD]) | |
| 1080 | done | |
| 1081 | ||
| 1082 | lemma CompleteLatticeI_simp: | |
| 1083 | "[| (| pset = A, order = r |) \<in> PartialOrder; | |
| 1084 | \<forall>S. S \<subseteq> A --> (\<exists>L. isLub S (| pset = A, order = r |) L) |] | |
| 1085 | ==> (| pset = A, order = r |) \<in> CompleteLattice" | |
| 1086 | by (simp add: CompleteLatticeI Rdual) | |
| 1087 | ||
| 1088 | ||
| 1089 | (*never proved, 2007-01-22*) | |
| 28592 | 1090 | ML_command{*AtpWrapper.problem_name:="Tarski__Tarski_full"*}
 | 
| 23449 | 1091 | declare (in CLF) fixf_po[intro] P_def [simp] A_def [simp] r_def [simp] | 
| 1092 | Tarski.tarski_full_lemma [intro] cl_po [intro] cl_co [intro] | |
| 1093 | CompleteLatticeI_simp [intro] | |
| 1094 | theorem (in CLF) Tarski_full: | |
| 1095 | "(| pset = P, order = induced P r|) \<in> CompleteLattice" | |
| 1096 | (*sledgehammer*) | |
| 1097 | apply (rule CompleteLatticeI_simp) | |
| 1098 | apply (rule fixf_po, clarify) | |
| 1099 | (*never proved, 2007-01-22*) | |
| 28592 | 1100 | ML_command{*AtpWrapper.problem_name:="Tarski__Tarski_full_simpler"*}
 | 
| 23449 | 1101 | (*sledgehammer*) | 
| 1102 | apply (simp add: P_def A_def r_def) | |
| 27681 | 1103 | apply (blast intro!: Tarski.tarski_full_lemma [OF Tarski.intro, OF CLF.intro Tarski_axioms.intro, | 
| 1104 | OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro] cl_po cl_co f_cl) | |
| 23449 | 1105 | done | 
| 1106 | declare (in CLF) fixf_po[rule del] P_def [simp del] A_def [simp del] r_def [simp del] | |
| 1107 | Tarski.tarski_full_lemma [rule del] cl_po [rule del] cl_co [rule del] | |
| 1108 | CompleteLatticeI_simp [rule del] | |
| 1109 | ||
| 1110 | ||
| 1111 | end |