| author | haftmann | 
| Fri, 27 Mar 2009 10:05:13 +0100 | |
| changeset 30740 | 2d3ae5a7edb2 | 
| parent 30384 | 2f24531b2d3e | 
| child 31017 | 2c227493ea56 | 
| permissions | -rw-r--r-- | 
| 8924 | 1 | (* Title: HOL/SetInterval.thy | 
| 13735 | 2 | Author: Tobias Nipkow and Clemens Ballarin | 
| 14485 | 3 | Additions by Jeremy Avigad in March 2004 | 
| 8957 | 4 | Copyright 2000 TU Muenchen | 
| 8924 | 5 | |
| 13735 | 6 | lessThan, greaterThan, atLeast, atMost and two-sided intervals | 
| 8924 | 7 | *) | 
| 8 | ||
| 14577 | 9 | header {* Set intervals *}
 | 
| 10 | ||
| 15131 | 11 | theory SetInterval | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25560diff
changeset | 12 | imports Int | 
| 15131 | 13 | begin | 
| 8924 | 14 | |
| 24691 | 15 | context ord | 
| 16 | begin | |
| 17 | definition | |
| 25062 | 18 |   lessThan    :: "'a => 'a set"	("(1{..<_})") where
 | 
| 19 |   "{..<u} == {x. x < u}"
 | |
| 24691 | 20 | |
| 21 | definition | |
| 25062 | 22 |   atMost      :: "'a => 'a set"	("(1{.._})") where
 | 
| 23 |   "{..u} == {x. x \<le> u}"
 | |
| 24691 | 24 | |
| 25 | definition | |
| 25062 | 26 |   greaterThan :: "'a => 'a set"	("(1{_<..})") where
 | 
| 27 |   "{l<..} == {x. l<x}"
 | |
| 24691 | 28 | |
| 29 | definition | |
| 25062 | 30 |   atLeast     :: "'a => 'a set"	("(1{_..})") where
 | 
| 31 |   "{l..} == {x. l\<le>x}"
 | |
| 24691 | 32 | |
| 33 | definition | |
| 25062 | 34 |   greaterThanLessThan :: "'a => 'a => 'a set"  ("(1{_<..<_})") where
 | 
| 35 |   "{l<..<u} == {l<..} Int {..<u}"
 | |
| 24691 | 36 | |
| 37 | definition | |
| 25062 | 38 |   atLeastLessThan :: "'a => 'a => 'a set"      ("(1{_..<_})") where
 | 
| 39 |   "{l..<u} == {l..} Int {..<u}"
 | |
| 24691 | 40 | |
| 41 | definition | |
| 25062 | 42 |   greaterThanAtMost :: "'a => 'a => 'a set"    ("(1{_<.._})") where
 | 
| 43 |   "{l<..u} == {l<..} Int {..u}"
 | |
| 24691 | 44 | |
| 45 | definition | |
| 25062 | 46 |   atLeastAtMost :: "'a => 'a => 'a set"        ("(1{_.._})") where
 | 
| 47 |   "{l..u} == {l..} Int {..u}"
 | |
| 24691 | 48 | |
| 49 | end | |
| 8924 | 50 | |
| 13735 | 51 | |
| 15048 | 52 | text{* A note of warning when using @{term"{..<n}"} on type @{typ
 | 
| 53 | nat}: it is equivalent to @{term"{0::nat..<n}"} but some lemmas involving
 | |
| 15052 | 54 | @{term"{m..<n}"} may not exist in @{term"{..<n}"}-form as well. *}
 | 
| 15048 | 55 | |
| 14418 | 56 | syntax | 
| 30384 | 57 |   "@UNION_le"   :: "'a => 'a => 'b set => 'b set"       ("(3UN _<=_./ _)" 10)
 | 
| 58 |   "@UNION_less" :: "'a => 'a => 'b set => 'b set"       ("(3UN _<_./ _)" 10)
 | |
| 59 |   "@INTER_le"   :: "'a => 'a => 'b set => 'b set"       ("(3INT _<=_./ _)" 10)
 | |
| 60 |   "@INTER_less" :: "'a => 'a => 'b set => 'b set"       ("(3INT _<_./ _)" 10)
 | |
| 14418 | 61 | |
| 30372 | 62 | syntax (xsymbols) | 
| 30384 | 63 |   "@UNION_le"   :: "'a => 'a => 'b set => 'b set"       ("(3\<Union> _\<le>_./ _)" 10)
 | 
| 64 |   "@UNION_less" :: "'a => 'a => 'b set => 'b set"       ("(3\<Union> _<_./ _)" 10)
 | |
| 65 |   "@INTER_le"   :: "'a => 'a => 'b set => 'b set"       ("(3\<Inter> _\<le>_./ _)" 10)
 | |
| 66 |   "@INTER_less" :: "'a => 'a => 'b set => 'b set"       ("(3\<Inter> _<_./ _)" 10)
 | |
| 14418 | 67 | |
| 30372 | 68 | syntax (latex output) | 
| 30384 | 69 |   "@UNION_le"   :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Union>(00_ \<le> _)/ _)" 10)
 | 
| 70 |   "@UNION_less" :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Union>(00_ < _)/ _)" 10)
 | |
| 71 |   "@INTER_le"   :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Inter>(00_ \<le> _)/ _)" 10)
 | |
| 72 |   "@INTER_less" :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Inter>(00_ < _)/ _)" 10)
 | |
| 14418 | 73 | |
| 74 | translations | |
| 75 |   "UN i<=n. A"  == "UN i:{..n}. A"
 | |
| 15045 | 76 |   "UN i<n. A"   == "UN i:{..<n}. A"
 | 
| 14418 | 77 |   "INT i<=n. A" == "INT i:{..n}. A"
 | 
| 15045 | 78 |   "INT i<n. A"  == "INT i:{..<n}. A"
 | 
| 14418 | 79 | |
| 80 | ||
| 14485 | 81 | subsection {* Various equivalences *}
 | 
| 13735 | 82 | |
| 25062 | 83 | lemma (in ord) lessThan_iff [iff]: "(i: lessThan k) = (i<k)" | 
| 13850 | 84 | by (simp add: lessThan_def) | 
| 13735 | 85 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 86 | lemma Compl_lessThan [simp]: | 
| 13735 | 87 | "!!k:: 'a::linorder. -lessThan k = atLeast k" | 
| 13850 | 88 | apply (auto simp add: lessThan_def atLeast_def) | 
| 13735 | 89 | done | 
| 90 | ||
| 13850 | 91 | lemma single_Diff_lessThan [simp]: "!!k:: 'a::order. {k} - lessThan k = {k}"
 | 
| 92 | by auto | |
| 13735 | 93 | |
| 25062 | 94 | lemma (in ord) greaterThan_iff [iff]: "(i: greaterThan k) = (k<i)" | 
| 13850 | 95 | by (simp add: greaterThan_def) | 
| 13735 | 96 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 97 | lemma Compl_greaterThan [simp]: | 
| 13735 | 98 | "!!k:: 'a::linorder. -greaterThan k = atMost k" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25919diff
changeset | 99 | by (auto simp add: greaterThan_def atMost_def) | 
| 13735 | 100 | |
| 13850 | 101 | lemma Compl_atMost [simp]: "!!k:: 'a::linorder. -atMost k = greaterThan k" | 
| 102 | apply (subst Compl_greaterThan [symmetric]) | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 103 | apply (rule double_complement) | 
| 13735 | 104 | done | 
| 105 | ||
| 25062 | 106 | lemma (in ord) atLeast_iff [iff]: "(i: atLeast k) = (k<=i)" | 
| 13850 | 107 | by (simp add: atLeast_def) | 
| 13735 | 108 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 109 | lemma Compl_atLeast [simp]: | 
| 13735 | 110 | "!!k:: 'a::linorder. -atLeast k = lessThan k" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25919diff
changeset | 111 | by (auto simp add: lessThan_def atLeast_def) | 
| 13735 | 112 | |
| 25062 | 113 | lemma (in ord) atMost_iff [iff]: "(i: atMost k) = (i<=k)" | 
| 13850 | 114 | by (simp add: atMost_def) | 
| 13735 | 115 | |
| 14485 | 116 | lemma atMost_Int_atLeast: "!!n:: 'a::order. atMost n Int atLeast n = {n}"
 | 
| 117 | by (blast intro: order_antisym) | |
| 13850 | 118 | |
| 119 | ||
| 14485 | 120 | subsection {* Logical Equivalences for Set Inclusion and Equality *}
 | 
| 13850 | 121 | |
| 122 | lemma atLeast_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 123 | "(atLeast x \<subseteq> atLeast y) = (y \<le> (x::'a::order))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 124 | by (blast intro: order_trans) | 
| 13850 | 125 | |
| 126 | lemma atLeast_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 127 | "(atLeast x = atLeast y) = (x = (y::'a::linorder))" | 
| 13850 | 128 | by (blast intro: order_antisym order_trans) | 
| 129 | ||
| 130 | lemma greaterThan_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 131 | "(greaterThan x \<subseteq> greaterThan y) = (y \<le> (x::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 132 | apply (auto simp add: greaterThan_def) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 133 | apply (subst linorder_not_less [symmetric], blast) | 
| 13850 | 134 | done | 
| 135 | ||
| 136 | lemma greaterThan_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 137 | "(greaterThan x = greaterThan y) = (x = (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 138 | apply (rule iffI) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 139 | apply (erule equalityE) | 
| 29709 | 140 | apply simp_all | 
| 13850 | 141 | done | 
| 142 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 143 | lemma atMost_subset_iff [iff]: "(atMost x \<subseteq> atMost y) = (x \<le> (y::'a::order))" | 
| 13850 | 144 | by (blast intro: order_trans) | 
| 145 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 146 | lemma atMost_eq_iff [iff]: "(atMost x = atMost y) = (x = (y::'a::linorder))" | 
| 13850 | 147 | by (blast intro: order_antisym order_trans) | 
| 148 | ||
| 149 | lemma lessThan_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 150 | "(lessThan x \<subseteq> lessThan y) = (x \<le> (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 151 | apply (auto simp add: lessThan_def) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 152 | apply (subst linorder_not_less [symmetric], blast) | 
| 13850 | 153 | done | 
| 154 | ||
| 155 | lemma lessThan_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 156 | "(lessThan x = lessThan y) = (x = (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 157 | apply (rule iffI) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 158 | apply (erule equalityE) | 
| 29709 | 159 | apply simp_all | 
| 13735 | 160 | done | 
| 161 | ||
| 162 | ||
| 13850 | 163 | subsection {*Two-sided intervals*}
 | 
| 13735 | 164 | |
| 24691 | 165 | context ord | 
| 166 | begin | |
| 167 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23496diff
changeset | 168 | lemma greaterThanLessThan_iff [simp,noatp]: | 
| 25062 | 169 |   "(i : {l<..<u}) = (l < i & i < u)"
 | 
| 13735 | 170 | by (simp add: greaterThanLessThan_def) | 
| 171 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23496diff
changeset | 172 | lemma atLeastLessThan_iff [simp,noatp]: | 
| 25062 | 173 |   "(i : {l..<u}) = (l <= i & i < u)"
 | 
| 13735 | 174 | by (simp add: atLeastLessThan_def) | 
| 175 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23496diff
changeset | 176 | lemma greaterThanAtMost_iff [simp,noatp]: | 
| 25062 | 177 |   "(i : {l<..u}) = (l < i & i <= u)"
 | 
| 13735 | 178 | by (simp add: greaterThanAtMost_def) | 
| 179 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23496diff
changeset | 180 | lemma atLeastAtMost_iff [simp,noatp]: | 
| 25062 | 181 |   "(i : {l..u}) = (l <= i & i <= u)"
 | 
| 13735 | 182 | by (simp add: atLeastAtMost_def) | 
| 183 | ||
| 14577 | 184 | text {* The above four lemmas could be declared as iffs.
 | 
| 185 |   If we do so, a call to blast in Hyperreal/Star.ML, lemma @{text STAR_Int}
 | |
| 186 | seems to take forever (more than one hour). *} | |
| 24691 | 187 | end | 
| 13735 | 188 | |
| 15554 | 189 | subsubsection{* Emptyness and singletons *}
 | 
| 190 | ||
| 24691 | 191 | context order | 
| 192 | begin | |
| 15554 | 193 | |
| 25062 | 194 | lemma atLeastAtMost_empty [simp]: "n < m ==> {m..n} = {}";
 | 
| 24691 | 195 | by (auto simp add: atLeastAtMost_def atMost_def atLeast_def) | 
| 196 | ||
| 25062 | 197 | lemma atLeastLessThan_empty[simp]: "n \<le> m ==> {m..<n} = {}"
 | 
| 15554 | 198 | by (auto simp add: atLeastLessThan_def) | 
| 199 | ||
| 25062 | 200 | lemma greaterThanAtMost_empty[simp]:"l \<le> k ==> {k<..l} = {}"
 | 
| 17719 | 201 | by(auto simp:greaterThanAtMost_def greaterThan_def atMost_def) | 
| 202 | ||
| 29709 | 203 | lemma greaterThanLessThan_empty[simp]:"l \<le> k ==> {k<..<l} = {}"
 | 
| 17719 | 204 | by(auto simp:greaterThanLessThan_def greaterThan_def lessThan_def) | 
| 205 | ||
| 25062 | 206 | lemma atLeastAtMost_singleton [simp]: "{a..a} = {a}"
 | 
| 24691 | 207 | by (auto simp add: atLeastAtMost_def atMost_def atLeast_def) | 
| 208 | ||
| 209 | end | |
| 14485 | 210 | |
| 211 | subsection {* Intervals of natural numbers *}
 | |
| 212 | ||
| 15047 | 213 | subsubsection {* The Constant @{term lessThan} *}
 | 
| 214 | ||
| 14485 | 215 | lemma lessThan_0 [simp]: "lessThan (0::nat) = {}"
 | 
| 216 | by (simp add: lessThan_def) | |
| 217 | ||
| 218 | lemma lessThan_Suc: "lessThan (Suc k) = insert k (lessThan k)" | |
| 219 | by (simp add: lessThan_def less_Suc_eq, blast) | |
| 220 | ||
| 221 | lemma lessThan_Suc_atMost: "lessThan (Suc k) = atMost k" | |
| 222 | by (simp add: lessThan_def atMost_def less_Suc_eq_le) | |
| 223 | ||
| 224 | lemma UN_lessThan_UNIV: "(UN m::nat. lessThan m) = UNIV" | |
| 225 | by blast | |
| 226 | ||
| 15047 | 227 | subsubsection {* The Constant @{term greaterThan} *}
 | 
| 228 | ||
| 14485 | 229 | lemma greaterThan_0 [simp]: "greaterThan 0 = range Suc" | 
| 230 | apply (simp add: greaterThan_def) | |
| 231 | apply (blast dest: gr0_conv_Suc [THEN iffD1]) | |
| 232 | done | |
| 233 | ||
| 234 | lemma greaterThan_Suc: "greaterThan (Suc k) = greaterThan k - {Suc k}"
 | |
| 235 | apply (simp add: greaterThan_def) | |
| 236 | apply (auto elim: linorder_neqE) | |
| 237 | done | |
| 238 | ||
| 239 | lemma INT_greaterThan_UNIV: "(INT m::nat. greaterThan m) = {}"
 | |
| 240 | by blast | |
| 241 | ||
| 15047 | 242 | subsubsection {* The Constant @{term atLeast} *}
 | 
| 243 | ||
| 14485 | 244 | lemma atLeast_0 [simp]: "atLeast (0::nat) = UNIV" | 
| 245 | by (unfold atLeast_def UNIV_def, simp) | |
| 246 | ||
| 247 | lemma atLeast_Suc: "atLeast (Suc k) = atLeast k - {k}"
 | |
| 248 | apply (simp add: atLeast_def) | |
| 249 | apply (simp add: Suc_le_eq) | |
| 250 | apply (simp add: order_le_less, blast) | |
| 251 | done | |
| 252 | ||
| 253 | lemma atLeast_Suc_greaterThan: "atLeast (Suc k) = greaterThan k" | |
| 254 | by (auto simp add: greaterThan_def atLeast_def less_Suc_eq_le) | |
| 255 | ||
| 256 | lemma UN_atLeast_UNIV: "(UN m::nat. atLeast m) = UNIV" | |
| 257 | by blast | |
| 258 | ||
| 15047 | 259 | subsubsection {* The Constant @{term atMost} *}
 | 
| 260 | ||
| 14485 | 261 | lemma atMost_0 [simp]: "atMost (0::nat) = {0}"
 | 
| 262 | by (simp add: atMost_def) | |
| 263 | ||
| 264 | lemma atMost_Suc: "atMost (Suc k) = insert (Suc k) (atMost k)" | |
| 265 | apply (simp add: atMost_def) | |
| 266 | apply (simp add: less_Suc_eq order_le_less, blast) | |
| 267 | done | |
| 268 | ||
| 269 | lemma UN_atMost_UNIV: "(UN m::nat. atMost m) = UNIV" | |
| 270 | by blast | |
| 271 | ||
| 15047 | 272 | subsubsection {* The Constant @{term atLeastLessThan} *}
 | 
| 273 | ||
| 28068 | 274 | text{*The orientation of the following 2 rules is tricky. The lhs is
 | 
| 24449 | 275 | defined in terms of the rhs. Hence the chosen orientation makes sense | 
| 276 | in this theory --- the reverse orientation complicates proofs (eg | |
| 277 | nontermination). But outside, when the definition of the lhs is rarely | |
| 278 | used, the opposite orientation seems preferable because it reduces a | |
| 279 | specific concept to a more general one. *} | |
| 28068 | 280 | |
| 15047 | 281 | lemma atLeast0LessThan: "{0::nat..<n} = {..<n}"
 | 
| 15042 | 282 | by(simp add:lessThan_def atLeastLessThan_def) | 
| 24449 | 283 | |
| 28068 | 284 | lemma atLeast0AtMost: "{0..n::nat} = {..n}"
 | 
| 285 | by(simp add:atMost_def atLeastAtMost_def) | |
| 286 | ||
| 24449 | 287 | declare atLeast0LessThan[symmetric, code unfold] | 
| 28068 | 288 | atLeast0AtMost[symmetric, code unfold] | 
| 24449 | 289 | |
| 290 | lemma atLeastLessThan0: "{m..<0::nat} = {}"
 | |
| 15047 | 291 | by (simp add: atLeastLessThan_def) | 
| 24449 | 292 | |
| 15047 | 293 | subsubsection {* Intervals of nats with @{term Suc} *}
 | 
| 294 | ||
| 295 | text{*Not a simprule because the RHS is too messy.*}
 | |
| 296 | lemma atLeastLessThanSuc: | |
| 297 |     "{m..<Suc n} = (if m \<le> n then insert n {m..<n} else {})"
 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 298 | by (auto simp add: atLeastLessThan_def) | 
| 15047 | 299 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 300 | lemma atLeastLessThan_singleton [simp]: "{m..<Suc m} = {m}"
 | 
| 15047 | 301 | by (auto simp add: atLeastLessThan_def) | 
| 16041 | 302 | (* | 
| 15047 | 303 | lemma atLeast_sum_LessThan [simp]: "{m + k..<k::nat} = {}"
 | 
| 304 | by (induct k, simp_all add: atLeastLessThanSuc) | |
| 305 | ||
| 306 | lemma atLeastSucLessThan [simp]: "{Suc n..<n} = {}"
 | |
| 307 | by (auto simp add: atLeastLessThan_def) | |
| 16041 | 308 | *) | 
| 15045 | 309 | lemma atLeastLessThanSuc_atLeastAtMost: "{l..<Suc u} = {l..u}"
 | 
| 14485 | 310 | by (simp add: lessThan_Suc_atMost atLeastAtMost_def atLeastLessThan_def) | 
| 311 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 312 | lemma atLeastSucAtMost_greaterThanAtMost: "{Suc l..u} = {l<..u}"
 | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 313 | by (simp add: atLeast_Suc_greaterThan atLeastAtMost_def | 
| 14485 | 314 | greaterThanAtMost_def) | 
| 315 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 316 | lemma atLeastSucLessThan_greaterThanLessThan: "{Suc l..<u} = {l<..<u}"
 | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 317 | by (simp add: atLeast_Suc_greaterThan atLeastLessThan_def | 
| 14485 | 318 | greaterThanLessThan_def) | 
| 319 | ||
| 15554 | 320 | lemma atLeastAtMostSuc_conv: "m \<le> Suc n \<Longrightarrow> {m..Suc n} = insert (Suc n) {m..n}"
 | 
| 321 | by (auto simp add: atLeastAtMost_def) | |
| 322 | ||
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 323 | subsubsection {* Image *}
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 324 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 325 | lemma image_add_atLeastAtMost: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 326 |   "(%n::nat. n+k) ` {i..j} = {i+k..j+k}" (is "?A = ?B")
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 327 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 328 | show "?A \<subseteq> ?B" by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 329 | next | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 330 | show "?B \<subseteq> ?A" | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 331 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 332 | fix n assume a: "n : ?B" | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19538diff
changeset | 333 |     hence "n - k : {i..j}" by auto
 | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 334 | moreover have "n = (n - k) + k" using a by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 335 | ultimately show "n : ?A" by blast | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 336 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 337 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 338 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 339 | lemma image_add_atLeastLessThan: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 340 |   "(%n::nat. n+k) ` {i..<j} = {i+k..<j+k}" (is "?A = ?B")
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 341 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 342 | show "?A \<subseteq> ?B" by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 343 | next | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 344 | show "?B \<subseteq> ?A" | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 345 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 346 | fix n assume a: "n : ?B" | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19538diff
changeset | 347 |     hence "n - k : {i..<j}" by auto
 | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 348 | moreover have "n = (n - k) + k" using a by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 349 | ultimately show "n : ?A" by blast | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 350 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 351 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 352 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 353 | corollary image_Suc_atLeastAtMost[simp]: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 354 |   "Suc ` {i..j} = {Suc i..Suc j}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 355 | using image_add_atLeastAtMost[where k="Suc 0"] by simp | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 356 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 357 | corollary image_Suc_atLeastLessThan[simp]: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 358 |   "Suc ` {i..<j} = {Suc i..<Suc j}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 359 | using image_add_atLeastLessThan[where k="Suc 0"] by simp | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 360 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 361 | lemma image_add_int_atLeastLessThan: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 362 |     "(%x. x + (l::int)) ` {0..<u-l} = {l..<u}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 363 | apply (auto simp add: image_def) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 364 | apply (rule_tac x = "x - l" in bexI) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 365 | apply auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 366 | done | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 367 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 368 | |
| 14485 | 369 | subsubsection {* Finiteness *}
 | 
| 370 | ||
| 15045 | 371 | lemma finite_lessThan [iff]: fixes k :: nat shows "finite {..<k}"
 | 
| 14485 | 372 | by (induct k) (simp_all add: lessThan_Suc) | 
| 373 | ||
| 374 | lemma finite_atMost [iff]: fixes k :: nat shows "finite {..k}"
 | |
| 375 | by (induct k) (simp_all add: atMost_Suc) | |
| 376 | ||
| 377 | lemma finite_greaterThanLessThan [iff]: | |
| 15045 | 378 |   fixes l :: nat shows "finite {l<..<u}"
 | 
| 14485 | 379 | by (simp add: greaterThanLessThan_def) | 
| 380 | ||
| 381 | lemma finite_atLeastLessThan [iff]: | |
| 15045 | 382 |   fixes l :: nat shows "finite {l..<u}"
 | 
| 14485 | 383 | by (simp add: atLeastLessThan_def) | 
| 384 | ||
| 385 | lemma finite_greaterThanAtMost [iff]: | |
| 15045 | 386 |   fixes l :: nat shows "finite {l<..u}"
 | 
| 14485 | 387 | by (simp add: greaterThanAtMost_def) | 
| 388 | ||
| 389 | lemma finite_atLeastAtMost [iff]: | |
| 390 |   fixes l :: nat shows "finite {l..u}"
 | |
| 391 | by (simp add: atLeastAtMost_def) | |
| 392 | ||
| 28068 | 393 | text {* A bounded set of natural numbers is finite. *}
 | 
| 14485 | 394 | lemma bounded_nat_set_is_finite: | 
| 24853 | 395 | "(ALL i:N. i < (n::nat)) ==> finite N" | 
| 28068 | 396 | apply (rule finite_subset) | 
| 397 | apply (rule_tac [2] finite_lessThan, auto) | |
| 398 | done | |
| 399 | ||
| 400 | lemma finite_less_ub: | |
| 401 |      "!!f::nat=>nat. (!!n. n \<le> f n) ==> finite {n. f n \<le> u}"
 | |
| 402 | by (rule_tac B="{..u}" in finite_subset, auto intro: order_trans)
 | |
| 14485 | 403 | |
| 24853 | 404 | text{* Any subset of an interval of natural numbers the size of the
 | 
| 405 | subset is exactly that interval. *} | |
| 406 | ||
| 407 | lemma subset_card_intvl_is_intvl: | |
| 408 |   "A <= {k..<k+card A} \<Longrightarrow> A = {k..<k+card A}" (is "PROP ?P")
 | |
| 409 | proof cases | |
| 410 | assume "finite A" | |
| 411 | thus "PROP ?P" | |
| 412 | proof(induct A rule:finite_linorder_induct) | |
| 413 | case empty thus ?case by auto | |
| 414 | next | |
| 415 | case (insert A b) | |
| 416 | moreover hence "b ~: A" by auto | |
| 417 |     moreover have "A <= {k..<k+card A}" and "b = k+card A"
 | |
| 418 | using `b ~: A` insert by fastsimp+ | |
| 419 | ultimately show ?case by auto | |
| 420 | qed | |
| 421 | next | |
| 422 | assume "~finite A" thus "PROP ?P" by simp | |
| 423 | qed | |
| 424 | ||
| 425 | ||
| 14485 | 426 | subsubsection {* Cardinality *}
 | 
| 427 | ||
| 15045 | 428 | lemma card_lessThan [simp]: "card {..<u} = u"
 | 
| 15251 | 429 | by (induct u, simp_all add: lessThan_Suc) | 
| 14485 | 430 | |
| 431 | lemma card_atMost [simp]: "card {..u} = Suc u"
 | |
| 432 | by (simp add: lessThan_Suc_atMost [THEN sym]) | |
| 433 | ||
| 15045 | 434 | lemma card_atLeastLessThan [simp]: "card {l..<u} = u - l"
 | 
| 435 |   apply (subgoal_tac "card {l..<u} = card {..<u-l}")
 | |
| 14485 | 436 | apply (erule ssubst, rule card_lessThan) | 
| 15045 | 437 |   apply (subgoal_tac "(%x. x + l) ` {..<u-l} = {l..<u}")
 | 
| 14485 | 438 | apply (erule subst) | 
| 439 | apply (rule card_image) | |
| 440 | apply (simp add: inj_on_def) | |
| 441 | apply (auto simp add: image_def atLeastLessThan_def lessThan_def) | |
| 442 | apply (rule_tac x = "x - l" in exI) | |
| 443 | apply arith | |
| 444 | done | |
| 445 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 446 | lemma card_atLeastAtMost [simp]: "card {l..u} = Suc u - l"
 | 
| 14485 | 447 | by (subst atLeastLessThanSuc_atLeastAtMost [THEN sym], simp) | 
| 448 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 449 | lemma card_greaterThanAtMost [simp]: "card {l<..u} = u - l"
 | 
| 14485 | 450 | by (subst atLeastSucAtMost_greaterThanAtMost [THEN sym], simp) | 
| 451 | ||
| 15045 | 452 | lemma card_greaterThanLessThan [simp]: "card {l<..<u} = u - Suc l"
 | 
| 14485 | 453 | by (subst atLeastSucLessThan_greaterThanLessThan [THEN sym], simp) | 
| 454 | ||
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 455 | |
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 456 | lemma ex_bij_betw_nat_finite: | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 457 |   "finite M \<Longrightarrow> \<exists>h. bij_betw h {0..<card M} M"
 | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 458 | apply(drule finite_imp_nat_seg_image_inj_on) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 459 | apply(auto simp:atLeast0LessThan[symmetric] lessThan_def[symmetric] card_image bij_betw_def) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 460 | done | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 461 | |
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 462 | lemma ex_bij_betw_finite_nat: | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 463 |   "finite M \<Longrightarrow> \<exists>h. bij_betw h M {0..<card M}"
 | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 464 | by (blast dest: ex_bij_betw_nat_finite bij_betw_inv) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 465 | |
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 466 | |
| 14485 | 467 | subsection {* Intervals of integers *}
 | 
| 468 | ||
| 15045 | 469 | lemma atLeastLessThanPlusOne_atLeastAtMost_int: "{l..<u+1} = {l..(u::int)}"
 | 
| 14485 | 470 | by (auto simp add: atLeastAtMost_def atLeastLessThan_def) | 
| 471 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 472 | lemma atLeastPlusOneAtMost_greaterThanAtMost_int: "{l+1..u} = {l<..(u::int)}"
 | 
| 14485 | 473 | by (auto simp add: atLeastAtMost_def greaterThanAtMost_def) | 
| 474 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 475 | lemma atLeastPlusOneLessThan_greaterThanLessThan_int: | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 476 |     "{l+1..<u} = {l<..<u::int}"
 | 
| 14485 | 477 | by (auto simp add: atLeastLessThan_def greaterThanLessThan_def) | 
| 478 | ||
| 479 | subsubsection {* Finiteness *}
 | |
| 480 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 481 | lemma image_atLeastZeroLessThan_int: "0 \<le> u ==> | 
| 15045 | 482 |     {(0::int)..<u} = int ` {..<nat u}"
 | 
| 14485 | 483 | apply (unfold image_def lessThan_def) | 
| 484 | apply auto | |
| 485 | apply (rule_tac x = "nat x" in exI) | |
| 486 | apply (auto simp add: zless_nat_conj zless_nat_eq_int_zless [THEN sym]) | |
| 487 | done | |
| 488 | ||
| 15045 | 489 | lemma finite_atLeastZeroLessThan_int: "finite {(0::int)..<u}"
 | 
| 14485 | 490 | apply (case_tac "0 \<le> u") | 
| 491 | apply (subst image_atLeastZeroLessThan_int, assumption) | |
| 492 | apply (rule finite_imageI) | |
| 493 | apply auto | |
| 494 | done | |
| 495 | ||
| 15045 | 496 | lemma finite_atLeastLessThan_int [iff]: "finite {l..<u::int}"
 | 
| 497 |   apply (subgoal_tac "(%x. x + l) ` {0..<u-l} = {l..<u}")
 | |
| 14485 | 498 | apply (erule subst) | 
| 499 | apply (rule finite_imageI) | |
| 500 | apply (rule finite_atLeastZeroLessThan_int) | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 501 | apply (rule image_add_int_atLeastLessThan) | 
| 14485 | 502 | done | 
| 503 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 504 | lemma finite_atLeastAtMost_int [iff]: "finite {l..(u::int)}"
 | 
| 14485 | 505 | by (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym], simp) | 
| 506 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 507 | lemma finite_greaterThanAtMost_int [iff]: "finite {l<..(u::int)}"
 | 
| 14485 | 508 | by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp) | 
| 509 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 510 | lemma finite_greaterThanLessThan_int [iff]: "finite {l<..<u::int}"
 | 
| 14485 | 511 | by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp) | 
| 512 | ||
| 24853 | 513 | |
| 14485 | 514 | subsubsection {* Cardinality *}
 | 
| 515 | ||
| 15045 | 516 | lemma card_atLeastZeroLessThan_int: "card {(0::int)..<u} = nat u"
 | 
| 14485 | 517 | apply (case_tac "0 \<le> u") | 
| 518 | apply (subst image_atLeastZeroLessThan_int, assumption) | |
| 519 | apply (subst card_image) | |
| 520 | apply (auto simp add: inj_on_def) | |
| 521 | done | |
| 522 | ||
| 15045 | 523 | lemma card_atLeastLessThan_int [simp]: "card {l..<u} = nat (u - l)"
 | 
| 524 |   apply (subgoal_tac "card {l..<u} = card {0..<u-l}")
 | |
| 14485 | 525 | apply (erule ssubst, rule card_atLeastZeroLessThan_int) | 
| 15045 | 526 |   apply (subgoal_tac "(%x. x + l) ` {0..<u-l} = {l..<u}")
 | 
| 14485 | 527 | apply (erule subst) | 
| 528 | apply (rule card_image) | |
| 529 | apply (simp add: inj_on_def) | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 530 | apply (rule image_add_int_atLeastLessThan) | 
| 14485 | 531 | done | 
| 532 | ||
| 533 | lemma card_atLeastAtMost_int [simp]: "card {l..u} = nat (u - l + 1)"
 | |
| 29667 | 534 | apply (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym]) | 
| 535 | apply (auto simp add: algebra_simps) | |
| 536 | done | |
| 14485 | 537 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 538 | lemma card_greaterThanAtMost_int [simp]: "card {l<..u} = nat (u - l)"
 | 
| 29667 | 539 | by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp) | 
| 14485 | 540 | |
| 15045 | 541 | lemma card_greaterThanLessThan_int [simp]: "card {l<..<u} = nat (u - (l + 1))"
 | 
| 29667 | 542 | by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp) | 
| 14485 | 543 | |
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 544 | lemma finite_M_bounded_by_nat: "finite {k. P k \<and> k < (i::nat)}"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 545 | proof - | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 546 |   have "{k. P k \<and> k < i} \<subseteq> {..<i}" by auto
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 547 | with finite_lessThan[of "i"] show ?thesis by (simp add: finite_subset) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 548 | qed | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 549 | |
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 550 | lemma card_less: | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 551 | assumes zero_in_M: "0 \<in> M" | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 552 | shows "card {k \<in> M. k < Suc i} \<noteq> 0"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 553 | proof - | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 554 |   from zero_in_M have "{k \<in> M. k < Suc i} \<noteq> {}" by auto
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 555 | with finite_M_bounded_by_nat show ?thesis by (auto simp add: card_eq_0_iff) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 556 | qed | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 557 | |
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 558 | lemma card_less_Suc2: "0 \<notin> M \<Longrightarrow> card {k. Suc k \<in> M \<and> k < i} = card {k \<in> M. k < Suc i}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 559 | apply (rule card_bij_eq [of "Suc" _ _ "\<lambda>x. x - Suc 0"]) | 
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 560 | apply simp | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 561 | apply fastsimp | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 562 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 563 | apply (rule inj_on_diff_nat) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 564 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 565 | apply (case_tac x) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 566 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 567 | apply (case_tac xa) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 568 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 569 | apply (case_tac xa) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 570 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 571 | done | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 572 | |
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 573 | lemma card_less_Suc: | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 574 | assumes zero_in_M: "0 \<in> M" | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 575 |     shows "Suc (card {k. Suc k \<in> M \<and> k < i}) = card {k \<in> M. k < Suc i}"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 576 | proof - | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 577 |   from assms have a: "0 \<in> {k \<in> M. k < Suc i}" by simp
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 578 |   hence c: "{k \<in> M. k < Suc i} = insert 0 ({k \<in> M. k < Suc i} - {0})"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 579 | by (auto simp only: insert_Diff) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 580 |   have b: "{k \<in> M. k < Suc i} - {0} = {k \<in> M - {0}. k < Suc i}"  by auto
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 581 |   from finite_M_bounded_by_nat[of "\<lambda>x. x \<in> M" "Suc i"] have "Suc (card {k. Suc k \<in> M \<and> k < i}) = card (insert 0 ({k \<in> M. k < Suc i} - {0}))"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 582 | apply (subst card_insert) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 583 | apply simp_all | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 584 | apply (subst b) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 585 | apply (subst card_less_Suc2[symmetric]) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 586 | apply simp_all | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 587 | done | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 588 | with c show ?thesis by simp | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 589 | qed | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 590 | |
| 14485 | 591 | |
| 13850 | 592 | subsection {*Lemmas useful with the summation operator setsum*}
 | 
| 593 | ||
| 16102 
c5f6726d9bb1
Locale expressions: rename with optional mixfix syntax.
 ballarin parents: 
16052diff
changeset | 594 | text {* For examples, see Algebra/poly/UnivPoly2.thy *}
 | 
| 13735 | 595 | |
| 14577 | 596 | subsubsection {* Disjoint Unions *}
 | 
| 13735 | 597 | |
| 14577 | 598 | text {* Singletons and open intervals *}
 | 
| 13735 | 599 | |
| 600 | lemma ivl_disj_un_singleton: | |
| 15045 | 601 |   "{l::'a::linorder} Un {l<..} = {l..}"
 | 
| 602 |   "{..<u} Un {u::'a::linorder} = {..u}"
 | |
| 603 |   "(l::'a::linorder) < u ==> {l} Un {l<..<u} = {l..<u}"
 | |
| 604 |   "(l::'a::linorder) < u ==> {l<..<u} Un {u} = {l<..u}"
 | |
| 605 |   "(l::'a::linorder) <= u ==> {l} Un {l<..u} = {l..u}"
 | |
| 606 |   "(l::'a::linorder) <= u ==> {l..<u} Un {u} = {l..u}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 607 | by auto | 
| 13735 | 608 | |
| 14577 | 609 | text {* One- and two-sided intervals *}
 | 
| 13735 | 610 | |
| 611 | lemma ivl_disj_un_one: | |
| 15045 | 612 |   "(l::'a::linorder) < u ==> {..l} Un {l<..<u} = {..<u}"
 | 
| 613 |   "(l::'a::linorder) <= u ==> {..<l} Un {l..<u} = {..<u}"
 | |
| 614 |   "(l::'a::linorder) <= u ==> {..l} Un {l<..u} = {..u}"
 | |
| 615 |   "(l::'a::linorder) <= u ==> {..<l} Un {l..u} = {..u}"
 | |
| 616 |   "(l::'a::linorder) <= u ==> {l<..u} Un {u<..} = {l<..}"
 | |
| 617 |   "(l::'a::linorder) < u ==> {l<..<u} Un {u..} = {l<..}"
 | |
| 618 |   "(l::'a::linorder) <= u ==> {l..u} Un {u<..} = {l..}"
 | |
| 619 |   "(l::'a::linorder) <= u ==> {l..<u} Un {u..} = {l..}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 620 | by auto | 
| 13735 | 621 | |
| 14577 | 622 | text {* Two- and two-sided intervals *}
 | 
| 13735 | 623 | |
| 624 | lemma ivl_disj_un_two: | |
| 15045 | 625 |   "[| (l::'a::linorder) < m; m <= u |] ==> {l<..<m} Un {m..<u} = {l<..<u}"
 | 
| 626 |   "[| (l::'a::linorder) <= m; m < u |] ==> {l<..m} Un {m<..<u} = {l<..<u}"
 | |
| 627 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..<m} Un {m..<u} = {l..<u}"
 | |
| 628 |   "[| (l::'a::linorder) <= m; m < u |] ==> {l..m} Un {m<..<u} = {l..<u}"
 | |
| 629 |   "[| (l::'a::linorder) < m; m <= u |] ==> {l<..<m} Un {m..u} = {l<..u}"
 | |
| 630 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l<..m} Un {m<..u} = {l<..u}"
 | |
| 631 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..<m} Un {m..u} = {l..u}"
 | |
| 632 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..m} Un {m<..u} = {l..u}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 633 | by auto | 
| 13735 | 634 | |
| 635 | lemmas ivl_disj_un = ivl_disj_un_singleton ivl_disj_un_one ivl_disj_un_two | |
| 636 | ||
| 14577 | 637 | subsubsection {* Disjoint Intersections *}
 | 
| 13735 | 638 | |
| 14577 | 639 | text {* Singletons and open intervals *}
 | 
| 13735 | 640 | |
| 641 | lemma ivl_disj_int_singleton: | |
| 15045 | 642 |   "{l::'a::order} Int {l<..} = {}"
 | 
| 643 |   "{..<u} Int {u} = {}"
 | |
| 644 |   "{l} Int {l<..<u} = {}"
 | |
| 645 |   "{l<..<u} Int {u} = {}"
 | |
| 646 |   "{l} Int {l<..u} = {}"
 | |
| 647 |   "{l..<u} Int {u} = {}"
 | |
| 13735 | 648 | by simp+ | 
| 649 | ||
| 14577 | 650 | text {* One- and two-sided intervals *}
 | 
| 13735 | 651 | |
| 652 | lemma ivl_disj_int_one: | |
| 15045 | 653 |   "{..l::'a::order} Int {l<..<u} = {}"
 | 
| 654 |   "{..<l} Int {l..<u} = {}"
 | |
| 655 |   "{..l} Int {l<..u} = {}"
 | |
| 656 |   "{..<l} Int {l..u} = {}"
 | |
| 657 |   "{l<..u} Int {u<..} = {}"
 | |
| 658 |   "{l<..<u} Int {u..} = {}"
 | |
| 659 |   "{l..u} Int {u<..} = {}"
 | |
| 660 |   "{l..<u} Int {u..} = {}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 661 | by auto | 
| 13735 | 662 | |
| 14577 | 663 | text {* Two- and two-sided intervals *}
 | 
| 13735 | 664 | |
| 665 | lemma ivl_disj_int_two: | |
| 15045 | 666 |   "{l::'a::order<..<m} Int {m..<u} = {}"
 | 
| 667 |   "{l<..m} Int {m<..<u} = {}"
 | |
| 668 |   "{l..<m} Int {m..<u} = {}"
 | |
| 669 |   "{l..m} Int {m<..<u} = {}"
 | |
| 670 |   "{l<..<m} Int {m..u} = {}"
 | |
| 671 |   "{l<..m} Int {m<..u} = {}"
 | |
| 672 |   "{l..<m} Int {m..u} = {}"
 | |
| 673 |   "{l..m} Int {m<..u} = {}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 674 | by auto | 
| 13735 | 675 | |
| 676 | lemmas ivl_disj_int = ivl_disj_int_singleton ivl_disj_int_one ivl_disj_int_two | |
| 677 | ||
| 15542 | 678 | subsubsection {* Some Differences *}
 | 
| 679 | ||
| 680 | lemma ivl_diff[simp]: | |
| 681 |  "i \<le> n \<Longrightarrow> {i..<m} - {i..<n} = {n..<(m::'a::linorder)}"
 | |
| 682 | by(auto) | |
| 683 | ||
| 684 | ||
| 685 | subsubsection {* Some Subset Conditions *}
 | |
| 686 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23496diff
changeset | 687 | lemma ivl_subset [simp,noatp]: | 
| 15542 | 688 |  "({i..<j} \<subseteq> {m..<n}) = (j \<le> i | m \<le> i & j \<le> (n::'a::linorder))"
 | 
| 689 | apply(auto simp:linorder_not_le) | |
| 690 | apply(rule ccontr) | |
| 691 | apply(insert linorder_le_less_linear[of i n]) | |
| 692 | apply(clarsimp simp:linorder_not_le) | |
| 693 | apply(fastsimp) | |
| 694 | done | |
| 695 | ||
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 696 | |
| 15042 | 697 | subsection {* Summation indexed over intervals *}
 | 
| 698 | ||
| 699 | syntax | |
| 700 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _ = _.._./ _)" [0,0,0,10] 10)
 | |
| 15048 | 701 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 16052 | 702 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _<_./ _)" [0,0,10] 10)
 | 
| 703 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _<=_./ _)" [0,0,10] 10)
 | |
| 15042 | 704 | syntax (xsymbols) | 
| 705 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _.._./ _)" [0,0,0,10] 10)
 | |
| 15048 | 706 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 16052 | 707 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_<_./ _)" [0,0,10] 10)
 | 
| 708 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_\<le>_./ _)" [0,0,10] 10)
 | |
| 15042 | 709 | syntax (HTML output) | 
| 710 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _.._./ _)" [0,0,0,10] 10)
 | |
| 15048 | 711 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 16052 | 712 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_<_./ _)" [0,0,10] 10)
 | 
| 713 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_\<le>_./ _)" [0,0,10] 10)
 | |
| 15056 | 714 | syntax (latex_sum output) | 
| 15052 | 715 | "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 716 |  ("(3\<^raw:$\sum_{>_ = _\<^raw:}^{>_\<^raw:}$> _)" [0,0,0,10] 10)
 | |
| 717 | "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | |
| 718 |  ("(3\<^raw:$\sum_{>_ = _\<^raw:}^{<>_\<^raw:}$> _)" [0,0,0,10] 10)
 | |
| 16052 | 719 | "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 720 |  ("(3\<^raw:$\sum_{>_ < _\<^raw:}$> _)" [0,0,10] 10)
 | |
| 15052 | 721 | "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 16052 | 722 |  ("(3\<^raw:$\sum_{>_ \<le> _\<^raw:}$> _)" [0,0,10] 10)
 | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 723 | |
| 15048 | 724 | translations | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28068diff
changeset | 725 |   "\<Sum>x=a..b. t" == "CONST setsum (%x. t) {a..b}"
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28068diff
changeset | 726 |   "\<Sum>x=a..<b. t" == "CONST setsum (%x. t) {a..<b}"
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28068diff
changeset | 727 |   "\<Sum>i\<le>n. t" == "CONST setsum (\<lambda>i. t) {..n}"
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28068diff
changeset | 728 |   "\<Sum>i<n. t" == "CONST setsum (\<lambda>i. t) {..<n}"
 | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 729 | |
| 15052 | 730 | text{* The above introduces some pretty alternative syntaxes for
 | 
| 15056 | 731 | summation over intervals: | 
| 15052 | 732 | \begin{center}
 | 
| 733 | \begin{tabular}{lll}
 | |
| 15056 | 734 | Old & New & \LaTeX\\ | 
| 735 | @{term[source]"\<Sum>x\<in>{a..b}. e"} & @{term"\<Sum>x=a..b. e"} & @{term[mode=latex_sum]"\<Sum>x=a..b. e"}\\
 | |
| 736 | @{term[source]"\<Sum>x\<in>{a..<b}. e"} & @{term"\<Sum>x=a..<b. e"} & @{term[mode=latex_sum]"\<Sum>x=a..<b. e"}\\
 | |
| 16052 | 737 | @{term[source]"\<Sum>x\<in>{..b}. e"} & @{term"\<Sum>x\<le>b. e"} & @{term[mode=latex_sum]"\<Sum>x\<le>b. e"}\\
 | 
| 15056 | 738 | @{term[source]"\<Sum>x\<in>{..<b}. e"} & @{term"\<Sum>x<b. e"} & @{term[mode=latex_sum]"\<Sum>x<b. e"}
 | 
| 15052 | 739 | \end{tabular}
 | 
| 740 | \end{center}
 | |
| 15056 | 741 | The left column shows the term before introduction of the new syntax, | 
| 742 | the middle column shows the new (default) syntax, and the right column | |
| 743 | shows a special syntax. The latter is only meaningful for latex output | |
| 744 | and has to be activated explicitly by setting the print mode to | |
| 21502 | 745 | @{text latex_sum} (e.g.\ via @{text "mode = latex_sum"} in
 | 
| 15056 | 746 | antiquotations). It is not the default \LaTeX\ output because it only | 
| 747 | works well with italic-style formulae, not tt-style. | |
| 15052 | 748 | |
| 749 | Note that for uniformity on @{typ nat} it is better to use
 | |
| 750 | @{term"\<Sum>x::nat=0..<n. e"} rather than @{text"\<Sum>x<n. e"}: @{text setsum} may
 | |
| 751 | not provide all lemmas available for @{term"{m..<n}"} also in the
 | |
| 752 | special form for @{term"{..<n}"}. *}
 | |
| 753 | ||
| 15542 | 754 | text{* This congruence rule should be used for sums over intervals as
 | 
| 755 | the standard theorem @{text[source]setsum_cong} does not work well
 | |
| 756 | with the simplifier who adds the unsimplified premise @{term"x:B"} to
 | |
| 757 | the context. *} | |
| 758 | ||
| 759 | lemma setsum_ivl_cong: | |
| 760 | "\<lbrakk>a = c; b = d; !!x. \<lbrakk> c \<le> x; x < d \<rbrakk> \<Longrightarrow> f x = g x \<rbrakk> \<Longrightarrow> | |
| 761 |  setsum f {a..<b} = setsum g {c..<d}"
 | |
| 762 | by(rule setsum_cong, simp_all) | |
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 763 | |
| 16041 | 764 | (* FIXME why are the following simp rules but the corresponding eqns | 
| 765 | on intervals are not? *) | |
| 766 | ||
| 16052 | 767 | lemma setsum_atMost_Suc[simp]: "(\<Sum>i \<le> Suc n. f i) = (\<Sum>i \<le> n. f i) + f(Suc n)" | 
| 768 | by (simp add:atMost_Suc add_ac) | |
| 769 | ||
| 16041 | 770 | lemma setsum_lessThan_Suc[simp]: "(\<Sum>i < Suc n. f i) = (\<Sum>i < n. f i) + f n" | 
| 771 | by (simp add:lessThan_Suc add_ac) | |
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 772 | |
| 15911 | 773 | lemma setsum_cl_ivl_Suc[simp]: | 
| 15561 | 774 |   "setsum f {m..Suc n} = (if Suc n < m then 0 else setsum f {m..n} + f(Suc n))"
 | 
| 775 | by (auto simp:add_ac atLeastAtMostSuc_conv) | |
| 776 | ||
| 15911 | 777 | lemma setsum_op_ivl_Suc[simp]: | 
| 15561 | 778 |   "setsum f {m..<Suc n} = (if n < m then 0 else setsum f {m..<n} + f(n))"
 | 
| 779 | by (auto simp:add_ac atLeastLessThanSuc) | |
| 16041 | 780 | (* | 
| 15561 | 781 | lemma setsum_cl_ivl_add_one_nat: "(n::nat) <= m + 1 ==> | 
| 782 | (\<Sum>i=n..m+1. f i) = (\<Sum>i=n..m. f i) + f(m + 1)" | |
| 783 | by (auto simp:add_ac atLeastAtMostSuc_conv) | |
| 16041 | 784 | *) | 
| 28068 | 785 | |
| 786 | lemma setsum_head: | |
| 787 | fixes n :: nat | |
| 788 | assumes mn: "m <= n" | |
| 789 |   shows "(\<Sum>x\<in>{m..n}. P x) = P m + (\<Sum>x\<in>{m<..n}. P x)" (is "?lhs = ?rhs")
 | |
| 790 | proof - | |
| 791 | from mn | |
| 792 |   have "{m..n} = {m} \<union> {m<..n}"
 | |
| 793 | by (auto intro: ivl_disj_un_singleton) | |
| 794 |   hence "?lhs = (\<Sum>x\<in>{m} \<union> {m<..n}. P x)"
 | |
| 795 | by (simp add: atLeast0LessThan) | |
| 796 | also have "\<dots> = ?rhs" by simp | |
| 797 | finally show ?thesis . | |
| 798 | qed | |
| 799 | ||
| 800 | lemma setsum_head_Suc: | |
| 801 |   "m \<le> n \<Longrightarrow> setsum f {m..n} = f m + setsum f {Suc m..n}"
 | |
| 802 | by (simp add: setsum_head atLeastSucAtMost_greaterThanAtMost) | |
| 803 | ||
| 804 | lemma setsum_head_upt_Suc: | |
| 805 |   "m < n \<Longrightarrow> setsum f {m..<n} = f m + setsum f {Suc m..<n}"
 | |
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 806 | apply(insert setsum_head_Suc[of m "n - Suc 0" f]) | 
| 29667 | 807 | apply (simp add: atLeastLessThanSuc_atLeastAtMost[symmetric] algebra_simps) | 
| 28068 | 808 | done | 
| 809 | ||
| 810 | ||
| 15539 | 811 | lemma setsum_add_nat_ivl: "\<lbrakk> m \<le> n; n \<le> p \<rbrakk> \<Longrightarrow> | 
| 812 |   setsum f {m..<n} + setsum f {n..<p} = setsum f {m..<p::nat}"
 | |
| 813 | by (simp add:setsum_Un_disjoint[symmetric] ivl_disj_int ivl_disj_un) | |
| 814 | ||
| 815 | lemma setsum_diff_nat_ivl: | |
| 816 | fixes f :: "nat \<Rightarrow> 'a::ab_group_add" | |
| 817 | shows "\<lbrakk> m \<le> n; n \<le> p \<rbrakk> \<Longrightarrow> | |
| 818 |   setsum f {m..<p} - setsum f {m..<n} = setsum f {n..<p}"
 | |
| 819 | using setsum_add_nat_ivl [of m n p f,symmetric] | |
| 820 | apply (simp add: add_ac) | |
| 821 | done | |
| 822 | ||
| 28068 | 823 | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 824 | subsection{* Shifting bounds *}
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 825 | |
| 15539 | 826 | lemma setsum_shift_bounds_nat_ivl: | 
| 827 |   "setsum f {m+k..<n+k} = setsum (%i. f(i + k)){m..<n::nat}"
 | |
| 828 | by (induct "n", auto simp:atLeastLessThanSuc) | |
| 829 | ||
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 830 | lemma setsum_shift_bounds_cl_nat_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 831 |   "setsum f {m+k..n+k} = setsum (%i. f(i + k)){m..n::nat}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 832 | apply (insert setsum_reindex[OF inj_on_add_nat, where h=f and B = "{m..n}"])
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 833 | apply (simp add:image_add_atLeastAtMost o_def) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 834 | done | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 835 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 836 | corollary setsum_shift_bounds_cl_Suc_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 837 |   "setsum f {Suc m..Suc n} = setsum (%i. f(Suc i)){m..n}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 838 | by (simp add:setsum_shift_bounds_cl_nat_ivl[where k="Suc 0", simplified]) | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 839 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 840 | corollary setsum_shift_bounds_Suc_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 841 |   "setsum f {Suc m..<Suc n} = setsum (%i. f(Suc i)){m..<n}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 842 | by (simp add:setsum_shift_bounds_nat_ivl[where k="Suc 0", simplified]) | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 843 | |
| 28068 | 844 | lemma setsum_shift_lb_Suc0_0: | 
| 845 |   "f(0::nat) = (0::nat) \<Longrightarrow> setsum f {Suc 0..k} = setsum f {0..k}"
 | |
| 846 | by(simp add:setsum_head_Suc) | |
| 19106 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 847 | |
| 28068 | 848 | lemma setsum_shift_lb_Suc0_0_upt: | 
| 849 |   "f(0::nat) = 0 \<Longrightarrow> setsum f {Suc 0..<k} = setsum f {0..<k}"
 | |
| 850 | apply(cases k)apply simp | |
| 851 | apply(simp add:setsum_head_upt_Suc) | |
| 852 | done | |
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 853 | |
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 854 | subsection {* The formula for geometric sums *}
 | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 855 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 856 | lemma geometric_sum: | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 857 | "x ~= 1 ==> (\<Sum>i=0..<n. x ^ i) = | 
| 22713 | 858 |   (x ^ n - 1) / (x - 1::'a::{field, recpower})"
 | 
| 23496 | 859 | by (induct "n") (simp_all add:field_simps power_Suc) | 
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 860 | |
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 861 | subsection {* The formula for arithmetic sums *}
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 862 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 863 | lemma gauss_sum: | 
| 23277 | 864 |   "((1::'a::comm_semiring_1) + 1)*(\<Sum>i\<in>{1..n}. of_nat i) =
 | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 865 | of_nat n*((of_nat n)+1)" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 866 | proof (induct n) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 867 | case 0 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 868 | show ?case by simp | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 869 | next | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 870 | case (Suc n) | 
| 29667 | 871 | then show ?case by (simp add: algebra_simps) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 872 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 873 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 874 | theorem arith_series_general: | 
| 23277 | 875 |   "((1::'a::comm_semiring_1) + 1) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) =
 | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 876 | of_nat n * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 877 | proof cases | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 878 | assume ngt1: "n > 1" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 879 | let ?I = "\<lambda>i. of_nat i" and ?n = "of_nat n" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 880 | have | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 881 |     "(\<Sum>i\<in>{..<n}. a+?I i*d) =
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 882 |      ((\<Sum>i\<in>{..<n}. a) + (\<Sum>i\<in>{..<n}. ?I i*d))"
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 883 | by (rule setsum_addf) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 884 |   also from ngt1 have "\<dots> = ?n*a + (\<Sum>i\<in>{..<n}. ?I i*d)" by simp
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 885 |   also from ngt1 have "\<dots> = (?n*a + d*(\<Sum>i\<in>{1..<n}. ?I i))"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 886 | unfolding One_nat_def | 
| 28068 | 887 | by (simp add: setsum_right_distrib atLeast0LessThan[symmetric] setsum_shift_lb_Suc0_0_upt mult_ac) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 888 |   also have "(1+1)*\<dots> = (1+1)*?n*a + d*(1+1)*(\<Sum>i\<in>{1..<n}. ?I i)"
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 889 | by (simp add: left_distrib right_distrib) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 890 |   also from ngt1 have "{1..<n} = {1..n - 1}"
 | 
| 28068 | 891 | by (cases n) (auto simp: atLeastLessThanSuc_atLeastAtMost) | 
| 892 | also from ngt1 | |
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 893 |   have "(1+1)*?n*a + d*(1+1)*(\<Sum>i\<in>{1..n - 1}. ?I i) = ((1+1)*?n*a + d*?I (n - 1)*?I n)"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 894 | by (simp only: mult_ac gauss_sum [of "n - 1"], unfold One_nat_def) | 
| 23431 
25ca91279a9b
change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
 huffman parents: 
23413diff
changeset | 895 | (simp add: mult_ac trans [OF add_commute of_nat_Suc [symmetric]]) | 
| 29667 | 896 | finally show ?thesis by (simp add: algebra_simps) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 897 | next | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 898 | assume "\<not>(n > 1)" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 899 | hence "n = 1 \<or> n = 0" by auto | 
| 29667 | 900 | thus ?thesis by (auto simp: algebra_simps) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 901 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 902 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 903 | lemma arith_series_nat: | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 904 |   "Suc (Suc 0) * (\<Sum>i\<in>{..<n}. a+i*d) = n * (a + (a+(n - 1)*d))"
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 905 | proof - | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 906 | have | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 907 |     "((1::nat) + 1) * (\<Sum>i\<in>{..<n::nat}. a + of_nat(i)*d) =
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 908 | of_nat(n) * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 909 | by (rule arith_series_general) | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 910 | thus ?thesis | 
| 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 911 | unfolding One_nat_def by (auto simp add: of_nat_id) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 912 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 913 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 914 | lemma arith_series_int: | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 915 |   "(2::int) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) =
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 916 | of_nat n * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 917 | proof - | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 918 | have | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 919 |     "((1::int) + 1) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) =
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 920 | of_nat(n) * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 921 | by (rule arith_series_general) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 922 | thus ?thesis by simp | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 923 | qed | 
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 924 | |
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 925 | lemma sum_diff_distrib: | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 926 | fixes P::"nat\<Rightarrow>nat" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 927 | shows | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 928 | "\<forall>x. Q x \<le> P x \<Longrightarrow> | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 929 | (\<Sum>x<n. P x) - (\<Sum>x<n. Q x) = (\<Sum>x<n. P x - Q x)" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 930 | proof (induct n) | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 931 | case 0 show ?case by simp | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 932 | next | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 933 | case (Suc n) | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 934 | |
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 935 | let ?lhs = "(\<Sum>x<n. P x) - (\<Sum>x<n. Q x)" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 936 | let ?rhs = "\<Sum>x<n. P x - Q x" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 937 | |
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 938 | from Suc have "?lhs = ?rhs" by simp | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 939 | moreover | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 940 | from Suc have "?lhs + P n - Q n = ?rhs + (P n - Q n)" by simp | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 941 | moreover | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 942 | from Suc have | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 943 | "(\<Sum>x<n. P x) + P n - ((\<Sum>x<n. Q x) + Q n) = ?rhs + (P n - Q n)" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 944 | by (subst diff_diff_left[symmetric], | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 945 | subst diff_add_assoc2) | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 946 | (auto simp: diff_add_assoc2 intro: setsum_mono) | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 947 | ultimately | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 948 | show ?case by simp | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 949 | qed | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 950 | |
| 29960 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 951 | subsection {* Products indexed over intervals *}
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 952 | |
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 953 | syntax | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 954 |   "_from_to_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(PROD _ = _.._./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 955 |   "_from_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(PROD _ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 956 |   "_upt_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(PROD _<_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 957 |   "_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(PROD _<=_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 958 | syntax (xsymbols) | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 959 |   "_from_to_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_ = _.._./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 960 |   "_from_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 961 |   "_upt_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_<_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 962 |   "_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_\<le>_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 963 | syntax (HTML output) | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 964 |   "_from_to_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_ = _.._./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 965 |   "_from_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 966 |   "_upt_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_<_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 967 |   "_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_\<le>_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 968 | syntax (latex_prod output) | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 969 | "_from_to_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 970 |  ("(3\<^raw:$\prod_{>_ = _\<^raw:}^{>_\<^raw:}$> _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 971 | "_from_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 972 |  ("(3\<^raw:$\prod_{>_ = _\<^raw:}^{<>_\<^raw:}$> _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 973 | "_upt_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 974 |  ("(3\<^raw:$\prod_{>_ < _\<^raw:}$> _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 975 | "_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 976 |  ("(3\<^raw:$\prod_{>_ \<le> _\<^raw:}$> _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 977 | |
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 978 | translations | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 979 |   "\<Prod>x=a..b. t" == "CONST setprod (%x. t) {a..b}"
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 980 |   "\<Prod>x=a..<b. t" == "CONST setprod (%x. t) {a..<b}"
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 981 |   "\<Prod>i\<le>n. t" == "CONST setprod (\<lambda>i. t) {..n}"
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 982 |   "\<Prod>i<n. t" == "CONST setprod (\<lambda>i. t) {..<n}"
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 983 | |
| 8924 | 984 | end |