author | krauss |
Sun, 01 Apr 2012 22:03:45 +0200 | |
changeset 47259 | 2d4ea84278da |
parent 47241 | 243b33052e34 |
child 47255 | 30a1692557b0 |
permissions | -rw-r--r-- |
3390
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
paulson
parents:
diff
changeset
|
1 |
(* Title: HOL/Power.thy |
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
paulson
parents:
diff
changeset
|
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
paulson
parents:
diff
changeset
|
3 |
Copyright 1997 University of Cambridge |
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
paulson
parents:
diff
changeset
|
4 |
*) |
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
paulson
parents:
diff
changeset
|
5 |
|
30960 | 6 |
header {* Exponentiation *} |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
7 |
|
15131 | 8 |
theory Power |
47191 | 9 |
imports Num |
15131 | 10 |
begin |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
11 |
|
30960 | 12 |
subsection {* Powers for Arbitrary Monoids *} |
13 |
||
30996 | 14 |
class power = one + times |
30960 | 15 |
begin |
24996 | 16 |
|
30960 | 17 |
primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where |
18 |
power_0: "a ^ 0 = 1" |
|
19 |
| power_Suc: "a ^ Suc n = a * a ^ n" |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
20 |
|
30996 | 21 |
notation (latex output) |
22 |
power ("(_\<^bsup>_\<^esup>)" [1000] 1000) |
|
23 |
||
24 |
notation (HTML output) |
|
25 |
power ("(_\<^bsup>_\<^esup>)" [1000] 1000) |
|
26 |
||
47192
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
27 |
text {* Special syntax for squares. *} |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
28 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
29 |
abbreviation (xsymbols) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
30 |
power2 :: "'a \<Rightarrow> 'a" ("(_\<twosuperior>)" [1000] 999) where |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
31 |
"x\<twosuperior> \<equiv> x ^ 2" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
32 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
33 |
notation (latex output) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
34 |
power2 ("(_\<twosuperior>)" [1000] 999) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
35 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
36 |
notation (HTML output) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
37 |
power2 ("(_\<twosuperior>)" [1000] 999) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
38 |
|
30960 | 39 |
end |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
40 |
|
30996 | 41 |
context monoid_mult |
42 |
begin |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
43 |
|
39438
c5ece2a7a86e
Isar "default" step needs to fail for solved problems, for clear distinction of '.' and '..' for example -- amending lapse introduced in 9de4d64eee3b (April 2004);
wenzelm
parents:
36409
diff
changeset
|
44 |
subclass power . |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
45 |
|
30996 | 46 |
lemma power_one [simp]: |
47 |
"1 ^ n = 1" |
|
30273
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents:
30242
diff
changeset
|
48 |
by (induct n) simp_all |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
49 |
|
30996 | 50 |
lemma power_one_right [simp]: |
31001 | 51 |
"a ^ 1 = a" |
30996 | 52 |
by simp |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
53 |
|
30996 | 54 |
lemma power_commutes: |
55 |
"a ^ n * a = a * a ^ n" |
|
30273
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents:
30242
diff
changeset
|
56 |
by (induct n) (simp_all add: mult_assoc) |
21199
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents:
17149
diff
changeset
|
57 |
|
30996 | 58 |
lemma power_Suc2: |
59 |
"a ^ Suc n = a ^ n * a" |
|
30273
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents:
30242
diff
changeset
|
60 |
by (simp add: power_commutes) |
28131
3130d7b3149d
add lemma power_Suc2; generalize power_minus from class comm_ring_1 to ring_1
huffman
parents:
25874
diff
changeset
|
61 |
|
30996 | 62 |
lemma power_add: |
63 |
"a ^ (m + n) = a ^ m * a ^ n" |
|
64 |
by (induct m) (simp_all add: algebra_simps) |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
65 |
|
30996 | 66 |
lemma power_mult: |
67 |
"a ^ (m * n) = (a ^ m) ^ n" |
|
30273
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents:
30242
diff
changeset
|
68 |
by (induct n) (simp_all add: power_add) |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
69 |
|
47192
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
70 |
lemma power2_eq_square: "a\<twosuperior> = a * a" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
71 |
by (simp add: numeral_2_eq_2) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
72 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
73 |
lemma power3_eq_cube: "a ^ 3 = a * a * a" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
74 |
by (simp add: numeral_3_eq_3 mult_assoc) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
75 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
76 |
lemma power_even_eq: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
77 |
"a ^ (2*n) = (a ^ n) ^ 2" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
78 |
by (subst mult_commute) (simp add: power_mult) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
79 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
80 |
lemma power_odd_eq: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
81 |
"a ^ Suc (2*n) = a * (a ^ n) ^ 2" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
82 |
by (simp add: power_even_eq) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
83 |
|
30996 | 84 |
end |
85 |
||
86 |
context comm_monoid_mult |
|
87 |
begin |
|
88 |
||
89 |
lemma power_mult_distrib: |
|
90 |
"(a * b) ^ n = (a ^ n) * (b ^ n)" |
|
30273
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents:
30242
diff
changeset
|
91 |
by (induct n) (simp_all add: mult_ac) |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
92 |
|
30996 | 93 |
end |
94 |
||
47191 | 95 |
context semiring_numeral |
96 |
begin |
|
97 |
||
98 |
lemma numeral_sqr: "numeral (Num.sqr k) = numeral k * numeral k" |
|
99 |
by (simp only: sqr_conv_mult numeral_mult) |
|
100 |
||
101 |
lemma numeral_pow: "numeral (Num.pow k l) = numeral k ^ numeral l" |
|
102 |
by (induct l, simp_all only: numeral_class.numeral.simps pow.simps |
|
103 |
numeral_sqr numeral_mult power_add power_one_right) |
|
104 |
||
105 |
lemma power_numeral [simp]: "numeral k ^ numeral l = numeral (Num.pow k l)" |
|
106 |
by (rule numeral_pow [symmetric]) |
|
107 |
||
108 |
end |
|
109 |
||
30996 | 110 |
context semiring_1 |
111 |
begin |
|
112 |
||
113 |
lemma of_nat_power: |
|
114 |
"of_nat (m ^ n) = of_nat m ^ n" |
|
115 |
by (induct n) (simp_all add: of_nat_mult) |
|
116 |
||
47191 | 117 |
lemma power_zero_numeral [simp]: "(0::'a) ^ numeral k = 0" |
47209
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47192
diff
changeset
|
118 |
by (simp add: numeral_eq_Suc) |
47191 | 119 |
|
47192
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
120 |
lemma zero_power2: "0\<twosuperior> = 0" (* delete? *) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
121 |
by (rule power_zero_numeral) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
122 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
123 |
lemma one_power2: "1\<twosuperior> = 1" (* delete? *) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
124 |
by (rule power_one) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
125 |
|
30996 | 126 |
end |
127 |
||
128 |
context comm_semiring_1 |
|
129 |
begin |
|
130 |
||
131 |
text {* The divides relation *} |
|
132 |
||
133 |
lemma le_imp_power_dvd: |
|
134 |
assumes "m \<le> n" shows "a ^ m dvd a ^ n" |
|
135 |
proof |
|
136 |
have "a ^ n = a ^ (m + (n - m))" |
|
137 |
using `m \<le> n` by simp |
|
138 |
also have "\<dots> = a ^ m * a ^ (n - m)" |
|
139 |
by (rule power_add) |
|
140 |
finally show "a ^ n = a ^ m * a ^ (n - m)" . |
|
141 |
qed |
|
142 |
||
143 |
lemma power_le_dvd: |
|
144 |
"a ^ n dvd b \<Longrightarrow> m \<le> n \<Longrightarrow> a ^ m dvd b" |
|
145 |
by (rule dvd_trans [OF le_imp_power_dvd]) |
|
146 |
||
147 |
lemma dvd_power_same: |
|
148 |
"x dvd y \<Longrightarrow> x ^ n dvd y ^ n" |
|
149 |
by (induct n) (auto simp add: mult_dvd_mono) |
|
150 |
||
151 |
lemma dvd_power_le: |
|
152 |
"x dvd y \<Longrightarrow> m \<ge> n \<Longrightarrow> x ^ n dvd y ^ m" |
|
153 |
by (rule power_le_dvd [OF dvd_power_same]) |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
154 |
|
30996 | 155 |
lemma dvd_power [simp]: |
156 |
assumes "n > (0::nat) \<or> x = 1" |
|
157 |
shows "x dvd (x ^ n)" |
|
158 |
using assms proof |
|
159 |
assume "0 < n" |
|
160 |
then have "x ^ n = x ^ Suc (n - 1)" by simp |
|
161 |
then show "x dvd (x ^ n)" by simp |
|
162 |
next |
|
163 |
assume "x = 1" |
|
164 |
then show "x dvd (x ^ n)" by simp |
|
165 |
qed |
|
166 |
||
167 |
end |
|
168 |
||
169 |
context ring_1 |
|
170 |
begin |
|
171 |
||
172 |
lemma power_minus: |
|
173 |
"(- a) ^ n = (- 1) ^ n * a ^ n" |
|
174 |
proof (induct n) |
|
175 |
case 0 show ?case by simp |
|
176 |
next |
|
177 |
case (Suc n) then show ?case |
|
178 |
by (simp del: power_Suc add: power_Suc2 mult_assoc) |
|
179 |
qed |
|
180 |
||
47191 | 181 |
lemma power_minus_Bit0: |
182 |
"(- x) ^ numeral (Num.Bit0 k) = x ^ numeral (Num.Bit0 k)" |
|
183 |
by (induct k, simp_all only: numeral_class.numeral.simps power_add |
|
184 |
power_one_right mult_minus_left mult_minus_right minus_minus) |
|
185 |
||
186 |
lemma power_minus_Bit1: |
|
187 |
"(- x) ^ numeral (Num.Bit1 k) = - (x ^ numeral (Num.Bit1 k))" |
|
47220
52426c62b5d0
replace lemmas eval_nat_numeral with a simpler reformulation
huffman
parents:
47209
diff
changeset
|
188 |
by (simp only: eval_nat_numeral(3) power_Suc power_minus_Bit0 mult_minus_left) |
47191 | 189 |
|
190 |
lemma power_neg_numeral_Bit0 [simp]: |
|
191 |
"neg_numeral k ^ numeral (Num.Bit0 l) = numeral (Num.pow k (Num.Bit0 l))" |
|
192 |
by (simp only: neg_numeral_def power_minus_Bit0 power_numeral) |
|
193 |
||
194 |
lemma power_neg_numeral_Bit1 [simp]: |
|
195 |
"neg_numeral k ^ numeral (Num.Bit1 l) = neg_numeral (Num.pow k (Num.Bit1 l))" |
|
196 |
by (simp only: neg_numeral_def power_minus_Bit1 power_numeral pow.simps) |
|
197 |
||
47192
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
198 |
lemma power2_minus [simp]: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
199 |
"(- a)\<twosuperior> = a\<twosuperior>" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
200 |
by (rule power_minus_Bit0) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
201 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
202 |
lemma power_minus1_even [simp]: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
203 |
"-1 ^ (2*n) = 1" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
204 |
proof (induct n) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
205 |
case 0 show ?case by simp |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
206 |
next |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
207 |
case (Suc n) then show ?case by (simp add: power_add power2_eq_square) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
208 |
qed |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
209 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
210 |
lemma power_minus1_odd: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
211 |
"-1 ^ Suc (2*n) = -1" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
212 |
by simp |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
213 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
214 |
lemma power_minus_even [simp]: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
215 |
"(-a) ^ (2*n) = a ^ (2*n)" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
216 |
by (simp add: power_minus [of a]) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
217 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
218 |
end |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
219 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
220 |
context ring_1_no_zero_divisors |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
221 |
begin |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
222 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
223 |
lemma field_power_not_zero: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
224 |
"a \<noteq> 0 \<Longrightarrow> a ^ n \<noteq> 0" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
225 |
by (induct n) auto |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
226 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
227 |
lemma zero_eq_power2 [simp]: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
228 |
"a\<twosuperior> = 0 \<longleftrightarrow> a = 0" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
229 |
unfolding power2_eq_square by simp |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
230 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
231 |
lemma power2_eq_1_iff: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
232 |
"a\<twosuperior> = 1 \<longleftrightarrow> a = 1 \<or> a = - 1" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
233 |
unfolding power2_eq_square by (rule square_eq_1_iff) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
234 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
235 |
end |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
236 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
237 |
context idom |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
238 |
begin |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
239 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
240 |
lemma power2_eq_iff: "x\<twosuperior> = y\<twosuperior> \<longleftrightarrow> x = y \<or> x = - y" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
241 |
unfolding power2_eq_square by (rule square_eq_iff) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
242 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
243 |
end |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
244 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
245 |
context division_ring |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
246 |
begin |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
247 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
248 |
text {* FIXME reorient or rename to @{text nonzero_inverse_power} *} |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
249 |
lemma nonzero_power_inverse: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
250 |
"a \<noteq> 0 \<Longrightarrow> inverse (a ^ n) = (inverse a) ^ n" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
251 |
by (induct n) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
252 |
(simp_all add: nonzero_inverse_mult_distrib power_commutes field_power_not_zero) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
253 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
254 |
end |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
255 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
256 |
context field |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
257 |
begin |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
258 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
259 |
lemma nonzero_power_divide: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
260 |
"b \<noteq> 0 \<Longrightarrow> (a / b) ^ n = a ^ n / b ^ n" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
261 |
by (simp add: divide_inverse power_mult_distrib nonzero_power_inverse) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
262 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
263 |
end |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
264 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
265 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
266 |
subsection {* Exponentiation on ordered types *} |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
267 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
268 |
context linordered_ring (* TODO: move *) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
269 |
begin |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
270 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
271 |
lemma sum_squares_ge_zero: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
272 |
"0 \<le> x * x + y * y" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
273 |
by (intro add_nonneg_nonneg zero_le_square) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
274 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
275 |
lemma not_sum_squares_lt_zero: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
276 |
"\<not> x * x + y * y < 0" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
277 |
by (simp add: not_less sum_squares_ge_zero) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
278 |
|
30996 | 279 |
end |
280 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33364
diff
changeset
|
281 |
context linordered_semidom |
30996 | 282 |
begin |
283 |
||
284 |
lemma zero_less_power [simp]: |
|
285 |
"0 < a \<Longrightarrow> 0 < a ^ n" |
|
286 |
by (induct n) (simp_all add: mult_pos_pos) |
|
287 |
||
288 |
lemma zero_le_power [simp]: |
|
289 |
"0 \<le> a \<Longrightarrow> 0 \<le> a ^ n" |
|
290 |
by (induct n) (simp_all add: mult_nonneg_nonneg) |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
291 |
|
47241 | 292 |
lemma power_mono: |
293 |
"a \<le> b \<Longrightarrow> 0 \<le> a \<Longrightarrow> a ^ n \<le> b ^ n" |
|
294 |
by (induct n) (auto intro: mult_mono order_trans [of 0 a b]) |
|
295 |
||
296 |
lemma one_le_power [simp]: "1 \<le> a \<Longrightarrow> 1 \<le> a ^ n" |
|
297 |
using power_mono [of 1 a n] by simp |
|
298 |
||
299 |
lemma power_le_one: "\<lbrakk>0 \<le> a; a \<le> 1\<rbrakk> \<Longrightarrow> a ^ n \<le> 1" |
|
300 |
using power_mono [of a 1 n] by simp |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
301 |
|
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
302 |
lemma power_gt1_lemma: |
30996 | 303 |
assumes gt1: "1 < a" |
304 |
shows "1 < a * a ^ n" |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
305 |
proof - |
30996 | 306 |
from gt1 have "0 \<le> a" |
307 |
by (fact order_trans [OF zero_le_one less_imp_le]) |
|
308 |
have "1 * 1 < a * 1" using gt1 by simp |
|
309 |
also have "\<dots> \<le> a * a ^ n" using gt1 |
|
310 |
by (simp only: mult_mono `0 \<le> a` one_le_power order_less_imp_le |
|
14577 | 311 |
zero_le_one order_refl) |
312 |
finally show ?thesis by simp |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
313 |
qed |
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
314 |
|
30996 | 315 |
lemma power_gt1: |
316 |
"1 < a \<Longrightarrow> 1 < a ^ Suc n" |
|
317 |
by (simp add: power_gt1_lemma) |
|
24376 | 318 |
|
30996 | 319 |
lemma one_less_power [simp]: |
320 |
"1 < a \<Longrightarrow> 0 < n \<Longrightarrow> 1 < a ^ n" |
|
321 |
by (cases n) (simp_all add: power_gt1_lemma) |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
322 |
|
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
323 |
lemma power_le_imp_le_exp: |
30996 | 324 |
assumes gt1: "1 < a" |
325 |
shows "a ^ m \<le> a ^ n \<Longrightarrow> m \<le> n" |
|
326 |
proof (induct m arbitrary: n) |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
327 |
case 0 |
14577 | 328 |
show ?case by simp |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
329 |
next |
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
330 |
case (Suc m) |
14577 | 331 |
show ?case |
332 |
proof (cases n) |
|
333 |
case 0 |
|
30996 | 334 |
with Suc.prems Suc.hyps have "a * a ^ m \<le> 1" by simp |
14577 | 335 |
with gt1 show ?thesis |
336 |
by (force simp only: power_gt1_lemma |
|
30996 | 337 |
not_less [symmetric]) |
14577 | 338 |
next |
339 |
case (Suc n) |
|
30996 | 340 |
with Suc.prems Suc.hyps show ?thesis |
14577 | 341 |
by (force dest: mult_left_le_imp_le |
30996 | 342 |
simp add: less_trans [OF zero_less_one gt1]) |
14577 | 343 |
qed |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
344 |
qed |
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
345 |
|
14577 | 346 |
text{*Surely we can strengthen this? It holds for @{text "0<a<1"} too.*} |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
347 |
lemma power_inject_exp [simp]: |
30996 | 348 |
"1 < a \<Longrightarrow> a ^ m = a ^ n \<longleftrightarrow> m = n" |
14577 | 349 |
by (force simp add: order_antisym power_le_imp_le_exp) |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
350 |
|
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
351 |
text{*Can relax the first premise to @{term "0<a"} in the case of the |
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
352 |
natural numbers.*} |
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
353 |
lemma power_less_imp_less_exp: |
30996 | 354 |
"1 < a \<Longrightarrow> a ^ m < a ^ n \<Longrightarrow> m < n" |
355 |
by (simp add: order_less_le [of m n] less_le [of "a^m" "a^n"] |
|
356 |
power_le_imp_le_exp) |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
357 |
|
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
358 |
lemma power_strict_mono [rule_format]: |
30996 | 359 |
"a < b \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 < n \<longrightarrow> a ^ n < b ^ n" |
360 |
by (induct n) |
|
361 |
(auto simp add: mult_strict_mono le_less_trans [of 0 a b]) |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
362 |
|
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
363 |
text{*Lemma for @{text power_strict_decreasing}*} |
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
364 |
lemma power_Suc_less: |
30996 | 365 |
"0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a * a ^ n < a ^ n" |
366 |
by (induct n) |
|
367 |
(auto simp add: mult_strict_left_mono) |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
368 |
|
30996 | 369 |
lemma power_strict_decreasing [rule_format]: |
370 |
"n < N \<Longrightarrow> 0 < a \<Longrightarrow> a < 1 \<longrightarrow> a ^ N < a ^ n" |
|
371 |
proof (induct N) |
|
372 |
case 0 then show ?case by simp |
|
373 |
next |
|
374 |
case (Suc N) then show ?case |
|
375 |
apply (auto simp add: power_Suc_less less_Suc_eq) |
|
376 |
apply (subgoal_tac "a * a^N < 1 * a^n") |
|
377 |
apply simp |
|
378 |
apply (rule mult_strict_mono) apply auto |
|
379 |
done |
|
380 |
qed |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
381 |
|
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
382 |
text{*Proof resembles that of @{text power_strict_decreasing}*} |
30996 | 383 |
lemma power_decreasing [rule_format]: |
384 |
"n \<le> N \<Longrightarrow> 0 \<le> a \<Longrightarrow> a \<le> 1 \<longrightarrow> a ^ N \<le> a ^ n" |
|
385 |
proof (induct N) |
|
386 |
case 0 then show ?case by simp |
|
387 |
next |
|
388 |
case (Suc N) then show ?case |
|
389 |
apply (auto simp add: le_Suc_eq) |
|
390 |
apply (subgoal_tac "a * a^N \<le> 1 * a^n", simp) |
|
391 |
apply (rule mult_mono) apply auto |
|
392 |
done |
|
393 |
qed |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
394 |
|
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
395 |
lemma power_Suc_less_one: |
30996 | 396 |
"0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a ^ Suc n < 1" |
397 |
using power_strict_decreasing [of 0 "Suc n" a] by simp |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
398 |
|
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
399 |
text{*Proof again resembles that of @{text power_strict_decreasing}*} |
30996 | 400 |
lemma power_increasing [rule_format]: |
401 |
"n \<le> N \<Longrightarrow> 1 \<le> a \<Longrightarrow> a ^ n \<le> a ^ N" |
|
402 |
proof (induct N) |
|
403 |
case 0 then show ?case by simp |
|
404 |
next |
|
405 |
case (Suc N) then show ?case |
|
406 |
apply (auto simp add: le_Suc_eq) |
|
407 |
apply (subgoal_tac "1 * a^n \<le> a * a^N", simp) |
|
408 |
apply (rule mult_mono) apply (auto simp add: order_trans [OF zero_le_one]) |
|
409 |
done |
|
410 |
qed |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
411 |
|
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
412 |
text{*Lemma for @{text power_strict_increasing}*} |
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
413 |
lemma power_less_power_Suc: |
30996 | 414 |
"1 < a \<Longrightarrow> a ^ n < a * a ^ n" |
415 |
by (induct n) (auto simp add: mult_strict_left_mono less_trans [OF zero_less_one]) |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
416 |
|
30996 | 417 |
lemma power_strict_increasing [rule_format]: |
418 |
"n < N \<Longrightarrow> 1 < a \<longrightarrow> a ^ n < a ^ N" |
|
419 |
proof (induct N) |
|
420 |
case 0 then show ?case by simp |
|
421 |
next |
|
422 |
case (Suc N) then show ?case |
|
423 |
apply (auto simp add: power_less_power_Suc less_Suc_eq) |
|
424 |
apply (subgoal_tac "1 * a^n < a * a^N", simp) |
|
425 |
apply (rule mult_strict_mono) apply (auto simp add: less_trans [OF zero_less_one] less_imp_le) |
|
426 |
done |
|
427 |
qed |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
428 |
|
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25062
diff
changeset
|
429 |
lemma power_increasing_iff [simp]: |
30996 | 430 |
"1 < b \<Longrightarrow> b ^ x \<le> b ^ y \<longleftrightarrow> x \<le> y" |
431 |
by (blast intro: power_le_imp_le_exp power_increasing less_imp_le) |
|
15066 | 432 |
|
433 |
lemma power_strict_increasing_iff [simp]: |
|
30996 | 434 |
"1 < b \<Longrightarrow> b ^ x < b ^ y \<longleftrightarrow> x < y" |
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25062
diff
changeset
|
435 |
by (blast intro: power_less_imp_less_exp power_strict_increasing) |
15066 | 436 |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
437 |
lemma power_le_imp_le_base: |
30996 | 438 |
assumes le: "a ^ Suc n \<le> b ^ Suc n" |
439 |
and ynonneg: "0 \<le> b" |
|
440 |
shows "a \<le> b" |
|
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25062
diff
changeset
|
441 |
proof (rule ccontr) |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25062
diff
changeset
|
442 |
assume "~ a \<le> b" |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25062
diff
changeset
|
443 |
then have "b < a" by (simp only: linorder_not_le) |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25062
diff
changeset
|
444 |
then have "b ^ Suc n < a ^ Suc n" |
41550 | 445 |
by (simp only: assms power_strict_mono) |
30996 | 446 |
from le and this show False |
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25062
diff
changeset
|
447 |
by (simp add: linorder_not_less [symmetric]) |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25062
diff
changeset
|
448 |
qed |
14577 | 449 |
|
22853 | 450 |
lemma power_less_imp_less_base: |
451 |
assumes less: "a ^ n < b ^ n" |
|
452 |
assumes nonneg: "0 \<le> b" |
|
453 |
shows "a < b" |
|
454 |
proof (rule contrapos_pp [OF less]) |
|
455 |
assume "~ a < b" |
|
456 |
hence "b \<le> a" by (simp only: linorder_not_less) |
|
457 |
hence "b ^ n \<le> a ^ n" using nonneg by (rule power_mono) |
|
30996 | 458 |
thus "\<not> a ^ n < b ^ n" by (simp only: linorder_not_less) |
22853 | 459 |
qed |
460 |
||
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
461 |
lemma power_inject_base: |
30996 | 462 |
"a ^ Suc n = b ^ Suc n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> a = b" |
463 |
by (blast intro: power_le_imp_le_base antisym eq_refl sym) |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
464 |
|
22955 | 465 |
lemma power_eq_imp_eq_base: |
30996 | 466 |
"a ^ n = b ^ n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 < n \<Longrightarrow> a = b" |
467 |
by (cases n) (simp_all del: power_Suc, rule power_inject_base) |
|
22955 | 468 |
|
47192
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
469 |
lemma power2_le_imp_le: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
470 |
"x\<twosuperior> \<le> y\<twosuperior> \<Longrightarrow> 0 \<le> y \<Longrightarrow> x \<le> y" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
471 |
unfolding numeral_2_eq_2 by (rule power_le_imp_le_base) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
472 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
473 |
lemma power2_less_imp_less: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
474 |
"x\<twosuperior> < y\<twosuperior> \<Longrightarrow> 0 \<le> y \<Longrightarrow> x < y" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
475 |
by (rule power_less_imp_less_base) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
476 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
477 |
lemma power2_eq_imp_eq: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
478 |
"x\<twosuperior> = y\<twosuperior> \<Longrightarrow> 0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> x = y" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
479 |
unfolding numeral_2_eq_2 by (erule (2) power_eq_imp_eq_base) simp |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
480 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
481 |
end |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
482 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
483 |
context linordered_ring_strict |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
484 |
begin |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
485 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
486 |
lemma sum_squares_eq_zero_iff: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
487 |
"x * x + y * y = 0 \<longleftrightarrow> x = 0 \<and> y = 0" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
488 |
by (simp add: add_nonneg_eq_0_iff) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
489 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
490 |
lemma sum_squares_le_zero_iff: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
491 |
"x * x + y * y \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
492 |
by (simp add: le_less not_sum_squares_lt_zero sum_squares_eq_zero_iff) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
493 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
494 |
lemma sum_squares_gt_zero_iff: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
495 |
"0 < x * x + y * y \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
496 |
by (simp add: not_le [symmetric] sum_squares_le_zero_iff) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
497 |
|
30996 | 498 |
end |
499 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33364
diff
changeset
|
500 |
context linordered_idom |
30996 | 501 |
begin |
29978
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
huffman
parents:
29608
diff
changeset
|
502 |
|
30996 | 503 |
lemma power_abs: |
504 |
"abs (a ^ n) = abs a ^ n" |
|
505 |
by (induct n) (auto simp add: abs_mult) |
|
506 |
||
507 |
lemma abs_power_minus [simp]: |
|
508 |
"abs ((-a) ^ n) = abs (a ^ n)" |
|
35216 | 509 |
by (simp add: power_abs) |
30996 | 510 |
|
35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35216
diff
changeset
|
511 |
lemma zero_less_power_abs_iff [simp, no_atp]: |
30996 | 512 |
"0 < abs a ^ n \<longleftrightarrow> a \<noteq> 0 \<or> n = 0" |
513 |
proof (induct n) |
|
514 |
case 0 show ?case by simp |
|
515 |
next |
|
516 |
case (Suc n) show ?case by (auto simp add: Suc zero_less_mult_iff) |
|
29978
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
huffman
parents:
29608
diff
changeset
|
517 |
qed |
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
huffman
parents:
29608
diff
changeset
|
518 |
|
30996 | 519 |
lemma zero_le_power_abs [simp]: |
520 |
"0 \<le> abs a ^ n" |
|
521 |
by (rule zero_le_power [OF abs_ge_zero]) |
|
522 |
||
47192
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
523 |
lemma zero_le_power2 [simp]: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
524 |
"0 \<le> a\<twosuperior>" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
525 |
by (simp add: power2_eq_square) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
526 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
527 |
lemma zero_less_power2 [simp]: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
528 |
"0 < a\<twosuperior> \<longleftrightarrow> a \<noteq> 0" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
529 |
by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
530 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
531 |
lemma power2_less_0 [simp]: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
532 |
"\<not> a\<twosuperior> < 0" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
533 |
by (force simp add: power2_eq_square mult_less_0_iff) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
534 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
535 |
lemma abs_power2 [simp]: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
536 |
"abs (a\<twosuperior>) = a\<twosuperior>" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
537 |
by (simp add: power2_eq_square abs_mult abs_mult_self) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
538 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
539 |
lemma power2_abs [simp]: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
540 |
"(abs a)\<twosuperior> = a\<twosuperior>" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
541 |
by (simp add: power2_eq_square abs_mult_self) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
542 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
543 |
lemma odd_power_less_zero: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
544 |
"a < 0 \<Longrightarrow> a ^ Suc (2*n) < 0" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
545 |
proof (induct n) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
546 |
case 0 |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
547 |
then show ?case by simp |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
548 |
next |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
549 |
case (Suc n) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
550 |
have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
551 |
by (simp add: mult_ac power_add power2_eq_square) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
552 |
thus ?case |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
553 |
by (simp del: power_Suc add: Suc mult_less_0_iff mult_neg_neg) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
554 |
qed |
30996 | 555 |
|
47192
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
556 |
lemma odd_0_le_power_imp_0_le: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
557 |
"0 \<le> a ^ Suc (2*n) \<Longrightarrow> 0 \<le> a" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
558 |
using odd_power_less_zero [of a n] |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
559 |
by (force simp add: linorder_not_less [symmetric]) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
560 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
561 |
lemma zero_le_even_power'[simp]: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
562 |
"0 \<le> a ^ (2*n)" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
563 |
proof (induct n) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
564 |
case 0 |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
565 |
show ?case by simp |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
566 |
next |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
567 |
case (Suc n) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
568 |
have "a ^ (2 * Suc n) = (a*a) * a ^ (2*n)" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
569 |
by (simp add: mult_ac power_add power2_eq_square) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
570 |
thus ?case |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
571 |
by (simp add: Suc zero_le_mult_iff) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
572 |
qed |
30996 | 573 |
|
47192
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
574 |
lemma sum_power2_ge_zero: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
575 |
"0 \<le> x\<twosuperior> + y\<twosuperior>" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
576 |
by (intro add_nonneg_nonneg zero_le_power2) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
577 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
578 |
lemma not_sum_power2_lt_zero: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
579 |
"\<not> x\<twosuperior> + y\<twosuperior> < 0" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
580 |
unfolding not_less by (rule sum_power2_ge_zero) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
581 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
582 |
lemma sum_power2_eq_zero_iff: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
583 |
"x\<twosuperior> + y\<twosuperior> = 0 \<longleftrightarrow> x = 0 \<and> y = 0" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
584 |
unfolding power2_eq_square by (simp add: add_nonneg_eq_0_iff) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
585 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
586 |
lemma sum_power2_le_zero_iff: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
587 |
"x\<twosuperior> + y\<twosuperior> \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
588 |
by (simp add: le_less sum_power2_eq_zero_iff not_sum_power2_lt_zero) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
589 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
590 |
lemma sum_power2_gt_zero_iff: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
591 |
"0 < x\<twosuperior> + y\<twosuperior> \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
592 |
unfolding not_le [symmetric] by (simp add: sum_power2_le_zero_iff) |
30996 | 593 |
|
594 |
end |
|
595 |
||
29978
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
huffman
parents:
29608
diff
changeset
|
596 |
|
47192
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
597 |
subsection {* Miscellaneous rules *} |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
598 |
|
47192
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
599 |
lemma power2_sum: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
600 |
fixes x y :: "'a::comm_semiring_1" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
601 |
shows "(x + y)\<twosuperior> = x\<twosuperior> + y\<twosuperior> + 2 * x * y" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
602 |
by (simp add: algebra_simps power2_eq_square mult_2_right) |
30996 | 603 |
|
47192
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
604 |
lemma power2_diff: |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
605 |
fixes x y :: "'a::comm_ring_1" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
606 |
shows "(x - y)\<twosuperior> = x\<twosuperior> + y\<twosuperior> - 2 * x * y" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
607 |
by (simp add: ring_distribs power2_eq_square mult_2) (rule mult_commute) |
30996 | 608 |
|
609 |
lemma power_0_Suc [simp]: |
|
610 |
"(0::'a::{power, semiring_0}) ^ Suc n = 0" |
|
611 |
by simp |
|
30313 | 612 |
|
30996 | 613 |
text{*It looks plausible as a simprule, but its effect can be strange.*} |
614 |
lemma power_0_left: |
|
615 |
"0 ^ n = (if n = 0 then 1 else (0::'a::{power, semiring_0}))" |
|
616 |
by (induct n) simp_all |
|
617 |
||
618 |
lemma power_eq_0_iff [simp]: |
|
619 |
"a ^ n = 0 \<longleftrightarrow> |
|
620 |
a = (0::'a::{mult_zero,zero_neq_one,no_zero_divisors,power}) \<and> n \<noteq> 0" |
|
621 |
by (induct n) |
|
622 |
(auto simp add: no_zero_divisors elim: contrapos_pp) |
|
623 |
||
36409 | 624 |
lemma (in field) power_diff: |
30996 | 625 |
assumes nz: "a \<noteq> 0" |
626 |
shows "n \<le> m \<Longrightarrow> a ^ (m - n) = a ^ m / a ^ n" |
|
36409 | 627 |
by (induct m n rule: diff_induct) (simp_all add: nz field_power_not_zero) |
30313 | 628 |
|
30996 | 629 |
text{*Perhaps these should be simprules.*} |
630 |
lemma power_inverse: |
|
36409 | 631 |
fixes a :: "'a::division_ring_inverse_zero" |
632 |
shows "inverse (a ^ n) = inverse a ^ n" |
|
30996 | 633 |
apply (cases "a = 0") |
634 |
apply (simp add: power_0_left) |
|
635 |
apply (simp add: nonzero_power_inverse) |
|
636 |
done (* TODO: reorient or rename to inverse_power *) |
|
637 |
||
638 |
lemma power_one_over: |
|
36409 | 639 |
"1 / (a::'a::{field_inverse_zero, power}) ^ n = (1 / a) ^ n" |
30996 | 640 |
by (simp add: divide_inverse) (rule power_inverse) |
641 |
||
642 |
lemma power_divide: |
|
36409 | 643 |
"(a / b) ^ n = (a::'a::field_inverse_zero) ^ n / b ^ n" |
30996 | 644 |
apply (cases "b = 0") |
645 |
apply (simp add: power_0_left) |
|
646 |
apply (rule nonzero_power_divide) |
|
647 |
apply assumption |
|
30313 | 648 |
done |
649 |
||
650 |
||
30960 | 651 |
subsection {* Exponentiation for the Natural Numbers *} |
14577 | 652 |
|
30996 | 653 |
lemma nat_one_le_power [simp]: |
654 |
"Suc 0 \<le> i \<Longrightarrow> Suc 0 \<le> i ^ n" |
|
655 |
by (rule one_le_power [of i n, unfolded One_nat_def]) |
|
23305 | 656 |
|
30996 | 657 |
lemma nat_zero_less_power_iff [simp]: |
658 |
"x ^ n > 0 \<longleftrightarrow> x > (0::nat) \<or> n = 0" |
|
659 |
by (induct n) auto |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
660 |
|
30056 | 661 |
lemma nat_power_eq_Suc_0_iff [simp]: |
30996 | 662 |
"x ^ m = Suc 0 \<longleftrightarrow> m = 0 \<or> x = Suc 0" |
663 |
by (induct m) auto |
|
30056 | 664 |
|
30996 | 665 |
lemma power_Suc_0 [simp]: |
666 |
"Suc 0 ^ n = Suc 0" |
|
667 |
by simp |
|
30056 | 668 |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
669 |
text{*Valid for the naturals, but what if @{text"0<i<1"}? |
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
670 |
Premises cannot be weakened: consider the case where @{term "i=0"}, |
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
671 |
@{term "m=1"} and @{term "n=0"}.*} |
21413 | 672 |
lemma nat_power_less_imp_less: |
673 |
assumes nonneg: "0 < (i\<Colon>nat)" |
|
30996 | 674 |
assumes less: "i ^ m < i ^ n" |
21413 | 675 |
shows "m < n" |
676 |
proof (cases "i = 1") |
|
677 |
case True with less power_one [where 'a = nat] show ?thesis by simp |
|
678 |
next |
|
679 |
case False with nonneg have "1 < i" by auto |
|
680 |
from power_strict_increasing_iff [OF this] less show ?thesis .. |
|
681 |
qed |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
682 |
|
33274
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
haftmann
parents:
31998
diff
changeset
|
683 |
lemma power_dvd_imp_le: |
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
haftmann
parents:
31998
diff
changeset
|
684 |
"i ^ m dvd i ^ n \<Longrightarrow> (1::nat) < i \<Longrightarrow> m \<le> n" |
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
haftmann
parents:
31998
diff
changeset
|
685 |
apply (rule power_le_imp_le_exp, assumption) |
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
haftmann
parents:
31998
diff
changeset
|
686 |
apply (erule dvd_imp_le, simp) |
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
haftmann
parents:
31998
diff
changeset
|
687 |
done |
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
haftmann
parents:
31998
diff
changeset
|
688 |
|
31155
92d8ff6af82c
monomorphic code generation for power operations
haftmann
parents:
31021
diff
changeset
|
689 |
|
92d8ff6af82c
monomorphic code generation for power operations
haftmann
parents:
31021
diff
changeset
|
690 |
subsection {* Code generator tweak *} |
92d8ff6af82c
monomorphic code generation for power operations
haftmann
parents:
31021
diff
changeset
|
691 |
|
45231
d85a2fdc586c
replacing code_inline by code_unfold, removing obsolete code_unfold, code_inline del now that the ancient code generator is removed
bulwahn
parents:
41550
diff
changeset
|
692 |
lemma power_power_power [code]: |
31155
92d8ff6af82c
monomorphic code generation for power operations
haftmann
parents:
31021
diff
changeset
|
693 |
"power = power.power (1::'a::{power}) (op *)" |
92d8ff6af82c
monomorphic code generation for power operations
haftmann
parents:
31021
diff
changeset
|
694 |
unfolding power_def power.power_def .. |
92d8ff6af82c
monomorphic code generation for power operations
haftmann
parents:
31021
diff
changeset
|
695 |
|
92d8ff6af82c
monomorphic code generation for power operations
haftmann
parents:
31021
diff
changeset
|
696 |
declare power.power.simps [code] |
92d8ff6af82c
monomorphic code generation for power operations
haftmann
parents:
31021
diff
changeset
|
697 |
|
33364 | 698 |
code_modulename SML |
699 |
Power Arith |
|
700 |
||
701 |
code_modulename OCaml |
|
702 |
Power Arith |
|
703 |
||
704 |
code_modulename Haskell |
|
705 |
Power Arith |
|
706 |
||
3390
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
paulson
parents:
diff
changeset
|
707 |
end |