| 
244
 | 
     1  | 
(*  Title:	HOLCF/ex/hoare.ML
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Franz Regensburger
  | 
| 
 | 
     4  | 
    Copyright	1993 Technische Universitaet Muenchen
  | 
| 
 | 
     5  | 
*)
  | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
open Hoare;
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
(* --------- pure HOLCF logic, some little lemmas ------ *)
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
val hoare_lemma2 = prove_goal HOLCF.thy "~b=TT ==> b=FF | b=UU"
  | 
| 
 | 
    12  | 
 (fn prems =>
  | 
| 
 | 
    13  | 
	[
  | 
| 
 | 
    14  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
    15  | 
	(rtac (Exh_tr RS disjE) 1),
  | 
| 
 | 
    16  | 
	(fast_tac HOL_cs 1),
  | 
| 
 | 
    17  | 
	(etac disjE 1),
  | 
| 
 | 
    18  | 
	(contr_tac 1),
  | 
| 
 | 
    19  | 
	(fast_tac HOL_cs 1)
  | 
| 
 | 
    20  | 
	]);
  | 
| 
 | 
    21  | 
  | 
| 
 | 
    22  | 
val hoare_lemma3 = prove_goal HOLCF.thy 
  | 
| 
 | 
    23  | 
" (!k.b1[iterate(k,g,x)]=TT) | (? k.~ b1[iterate(k,g,x)]=TT)"
  | 
| 
 | 
    24  | 
 (fn prems =>
  | 
| 
 | 
    25  | 
	[
  | 
| 
 | 
    26  | 
	(fast_tac HOL_cs 1)
  | 
| 
 | 
    27  | 
	]);
  | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
val hoare_lemma4 = prove_goal HOLCF.thy 
  | 
| 
 | 
    30  | 
"(? k.~ b1[iterate(k,g,x)]=TT) ==> \
  | 
| 
 | 
    31  | 
\ ? k.b1[iterate(k,g,x)]=FF | b1[iterate(k,g,x)]=UU"
  | 
| 
 | 
    32  | 
 (fn prems =>
  | 
| 
 | 
    33  | 
	[
  | 
| 
 | 
    34  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
    35  | 
	(etac exE 1),
  | 
| 
 | 
    36  | 
	(rtac exI 1),
  | 
| 
 | 
    37  | 
	(rtac hoare_lemma2 1),
  | 
| 
 | 
    38  | 
	(atac 1)
  | 
| 
 | 
    39  | 
	]);
  | 
| 
 | 
    40  | 
  | 
| 
 | 
    41  | 
val hoare_lemma5 = prove_goal HOLCF.thy 
  | 
| 
 | 
    42  | 
"[|(? k.~ b1[iterate(k,g,x)]=TT);\
  | 
| 
 | 
    43  | 
\   k=theleast(%n.~ b1[iterate(n,g,x)]=TT)|] ==> \
  | 
| 
 | 
    44  | 
\ b1[iterate(k,g,x)]=FF | b1[iterate(k,g,x)]=UU"
  | 
| 
 | 
    45  | 
 (fn prems =>
  | 
| 
 | 
    46  | 
	[
  | 
| 
 | 
    47  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
    48  | 
	(hyp_subst_tac 1),
  | 
| 
 | 
    49  | 
	(rtac hoare_lemma2 1),
  | 
| 
 | 
    50  | 
	(etac exE 1),
  | 
| 
 | 
    51  | 
	(etac theleast1 1)
  | 
| 
 | 
    52  | 
	]);
  | 
| 
 | 
    53  | 
  | 
| 
 | 
    54  | 
val hoare_lemma6 = prove_goal HOLCF.thy "b=UU ==> ~b=TT"
  | 
| 
 | 
    55  | 
 (fn prems =>
  | 
| 
 | 
    56  | 
	[
  | 
| 
 | 
    57  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
    58  | 
	(hyp_subst_tac 1),
  | 
| 
 | 
    59  | 
	(resolve_tac dist_eq_tr 1)
  | 
| 
 | 
    60  | 
	]);
  | 
| 
 | 
    61  | 
  | 
| 
 | 
    62  | 
val hoare_lemma7 = prove_goal HOLCF.thy "b=FF ==> ~b=TT"
  | 
| 
 | 
    63  | 
 (fn prems =>
  | 
| 
 | 
    64  | 
	[
  | 
| 
 | 
    65  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
    66  | 
	(hyp_subst_tac 1),
  | 
| 
 | 
    67  | 
	(resolve_tac dist_eq_tr 1)
  | 
| 
 | 
    68  | 
	]);
  | 
| 
 | 
    69  | 
  | 
| 
 | 
    70  | 
val hoare_lemma8 = prove_goal HOLCF.thy 
  | 
| 
 | 
    71  | 
"[|(? k.~ b1[iterate(k,g,x)]=TT);\
  | 
| 
 | 
    72  | 
\   k=theleast(%n.~ b1[iterate(n,g,x)]=TT)|] ==> \
  | 
| 
 | 
    73  | 
\ !m. m<k --> b1[iterate(m,g,x)]=TT"
  | 
| 
 | 
    74  | 
 (fn prems =>
  | 
| 
 | 
    75  | 
	[
  | 
| 
 | 
    76  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
    77  | 
	(hyp_subst_tac 1),
  | 
| 
 | 
    78  | 
	(etac exE 1),
  | 
| 
 | 
    79  | 
	(strip_tac 1),
  | 
| 
 | 
    80  | 
	(res_inst_tac [("p","b1[iterate(m,g,x)]")] trE 1),
 | 
| 
 | 
    81  | 
	(atac 2),
  | 
| 
 | 
    82  | 
	(rtac (le_less_trans RS less_anti_refl) 1),
  | 
| 
 | 
    83  | 
	(atac 2),
  | 
| 
 | 
    84  | 
	(rtac theleast2 1),
  | 
| 
 | 
    85  | 
	(etac hoare_lemma6 1),
  | 
| 
 | 
    86  | 
	(rtac (le_less_trans RS less_anti_refl) 1),
  | 
| 
 | 
    87  | 
	(atac 2),
  | 
| 
 | 
    88  | 
	(rtac theleast2 1),
  | 
| 
 | 
    89  | 
	(etac hoare_lemma7 1)
  | 
| 
 | 
    90  | 
	]);
  | 
| 
 | 
    91  | 
  | 
| 
 | 
    92  | 
val hoare_lemma28 = prove_goal HOLCF.thy 
  | 
| 
 | 
    93  | 
"b1[y::'a]=UU::tr ==> b1[UU] = UU"
  | 
| 
 | 
    94  | 
 (fn prems =>
  | 
| 
 | 
    95  | 
	[
  | 
| 
 | 
    96  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
    97  | 
	(etac (flat_tr RS flat_codom RS disjE) 1),
  | 
| 
 | 
    98  | 
	(atac 1),
  | 
| 
 | 
    99  | 
	(etac spec 1)
  | 
| 
 | 
   100  | 
	]);
  | 
| 
 | 
   101  | 
  | 
| 
 | 
   102  | 
  | 
| 
 | 
   103  | 
(* ----- access to definitions ----- *)
  | 
| 
 | 
   104  | 
  | 
| 
 | 
   105  | 
val p_def2 = prove_goalw Hoare.thy [p_def]
  | 
| 
 | 
   106  | 
"p = fix[LAM f x. If b1[x] then f[g[x]] else x fi]"
  | 
| 
 | 
   107  | 
 (fn prems =>
  | 
| 
 | 
   108  | 
	[
  | 
| 
 | 
   109  | 
	(rtac refl 1)
  | 
| 
 | 
   110  | 
	]);
  | 
| 
 | 
   111  | 
  | 
| 
 | 
   112  | 
val q_def2 = prove_goalw Hoare.thy [q_def]
  | 
| 
 | 
   113  | 
"q = fix[LAM f x. If b1[x] orelse b2[x] then \
  | 
| 
 | 
   114  | 
\     f[g[x]] else x fi]"
  | 
| 
 | 
   115  | 
 (fn prems =>
  | 
| 
 | 
   116  | 
	[
  | 
| 
 | 
   117  | 
	(rtac refl 1)
  | 
| 
 | 
   118  | 
	]);
  | 
| 
 | 
   119  | 
  | 
| 
 | 
   120  | 
  | 
| 
 | 
   121  | 
val p_def3 = prove_goal Hoare.thy 
  | 
| 
 | 
   122  | 
"p[x] = If b1[x] then p[g[x]] else x fi"
  | 
| 
 | 
   123  | 
 (fn prems =>
  | 
| 
 | 
   124  | 
	[
  | 
| 
 | 
   125  | 
	(fix_tac3 p_def 1),
  | 
| 
 | 
   126  | 
	(simp_tac HOLCF_ss 1)
  | 
| 
 | 
   127  | 
	]);
  | 
| 
 | 
   128  | 
  | 
| 
 | 
   129  | 
val q_def3 = prove_goal Hoare.thy 
  | 
| 
 | 
   130  | 
"q[x] = If b1[x] orelse b2[x] then q[g[x]] else x fi"
  | 
| 
 | 
   131  | 
 (fn prems =>
  | 
| 
 | 
   132  | 
	[
  | 
| 
 | 
   133  | 
	(fix_tac3 q_def 1),
  | 
| 
 | 
   134  | 
	(simp_tac HOLCF_ss 1)
  | 
| 
 | 
   135  | 
	]);
  | 
| 
 | 
   136  | 
  | 
| 
 | 
   137  | 
(** --------- proves about iterations of p and q ---------- **)
  | 
| 
 | 
   138  | 
  | 
| 
 | 
   139  | 
val hoare_lemma9 = prove_goal Hoare.thy 
  | 
| 
 | 
   140  | 
"(! m. m<Suc(k) --> b1[iterate(m,g,x)]=TT) -->\
  | 
| 
 | 
   141  | 
\  p[iterate(k,g,x)]=p[x]"
  | 
| 
 | 
   142  | 
 (fn prems =>
  | 
| 
 | 
   143  | 
	[
  | 
| 
 | 
   144  | 
	(nat_ind_tac "k" 1),
  | 
| 
 | 
   145  | 
	(simp_tac iterate_ss 1),
  | 
| 
 | 
   146  | 
	(simp_tac iterate_ss 1),
  | 
| 
 | 
   147  | 
	(strip_tac 1),
  | 
| 
 | 
   148  | 
	(res_inst_tac [("s","p[iterate(k1,g,x)]")] trans 1),
 | 
| 
 | 
   149  | 
	(rtac trans 1),
  | 
| 
 | 
   150  | 
	(rtac (p_def3 RS sym) 2),
  | 
| 
 | 
   151  | 
	(res_inst_tac [("s","TT"),("t","b1[iterate(k1,g,x)]")] ssubst 1),
 | 
| 
 | 
   152  | 
	(rtac mp 1),
  | 
| 
 | 
   153  | 
	(etac spec 1),
  | 
| 
 | 
   154  | 
	(simp_tac nat_ss 1),
  | 
| 
 | 
   155  | 
	(simp_tac HOLCF_ss 1),
  | 
| 
 | 
   156  | 
	(etac mp 1),
  | 
| 
 | 
   157  | 
	(strip_tac 1),
  | 
| 
 | 
   158  | 
	(rtac mp 1),
  | 
| 
 | 
   159  | 
	(etac spec 1),
  | 
| 
 | 
   160  | 
	(etac less_trans 1),
  | 
| 
 | 
   161  | 
	(simp_tac nat_ss 1)
  | 
| 
 | 
   162  | 
	]);
  | 
| 
 | 
   163  | 
  | 
| 
 | 
   164  | 
val hoare_lemma24 = prove_goal Hoare.thy 
  | 
| 
 | 
   165  | 
"(! m. m<Suc(k) --> b1[iterate(m,g,x)]=TT) --> \
  | 
| 
 | 
   166  | 
\ q[iterate(k,g,x)]=q[x]"
  | 
| 
 | 
   167  | 
 (fn prems =>
  | 
| 
 | 
   168  | 
	[
  | 
| 
 | 
   169  | 
	(nat_ind_tac "k" 1),
  | 
| 
 | 
   170  | 
	(simp_tac iterate_ss 1),
  | 
| 
 | 
   171  | 
	(simp_tac iterate_ss 1),
  | 
| 
 | 
   172  | 
	(strip_tac 1),
  | 
| 
 | 
   173  | 
	(res_inst_tac [("s","q[iterate(k1,g,x)]")] trans 1),
 | 
| 
 | 
   174  | 
	(rtac trans 1),
  | 
| 
 | 
   175  | 
	(rtac (q_def3 RS sym) 2),
  | 
| 
 | 
   176  | 
	(res_inst_tac [("s","TT"),("t","b1[iterate(k1,g,x)]")] ssubst 1),
 | 
| 
 | 
   177  | 
	(rtac mp 1),
  | 
| 
 | 
   178  | 
	(etac spec 1),
  | 
| 
 | 
   179  | 
	(simp_tac nat_ss 1),
  | 
| 
 | 
   180  | 
	(simp_tac HOLCF_ss 1),
  | 
| 
 | 
   181  | 
	(etac mp 1),
  | 
| 
 | 
   182  | 
	(strip_tac 1),
  | 
| 
 | 
   183  | 
	(rtac mp 1),
  | 
| 
 | 
   184  | 
	(etac spec 1),
  | 
| 
 | 
   185  | 
	(etac less_trans 1),
  | 
| 
 | 
   186  | 
	(simp_tac nat_ss 1)
  | 
| 
 | 
   187  | 
	]);
  | 
| 
 | 
   188  | 
  | 
| 
 | 
   189  | 
(* -------- results about p for case (? k.~ b1[iterate(k,g,x)]=TT) ------- *)
  | 
| 
 | 
   190  | 
  | 
| 
 | 
   191  | 
  | 
| 
 | 
   192  | 
val hoare_lemma10 = (hoare_lemma8 RS (hoare_lemma9 RS mp));
  | 
| 
 | 
   193  | 
(* 
  | 
| 
 | 
   194  | 
[| ? k. ~ b1[iterate(k,g,?x1)] = TT;
  | 
| 
 | 
   195  | 
   Suc(?k3) = theleast(%n. ~ b1[iterate(n,g,?x1)] = TT) |] ==>
  | 
| 
 | 
   196  | 
p[iterate(?k3,g,?x1)] = p[?x1]
  | 
| 
 | 
   197  | 
*)
  | 
| 
 | 
   198  | 
  | 
| 
 | 
   199  | 
val hoare_lemma11 = prove_goal Hoare.thy 
  | 
| 
 | 
   200  | 
"(? n.b1[iterate(n,g,x)]~=TT) ==>\
  | 
| 
 | 
   201  | 
\ k=theleast(%n.b1[iterate(n,g,x)]~=TT) & b1[iterate(k,g,x)]=FF \
  | 
| 
 | 
   202  | 
\ --> p[x] = iterate(k,g,x)"
  | 
| 
 | 
   203  | 
 (fn prems =>
  | 
| 
 | 
   204  | 
	[
  | 
| 
 | 
   205  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
   206  | 
	(res_inst_tac [("n","k")] natE 1),
 | 
| 
 | 
   207  | 
	(hyp_subst_tac 1),
  | 
| 
 | 
   208  | 
	(simp_tac iterate_ss 1),
  | 
| 
 | 
   209  | 
	(strip_tac 1),
  | 
| 
 | 
   210  | 
	(etac conjE 1),
  | 
| 
 | 
   211  | 
	(rtac trans 1),
  | 
| 
 | 
   212  | 
	(rtac p_def3 1),
  | 
| 
 | 
   213  | 
	(asm_simp_tac HOLCF_ss  1),
  | 
| 
 | 
   214  | 
	(eres_inst_tac [("s","0"),("t","theleast(%n. b1[iterate(n, g, x)] ~= TT)")]
 | 
| 
 | 
   215  | 
	subst 1),
  | 
| 
 | 
   216  | 
	(simp_tac iterate_ss 1),
  | 
| 
 | 
   217  | 
	(hyp_subst_tac 1),
  | 
| 
 | 
   218  | 
	(strip_tac 1),
  | 
| 
 | 
   219  | 
	(etac conjE 1),
  | 
| 
 | 
   220  | 
	(rtac trans 1),
  | 
| 
 | 
   221  | 
	(etac (hoare_lemma10 RS sym) 1),
  | 
| 
 | 
   222  | 
	(atac 1),
  | 
| 
 | 
   223  | 
	(rtac trans 1),
  | 
| 
 | 
   224  | 
	(rtac p_def3 1),
  | 
| 
 | 
   225  | 
	(res_inst_tac [("s","TT"),("t","b1[iterate(xa,g,x)]")] ssubst 1),
 | 
| 
 | 
   226  | 
	(rtac (hoare_lemma8 RS spec RS mp) 1),
  | 
| 
 | 
   227  | 
	(atac 1),
  | 
| 
 | 
   228  | 
	(atac 1),
  | 
| 
 | 
   229  | 
	(simp_tac nat_ss 1),
  | 
| 
 | 
   230  | 
	(simp_tac HOLCF_ss 1),
  | 
| 
 | 
   231  | 
	(rtac trans 1),
  | 
| 
 | 
   232  | 
	(rtac p_def3 1),
  | 
| 
 | 
   233  | 
	(simp_tac (HOLCF_ss addsimps [iterate_Suc RS sym]) 1),
  | 
| 
 | 
   234  | 
	(eres_inst_tac [("s","FF")]	ssubst 1),
 | 
| 
 | 
   235  | 
	(simp_tac HOLCF_ss 1)
  | 
| 
 | 
   236  | 
	]);
  | 
| 
 | 
   237  | 
  | 
| 
 | 
   238  | 
val hoare_lemma12 = prove_goal Hoare.thy 
  | 
| 
 | 
   239  | 
"(? n.~ b1[iterate(n,g,x)]=TT) ==>\
  | 
| 
 | 
   240  | 
\ k=theleast(%n.~ b1[iterate(n,g,x)]=TT) & b1[iterate(k,g,x)]=UU \
  | 
| 
 | 
   241  | 
\ --> p[x] = UU"
  | 
| 
 | 
   242  | 
 (fn prems =>
  | 
| 
 | 
   243  | 
	[
  | 
| 
 | 
   244  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
   245  | 
	(res_inst_tac [("n","k")] natE 1),
 | 
| 
 | 
   246  | 
	(hyp_subst_tac 1),
  | 
| 
 | 
   247  | 
	(simp_tac iterate_ss 1),
  | 
| 
 | 
   248  | 
	(strip_tac 1),
  | 
| 
 | 
   249  | 
	(etac conjE 1),
  | 
| 
 | 
   250  | 
	(rtac trans 1),
  | 
| 
 | 
   251  | 
	(rtac p_def3 1),
  | 
| 
 | 
   252  | 
	(asm_simp_tac HOLCF_ss  1),
  | 
| 
 | 
   253  | 
	(hyp_subst_tac 1),
  | 
| 
 | 
   254  | 
	(simp_tac iterate_ss 1),
  | 
| 
 | 
   255  | 
	(strip_tac 1),
  | 
| 
 | 
   256  | 
	(etac conjE 1),
  | 
| 
 | 
   257  | 
	(rtac trans 1),
  | 
| 
 | 
   258  | 
	(rtac (hoare_lemma10 RS sym) 1),
  | 
| 
 | 
   259  | 
	(atac 1),
  | 
| 
 | 
   260  | 
	(atac 1),
  | 
| 
 | 
   261  | 
	(rtac trans 1),
  | 
| 
 | 
   262  | 
	(rtac p_def3 1),
  | 
| 
 | 
   263  | 
	(res_inst_tac [("s","TT"),("t","b1[iterate(xa,g,x)]")] ssubst 1),
 | 
| 
 | 
   264  | 
	(rtac (hoare_lemma8 RS spec RS mp) 1),
  | 
| 
 | 
   265  | 
	(atac 1),
  | 
| 
 | 
   266  | 
	(atac 1),
  | 
| 
 | 
   267  | 
	(simp_tac nat_ss 1),
  | 
| 
 | 
   268  | 
	(asm_simp_tac HOLCF_ss  1),
  | 
| 
 | 
   269  | 
	(rtac trans 1),
  | 
| 
 | 
   270  | 
	(rtac p_def3 1),
  | 
| 
 | 
   271  | 
	(asm_simp_tac HOLCF_ss  1)
  | 
| 
 | 
   272  | 
	]);
  | 
| 
 | 
   273  | 
  | 
| 
 | 
   274  | 
(* -------- results about p for case  (! k. b1[iterate(k,g,x)]=TT) ------- *)
  | 
| 
 | 
   275  | 
  | 
| 
 | 
   276  | 
val fernpass_lemma = prove_goal Hoare.thy 
  | 
| 
 | 
   277  | 
"(! k. b1[iterate(k,g,x)]=TT) ==> !k.p[iterate(k,g,x)] = UU"
  | 
| 
 | 
   278  | 
 (fn prems =>
  | 
| 
 | 
   279  | 
	[
  | 
| 
 | 
   280  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
   281  | 
	(rtac (p_def2 RS ssubst) 1),
  | 
| 
 | 
   282  | 
	(rtac fix_ind 1),
  | 
| 
 | 
   283  | 
	(rtac adm_all 1),
  | 
| 
 | 
   284  | 
	(rtac allI 1),
  | 
| 
 | 
   285  | 
	(rtac adm_eq 1),
  | 
| 
 | 
   286  | 
	(contX_tacR 1),
  | 
| 
 | 
   287  | 
	(rtac allI 1),
  | 
| 
 | 
   288  | 
	(rtac (strict_fapp1 RS ssubst) 1),
  | 
| 
 | 
   289  | 
	(rtac refl 1),
  | 
| 
 | 
   290  | 
	(simp_tac iterate_ss 1),
  | 
| 
 | 
   291  | 
	(rtac allI 1),
  | 
| 
 | 
   292  | 
	(res_inst_tac [("s","TT"),("t","b1[iterate(k,g,x)]")] ssubst 1),
 | 
| 
 | 
   293  | 
	(etac spec 1),
  | 
| 
 | 
   294  | 
	(asm_simp_tac HOLCF_ss 1),
  | 
| 
 | 
   295  | 
	(rtac (iterate_Suc RS subst) 1),
  | 
| 
 | 
   296  | 
	(etac spec 1)
  | 
| 
 | 
   297  | 
	]);
  | 
| 
 | 
   298  | 
  | 
| 
 | 
   299  | 
val hoare_lemma16 = prove_goal Hoare.thy 
  | 
| 
 | 
   300  | 
"(! k. b1[iterate(k,g,x)]=TT) ==> p[x] = UU"
  | 
| 
 | 
   301  | 
 (fn prems =>
  | 
| 
 | 
   302  | 
	[
  | 
| 
 | 
   303  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
   304  | 
	(res_inst_tac [("F1","g"),("t","x")] (iterate_0 RS subst) 1),
 | 
| 
 | 
   305  | 
	(etac (fernpass_lemma RS spec) 1)
  | 
| 
 | 
   306  | 
	]);
  | 
| 
 | 
   307  | 
  | 
| 
 | 
   308  | 
(* -------- results about q for case  (! k. b1[iterate(k,g,x)]=TT) ------- *)
  | 
| 
 | 
   309  | 
  | 
| 
 | 
   310  | 
val hoare_lemma17 = prove_goal Hoare.thy 
  | 
| 
 | 
   311  | 
"(! k. b1[iterate(k,g,x)]=TT) ==> !k.q[iterate(k,g,x)] = UU"
  | 
| 
 | 
   312  | 
 (fn prems =>
  | 
| 
 | 
   313  | 
	[
  | 
| 
 | 
   314  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
   315  | 
	(rtac (q_def2 RS ssubst) 1),
  | 
| 
 | 
   316  | 
	(rtac fix_ind 1),
  | 
| 
 | 
   317  | 
	(rtac adm_all 1),
  | 
| 
 | 
   318  | 
	(rtac allI 1),
  | 
| 
 | 
   319  | 
	(rtac adm_eq 1),
  | 
| 
 | 
   320  | 
	(contX_tacR 1),
  | 
| 
 | 
   321  | 
	(rtac allI 1),
  | 
| 
 | 
   322  | 
	(rtac (strict_fapp1 RS ssubst) 1),
  | 
| 
 | 
   323  | 
	(rtac refl 1),
  | 
| 
 | 
   324  | 
	(rtac allI 1),
  | 
| 
 | 
   325  | 
	(simp_tac iterate_ss 1),
  | 
| 
 | 
   326  | 
	(res_inst_tac [("s","TT"),("t","b1[iterate(k,g,x)]")] ssubst 1),
 | 
| 
 | 
   327  | 
	(etac spec 1),
  | 
| 
 | 
   328  | 
	(asm_simp_tac HOLCF_ss  1),
  | 
| 
 | 
   329  | 
	(rtac (iterate_Suc RS subst) 1),
  | 
| 
 | 
   330  | 
	(etac spec 1)
  | 
| 
 | 
   331  | 
	]);
  | 
| 
 | 
   332  | 
  | 
| 
 | 
   333  | 
val hoare_lemma18 = prove_goal Hoare.thy 
  | 
| 
 | 
   334  | 
"(! k. b1[iterate(k,g,x)]=TT) ==> q[x] = UU"
  | 
| 
 | 
   335  | 
 (fn prems =>
  | 
| 
 | 
   336  | 
	[
  | 
| 
 | 
   337  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
   338  | 
	(res_inst_tac [("F1","g"),("t","x")] (iterate_0 RS subst) 1),
 | 
| 
 | 
   339  | 
	(etac (hoare_lemma17 RS spec) 1)
  | 
| 
 | 
   340  | 
	]);
  | 
| 
 | 
   341  | 
  | 
| 
 | 
   342  | 
val hoare_lemma19 = prove_goal Hoare.thy 
  | 
| 
 | 
   343  | 
"(!k. (b1::'a->tr)[iterate(k,g,x)]=TT) ==> b1[UU::'a] = UU | (!y.b1[y::'a]=TT)"
  | 
| 
 | 
   344  | 
 (fn prems =>
  | 
| 
 | 
   345  | 
	[
  | 
| 
 | 
   346  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
   347  | 
	(rtac (flat_tr RS flat_codom) 1),
  | 
| 
 | 
   348  | 
	(res_inst_tac [("t","x1")] (iterate_0 RS subst) 1),
 | 
| 
 | 
   349  | 
	(etac spec 1)
  | 
| 
 | 
   350  | 
	]);
  | 
| 
 | 
   351  | 
  | 
| 
 | 
   352  | 
val hoare_lemma20 = prove_goal Hoare.thy 
  | 
| 
 | 
   353  | 
"(! y. b1[y::'a]=TT) ==> !k.q[iterate(k,g,x::'a)] = UU"
  | 
| 
 | 
   354  | 
 (fn prems =>
  | 
| 
 | 
   355  | 
	[
  | 
| 
 | 
   356  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
   357  | 
	(rtac (q_def2 RS ssubst) 1),
  | 
| 
 | 
   358  | 
	(rtac fix_ind 1),
  | 
| 
 | 
   359  | 
	(rtac adm_all 1),
  | 
| 
 | 
   360  | 
	(rtac allI 1),
  | 
| 
 | 
   361  | 
	(rtac adm_eq 1),
  | 
| 
 | 
   362  | 
	(contX_tacR 1),
  | 
| 
 | 
   363  | 
	(rtac allI 1),
  | 
| 
 | 
   364  | 
	(rtac (strict_fapp1 RS ssubst) 1),
  | 
| 
 | 
   365  | 
	(rtac refl 1),
  | 
| 
 | 
   366  | 
	(rtac allI 1),
  | 
| 
 | 
   367  | 
	(simp_tac iterate_ss 1),
  | 
| 
 | 
   368  | 
	(res_inst_tac [("s","TT"),("t","b1[iterate(k,g,x::'a)]")] ssubst 1),
 | 
| 
 | 
   369  | 
	(etac spec 1),
  | 
| 
 | 
   370  | 
	(asm_simp_tac HOLCF_ss  1),
  | 
| 
 | 
   371  | 
	(rtac (iterate_Suc RS subst) 1),
  | 
| 
 | 
   372  | 
	(etac spec 1)
  | 
| 
 | 
   373  | 
	]);
  | 
| 
 | 
   374  | 
  | 
| 
 | 
   375  | 
val hoare_lemma21 = prove_goal Hoare.thy 
  | 
| 
 | 
   376  | 
"(! y. b1[y::'a]=TT) ==> q[x::'a] = UU"
  | 
| 
 | 
   377  | 
 (fn prems =>
  | 
| 
 | 
   378  | 
	[
  | 
| 
 | 
   379  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
   380  | 
	(res_inst_tac [("F1","g"),("t","x")] (iterate_0 RS subst) 1),
 | 
| 
 | 
   381  | 
	(etac (hoare_lemma20 RS spec) 1)
  | 
| 
 | 
   382  | 
	]);
  | 
| 
 | 
   383  | 
  | 
| 
 | 
   384  | 
val hoare_lemma22 = prove_goal Hoare.thy 
  | 
| 
 | 
   385  | 
"b1[UU::'a]=UU ==> q[UU::'a] = UU"
  | 
| 
 | 
   386  | 
 (fn prems =>
  | 
| 
 | 
   387  | 
	[
  | 
| 
 | 
   388  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
   389  | 
	(rtac (q_def3 RS ssubst) 1),
  | 
| 
 | 
   390  | 
	(asm_simp_tac HOLCF_ss  1)
  | 
| 
 | 
   391  | 
	]);
  | 
| 
 | 
   392  | 
  | 
| 
 | 
   393  | 
(* -------- results about q for case (? k.~ b1[iterate(k,g,x)]=TT) ------- *)
  | 
| 
 | 
   394  | 
  | 
| 
 | 
   395  | 
val hoare_lemma25 = (hoare_lemma8 RS (hoare_lemma24 RS mp) );
  | 
| 
 | 
   396  | 
(* 
  | 
| 
 | 
   397  | 
[| ? k. ~ ?b1.1[iterate(k,?g1,?x1)] = TT;
  | 
| 
 | 
   398  | 
   Suc(?k3) = theleast(%n. ~ ?b1.1[iterate(n,?g1,?x1)] = TT) |] ==>
  | 
| 
 | 
   399  | 
q[iterate(?k3,?g1,?x1)] = q[?x1]
  | 
| 
 | 
   400  | 
*)
  | 
| 
 | 
   401  | 
  | 
| 
 | 
   402  | 
val hoare_lemma26 = prove_goal Hoare.thy 
  | 
| 
 | 
   403  | 
"(? n.~ b1[iterate(n,g,x)]=TT) ==>\
  | 
| 
 | 
   404  | 
\ k=theleast(%n.~ b1[iterate(n,g,x)]=TT) & b1[iterate(k,g,x)]=FF \
  | 
| 
 | 
   405  | 
\ --> q[x] = q[iterate(k,g,x)]"
  | 
| 
 | 
   406  | 
 (fn prems =>
  | 
| 
 | 
   407  | 
	[
  | 
| 
 | 
   408  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
   409  | 
	(res_inst_tac [("n","k")] natE 1),
 | 
| 
 | 
   410  | 
	(hyp_subst_tac 1),
  | 
| 
 | 
   411  | 
	(strip_tac 1),
  | 
| 
 | 
   412  | 
	(simp_tac iterate_ss 1),
  | 
| 
 | 
   413  | 
	(hyp_subst_tac 1),
  | 
| 
 | 
   414  | 
	(strip_tac 1),
  | 
| 
 | 
   415  | 
	(etac conjE 1),
  | 
| 
 | 
   416  | 
	(rtac trans 1),
  | 
| 
 | 
   417  | 
	(rtac (hoare_lemma25 RS sym) 1),
  | 
| 
 | 
   418  | 
	(atac 1),
  | 
| 
 | 
   419  | 
	(atac 1),
  | 
| 
 | 
   420  | 
	(rtac trans 1),
  | 
| 
 | 
   421  | 
	(rtac q_def3 1),
  | 
| 
 | 
   422  | 
	(res_inst_tac [("s","TT"),("t","b1[iterate(xa,g,x)]")] ssubst 1),
 | 
| 
 | 
   423  | 
	(rtac (hoare_lemma8 RS spec RS mp) 1),
  | 
| 
 | 
   424  | 
	(atac 1),
  | 
| 
 | 
   425  | 
	(atac 1),
  | 
| 
 | 
   426  | 
	(simp_tac nat_ss 1),
  | 
| 
 | 
   427  | 
	(simp_tac (HOLCF_ss addsimps [iterate_Suc]) 1)
  | 
| 
 | 
   428  | 
	]);
  | 
| 
 | 
   429  | 
  | 
| 
 | 
   430  | 
  | 
| 
 | 
   431  | 
val hoare_lemma27 = prove_goal Hoare.thy 
  | 
| 
 | 
   432  | 
"(? n.~ b1[iterate(n,g,x)]=TT) ==>\
  | 
| 
 | 
   433  | 
\ k=theleast(%n.~ b1[iterate(n,g,x)]=TT) & b1[iterate(k,g,x)]=UU \
  | 
| 
 | 
   434  | 
\ --> q[x] = UU"
  | 
| 
 | 
   435  | 
 (fn prems =>
  | 
| 
 | 
   436  | 
	[
  | 
| 
 | 
   437  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
   438  | 
	(res_inst_tac [("n","k")] natE 1),
 | 
| 
 | 
   439  | 
	(hyp_subst_tac 1),
  | 
| 
 | 
   440  | 
	(simp_tac iterate_ss 1),
  | 
| 
 | 
   441  | 
	(strip_tac 1),
  | 
| 
 | 
   442  | 
	(etac conjE 1),
  | 
| 
 | 
   443  | 
	(rtac (q_def3 RS ssubst) 1),
  | 
| 
 | 
   444  | 
	(asm_simp_tac HOLCF_ss  1),
  | 
| 
 | 
   445  | 
	(hyp_subst_tac 1),
  | 
| 
 | 
   446  | 
	(simp_tac iterate_ss 1),
  | 
| 
 | 
   447  | 
	(strip_tac 1),
  | 
| 
 | 
   448  | 
	(etac conjE 1),
  | 
| 
 | 
   449  | 
	(rtac trans 1),
  | 
| 
 | 
   450  | 
	(rtac (hoare_lemma25 RS sym) 1),
  | 
| 
 | 
   451  | 
	(atac 1),
  | 
| 
 | 
   452  | 
	(atac 1),
  | 
| 
 | 
   453  | 
	(rtac trans 1),
  | 
| 
 | 
   454  | 
	(rtac q_def3 1),
  | 
| 
 | 
   455  | 
	(res_inst_tac [("s","TT"),("t","b1[iterate(xa,g,x)]")] ssubst 1),
 | 
| 
 | 
   456  | 
	(rtac (hoare_lemma8 RS spec RS mp) 1),
  | 
| 
 | 
   457  | 
	(atac 1),
  | 
| 
 | 
   458  | 
	(atac 1),
  | 
| 
 | 
   459  | 
	(simp_tac nat_ss 1),
  | 
| 
 | 
   460  | 
	(asm_simp_tac HOLCF_ss 1),
  | 
| 
 | 
   461  | 
	(rtac trans 1),
  | 
| 
 | 
   462  | 
	(rtac q_def3 1),
  | 
| 
 | 
   463  | 
	(asm_simp_tac HOLCF_ss  1)
  | 
| 
 | 
   464  | 
	]);
  | 
| 
 | 
   465  | 
  | 
| 
 | 
   466  | 
(* ------- (! k. b1[iterate(k,g,x)]=TT) ==> q o p = q   ----- *)
  | 
| 
 | 
   467  | 
  | 
| 
 | 
   468  | 
val hoare_lemma23 = prove_goal Hoare.thy 
  | 
| 
 | 
   469  | 
"(! k. b1[iterate(k,g,x)]=TT) ==> q[p[x]] = q[x]"
  | 
| 
 | 
   470  | 
 (fn prems =>
  | 
| 
 | 
   471  | 
	[
  | 
| 
 | 
   472  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
   473  | 
	(rtac (hoare_lemma16 RS ssubst) 1),
  | 
| 
 | 
   474  | 
	(atac 1),
  | 
| 
 | 
   475  | 
	(rtac (hoare_lemma19 RS disjE) 1),
  | 
| 
 | 
   476  | 
	(atac 1),
  | 
| 
 | 
   477  | 
	(rtac (hoare_lemma18 RS ssubst) 1),
  | 
| 
 | 
   478  | 
	(atac 1),
  | 
| 
 | 
   479  | 
	(rtac (hoare_lemma22 RS ssubst) 1),
  | 
| 
 | 
   480  | 
	(atac 1),
  | 
| 
 | 
   481  | 
	(rtac refl 1),
  | 
| 
 | 
   482  | 
	(rtac (hoare_lemma21 RS ssubst) 1),
  | 
| 
 | 
   483  | 
	(atac 1),
  | 
| 
 | 
   484  | 
	(rtac (hoare_lemma21 RS ssubst) 1),
  | 
| 
 | 
   485  | 
	(atac 1),
  | 
| 
 | 
   486  | 
	(rtac refl 1)
  | 
| 
 | 
   487  | 
	]);
  | 
| 
 | 
   488  | 
  | 
| 
 | 
   489  | 
(* ------------  ? k. ~ b1[iterate(k,g,x)] = TT ==> q o p = q   ----- *)
  | 
| 
 | 
   490  | 
  | 
| 
 | 
   491  | 
val hoare_lemma29 = prove_goal Hoare.thy 
  | 
| 
 | 
   492  | 
"? k. ~ b1[iterate(k,g,x)] = TT ==> q[p[x]] = q[x]"
  | 
| 
 | 
   493  | 
 (fn prems =>
  | 
| 
 | 
   494  | 
	[
  | 
| 
 | 
   495  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
   496  | 
	(rtac (hoare_lemma5 RS disjE) 1),
  | 
| 
 | 
   497  | 
	(atac 1),
  | 
| 
 | 
   498  | 
	(rtac refl 1),
  | 
| 
 | 
   499  | 
	(rtac (hoare_lemma11 RS mp RS ssubst) 1),
  | 
| 
 | 
   500  | 
	(atac 1),
  | 
| 
 | 
   501  | 
	(rtac conjI 1),
  | 
| 
 | 
   502  | 
	(rtac refl 1),
  | 
| 
 | 
   503  | 
	(atac 1),
  | 
| 
 | 
   504  | 
	(rtac (hoare_lemma26 RS mp RS subst) 1),
  | 
| 
 | 
   505  | 
	(atac 1),
  | 
| 
 | 
   506  | 
	(rtac conjI 1),
  | 
| 
 | 
   507  | 
	(rtac refl 1),
  | 
| 
 | 
   508  | 
	(atac 1),
  | 
| 
 | 
   509  | 
	(rtac refl 1),
  | 
| 
 | 
   510  | 
	(rtac (hoare_lemma12 RS mp RS ssubst) 1),
  | 
| 
 | 
   511  | 
	(atac 1),
  | 
| 
 | 
   512  | 
	(rtac conjI 1),
  | 
| 
 | 
   513  | 
	(rtac refl 1),
  | 
| 
 | 
   514  | 
	(atac 1),
  | 
| 
 | 
   515  | 
	(rtac (hoare_lemma22 RS ssubst) 1),
  | 
| 
 | 
   516  | 
	(rtac (hoare_lemma28 RS ssubst) 1),
  | 
| 
 | 
   517  | 
	(atac 1),
  | 
| 
 | 
   518  | 
	(rtac refl 1),
  | 
| 
 | 
   519  | 
	(rtac sym 1),
  | 
| 
 | 
   520  | 
	(rtac (hoare_lemma27 RS mp RS ssubst) 1),
  | 
| 
 | 
   521  | 
	(atac 1),
  | 
| 
 | 
   522  | 
	(rtac conjI 1),
  | 
| 
 | 
   523  | 
	(rtac refl 1),
  | 
| 
 | 
   524  | 
	(atac 1),
  | 
| 
 | 
   525  | 
	(rtac refl 1)
  | 
| 
 | 
   526  | 
	]);
  | 
| 
 | 
   527  | 
  | 
| 
 | 
   528  | 
(* ------ the main prove q o p = q ------ *)
  | 
| 
 | 
   529  | 
  | 
| 
 | 
   530  | 
val hoare_main = prove_goal Hoare.thy "q oo p = q"
  | 
| 
 | 
   531  | 
 (fn prems =>
  | 
| 
 | 
   532  | 
	[
  | 
| 
 | 
   533  | 
	(rtac ext_cfun 1),
  | 
| 
 | 
   534  | 
	(rtac (cfcomp2 RS ssubst) 1),
  | 
| 
 | 
   535  | 
	(rtac (hoare_lemma3 RS disjE) 1),
  | 
| 
 | 
   536  | 
	(etac hoare_lemma23 1),
  | 
| 
 | 
   537  | 
	(etac hoare_lemma29 1)
  | 
| 
 | 
   538  | 
	]);
  | 
| 
 | 
   539  | 
  | 
| 
 | 
   540  | 
  |