| 11235 |      1 | theory FP1 = Main:
 | 
|  |      2 | 
 | 
|  |      3 | subsection{*More Constructs*}
 | 
|  |      4 | 
 | 
|  |      5 | lemma "if xs = ys
 | 
|  |      6 |        then rev xs = rev ys
 | 
|  |      7 |        else rev xs \<noteq> rev ys"
 | 
|  |      8 | by auto
 | 
|  |      9 | 
 | 
|  |     10 | lemma "case xs of
 | 
|  |     11 |          []   \<Rightarrow> tl xs = xs
 | 
|  |     12 |        | y#ys \<Rightarrow> tl xs \<noteq> xs"
 | 
|  |     13 | apply(case_tac xs)
 | 
|  |     14 | by auto
 | 
|  |     15 | 
 | 
|  |     16 | 
 | 
|  |     17 | subsection{*More Types*}
 | 
|  |     18 | 
 | 
|  |     19 | 
 | 
|  |     20 | subsubsection{*Natural Numbers*}
 | 
|  |     21 | 
 | 
|  |     22 | consts sum :: "nat \<Rightarrow> nat"
 | 
|  |     23 | primrec "sum 0 = 0"
 | 
|  |     24 |         "sum (Suc n) = Suc n + sum n"
 | 
|  |     25 | 
 | 
| 12631 |     26 | lemma "sum n + sum n = n*(Suc n)"
 | 
|  |     27 | apply(induct_tac n)
 | 
|  |     28 | apply(auto)
 | 
| 11235 |     29 | done
 | 
|  |     30 | 
 | 
|  |     31 | lemma "\<lbrakk> \<not> m < n; m < n+1 \<rbrakk> \<Longrightarrow> m = n"
 | 
|  |     32 | by(auto)
 | 
|  |     33 | 
 | 
| 12631 |     34 | lemma "min i (max j k) = max (min k i) (min i (j::nat))"
 | 
| 11235 |     35 | by(arith)
 | 
|  |     36 | 
 | 
|  |     37 | lemma "n*n = n \<Longrightarrow> n=0 \<or> n=1"
 | 
|  |     38 | oops
 | 
|  |     39 | 
 | 
|  |     40 | 
 | 
|  |     41 | subsubsection{*Pairs*}
 | 
|  |     42 | 
 | 
|  |     43 | lemma "fst(x,y) = snd(z,x)"
 | 
|  |     44 | by auto
 | 
|  |     45 | 
 | 
|  |     46 | 
 | 
|  |     47 | 
 | 
|  |     48 | subsection{*Definitions*}
 | 
|  |     49 | 
 | 
|  |     50 | consts xor :: "bool \<Rightarrow> bool \<Rightarrow> bool"
 | 
|  |     51 | defs xor_def: "xor x y \<equiv> x \<and> \<not>y \<or> \<not>x \<and> y"
 | 
|  |     52 | 
 | 
|  |     53 | constdefs nand :: "bool \<Rightarrow> bool \<Rightarrow> bool"
 | 
|  |     54 |          "nand x y \<equiv> \<not>(x \<and> y)"
 | 
|  |     55 | 
 | 
|  |     56 | lemma "\<not> xor x x"
 | 
|  |     57 | apply(unfold xor_def)
 | 
|  |     58 | by auto
 | 
|  |     59 | 
 | 
|  |     60 | 
 | 
|  |     61 | 
 | 
|  |     62 | subsection{*Simplification*}
 | 
|  |     63 | 
 | 
|  |     64 | 
 | 
|  |     65 | subsubsection{*Simplification Rules*}
 | 
|  |     66 | 
 | 
|  |     67 | lemma fst_conv[simp]: "fst(x,y) = x"
 | 
|  |     68 | by auto
 | 
|  |     69 | 
 | 
|  |     70 | declare fst_conv[simp]
 | 
|  |     71 | declare fst_conv[simp del]
 | 
|  |     72 | 
 | 
|  |     73 | 
 | 
|  |     74 | subsubsection{*The Simplification Method*}
 | 
|  |     75 | 
 | 
|  |     76 | lemma "x*(y+1) = y*(x+1)"
 | 
|  |     77 | apply simp
 | 
|  |     78 | oops
 | 
|  |     79 | 
 | 
|  |     80 | 
 | 
|  |     81 | subsubsection{*Adding and Deleting Simplification Rules*}
 | 
|  |     82 | 
 | 
|  |     83 | lemma "\<forall>x::nat. x*(y+z) = r"
 | 
|  |     84 | apply (simp add: add_mult_distrib2)
 | 
|  |     85 | oops
 | 
|  |     86 | 
 | 
|  |     87 | lemma "rev(rev(xs @ [])) = xs"
 | 
|  |     88 | apply (simp del: rev_rev_ident)
 | 
|  |     89 | oops
 | 
|  |     90 | 
 | 
|  |     91 | 
 | 
|  |     92 | subsubsection{*Assumptions*}
 | 
|  |     93 | 
 | 
| 12631 |     94 | lemma "\<lbrakk> xs @ zs = ys @ xs; [] @ xs = [] @ [] \<rbrakk> \<Longrightarrow> ys = zs"
 | 
|  |     95 | apply simp
 | 
| 11235 |     96 | done
 | 
|  |     97 | 
 | 
| 12631 |     98 | lemma "\<forall>x. f x = g (f (g x)) \<Longrightarrow> f [] = f [] @ []"
 | 
|  |     99 | apply(simp (no_asm))
 | 
| 11235 |    100 | done
 | 
|  |    101 | 
 | 
|  |    102 | 
 | 
|  |    103 | subsubsection{*Rewriting with Definitions*}
 | 
|  |    104 | 
 | 
| 12631 |    105 | lemma "xor A (\<not>A)"
 | 
|  |    106 | apply(simp only: xor_def)
 | 
| 11235 |    107 | by simp
 | 
|  |    108 | 
 | 
|  |    109 | 
 | 
|  |    110 | subsubsection{*Conditional Equations*}
 | 
|  |    111 | 
 | 
|  |    112 | lemma hd_Cons_tl[simp]: "xs \<noteq> []  \<Longrightarrow>  hd xs # tl xs = xs"
 | 
|  |    113 | apply(case_tac xs, simp, simp)
 | 
|  |    114 | done
 | 
|  |    115 | 
 | 
|  |    116 | lemma "xs \<noteq> [] \<Longrightarrow> hd(rev xs) # tl(rev xs) = rev xs"
 | 
|  |    117 | by(simp)
 | 
|  |    118 | 
 | 
|  |    119 | 
 | 
|  |    120 | subsubsection{*Automatic Case Splits*}
 | 
|  |    121 | 
 | 
| 12631 |    122 | lemma "\<forall>xs. if xs = [] then A else B"
 | 
| 11235 |    123 | apply simp
 | 
|  |    124 | oops
 | 
|  |    125 | 
 | 
| 12631 |    126 | lemma "case xs @ [] of [] \<Rightarrow> P | y#ys \<Rightarrow> Q ys y"
 | 
| 11235 |    127 | apply simp
 | 
|  |    128 | apply(simp split: list.split)
 | 
|  |    129 | oops
 | 
|  |    130 | 
 | 
|  |    131 | 
 | 
|  |    132 | subsubsection{*Arithmetic*}
 | 
|  |    133 | 
 | 
|  |    134 | lemma "\<lbrakk> \<not> m < n; m < n+1 \<rbrakk> \<Longrightarrow> m = n"
 | 
|  |    135 | by simp
 | 
|  |    136 | 
 | 
| 12631 |    137 | lemma "\<not> m < n \<and> m < n+1 \<Longrightarrow> m = n"
 | 
| 11235 |    138 | apply simp
 | 
|  |    139 | by(arith)
 | 
|  |    140 | 
 | 
|  |    141 | 
 | 
|  |    142 | subsubsection{*Tracing*}
 | 
|  |    143 | 
 | 
|  |    144 | lemma "rev [a] = []"
 | 
|  |    145 | apply(simp)
 | 
|  |    146 | oops
 | 
|  |    147 | 
 | 
|  |    148 | 
 | 
|  |    149 | 
 | 
|  |    150 | subsection{*Case Study: Compiling Expressions*}
 | 
|  |    151 | 
 | 
|  |    152 | 
 | 
|  |    153 | subsubsection{*Expressions*}
 | 
|  |    154 | 
 | 
| 12631 |    155 | types 'v binop = "'v \<Rightarrow> 'v \<Rightarrow> 'v"
 | 
| 11235 |    156 | 
 | 
|  |    157 | datatype ('a,'v)expr = Cex 'v
 | 
|  |    158 |                      | Vex 'a
 | 
| 12631 |    159 |                      | Bex "'v binop"  "('a,'v)expr"  "('a,'v)expr"
 | 
| 11235 |    160 | 
 | 
| 12631 |    161 | consts value :: "('a,'v)expr \<Rightarrow> ('a \<Rightarrow> 'v) \<Rightarrow> 'v"
 | 
| 11235 |    162 | primrec
 | 
|  |    163 | "value (Cex v) env = v"
 | 
|  |    164 | "value (Vex a) env = env a"
 | 
| 12631 |    165 | "value (Bex f e1 e2) env = f (value e1 env) (value e2 env)"
 | 
| 11235 |    166 | 
 | 
|  |    167 | 
 | 
|  |    168 | subsubsection{*The Stack Machine*}
 | 
|  |    169 | 
 | 
|  |    170 | datatype ('a,'v) instr = Const 'v
 | 
|  |    171 |                        | Load 'a
 | 
| 12631 |    172 |                        | Apply "'v binop"
 | 
| 11235 |    173 | 
 | 
| 12631 |    174 | consts exec :: "('a,'v)instr list \<Rightarrow> ('a\<Rightarrow>'v) \<Rightarrow> 'v list \<Rightarrow> 'v list"
 | 
| 11235 |    175 | primrec
 | 
|  |    176 | "exec [] s vs = vs"
 | 
|  |    177 | "exec (i#is) s vs = (case i of
 | 
|  |    178 |     Const v  \<Rightarrow> exec is s (v#vs)
 | 
|  |    179 |   | Load a   \<Rightarrow> exec is s ((s a)#vs)
 | 
| 12631 |    180 |   | Apply f  \<Rightarrow> exec is s ((f (hd vs) (hd(tl vs)))#(tl(tl vs))))"
 | 
| 11235 |    181 | 
 | 
|  |    182 | 
 | 
|  |    183 | subsubsection{*The Compiler*}
 | 
|  |    184 | 
 | 
| 12631 |    185 | consts comp :: "('a,'v)expr \<Rightarrow> ('a,'v)instr list"
 | 
| 11235 |    186 | primrec
 | 
|  |    187 | "comp (Cex v)       = [Const v]"
 | 
|  |    188 | "comp (Vex a)       = [Load a]"
 | 
| 12631 |    189 | "comp (Bex f e1 e2) = (comp e2) @ (comp e1) @ [Apply f]"
 | 
| 11235 |    190 | 
 | 
| 12631 |    191 | theorem "exec (comp e) s [] = [value e s]"
 | 
| 11235 |    192 | oops
 | 
|  |    193 | 
 | 
|  |    194 | 
 | 
|  |    195 | 
 | 
| 11236 |    196 | subsection{*Advanced Datatypes*}
 | 
| 11235 |    197 | 
 | 
|  |    198 | 
 | 
|  |    199 | subsubsection{*Mutual Recursion*}
 | 
|  |    200 | 
 | 
|  |    201 | datatype 'a aexp = IF   "'a bexp" "'a aexp" "'a aexp"
 | 
|  |    202 |                  | Sum  "'a aexp" "'a aexp"
 | 
|  |    203 |                  | Var 'a
 | 
|  |    204 |                  | Num nat
 | 
|  |    205 | and      'a bexp = Less "'a aexp" "'a aexp"
 | 
|  |    206 |                  | And  "'a bexp" "'a bexp"
 | 
| 12631 |    207 |                  | Neg  "'a bexp"
 | 
| 11235 |    208 | 
 | 
|  |    209 | 
 | 
|  |    210 | consts  evala :: "'a aexp \<Rightarrow> ('a \<Rightarrow> nat) \<Rightarrow> nat"
 | 
| 12631 |    211 |         evalb :: "'a bexp \<Rightarrow> ('a \<Rightarrow> nat) \<Rightarrow> bool"
 | 
| 11235 |    212 | 
 | 
|  |    213 | primrec
 | 
|  |    214 |   "evala (IF b a1 a2) env =
 | 
|  |    215 |      (if evalb b env then evala a1 env else evala a2 env)"
 | 
|  |    216 |   "evala (Sum a1 a2) env = evala a1 env + evala a2 env"
 | 
|  |    217 |   "evala (Var v) env = env v"
 | 
|  |    218 |   "evala (Num n) env = n"
 | 
|  |    219 | 
 | 
|  |    220 |   "evalb (Less a1 a2) env = (evala a1 env < evala a2 env)"
 | 
|  |    221 |   "evalb (And b1 b2) env = (evalb b1 env \<and> evalb b2 env)"
 | 
|  |    222 |   "evalb (Neg b) env = (\<not> evalb b env)"
 | 
|  |    223 | 
 | 
|  |    224 | consts substa :: "('a \<Rightarrow> 'b aexp) \<Rightarrow> 'a aexp \<Rightarrow> 'b aexp"
 | 
|  |    225 |        substb :: "('a \<Rightarrow> 'b aexp) \<Rightarrow> 'a bexp \<Rightarrow> 'b bexp"
 | 
|  |    226 | 
 | 
|  |    227 | primrec
 | 
|  |    228 |   "substa s (IF b a1 a2) =
 | 
|  |    229 |      IF (substb s b) (substa s a1) (substa s a2)"
 | 
|  |    230 |   "substa s (Sum a1 a2) = Sum (substa s a1) (substa s a2)"
 | 
|  |    231 |   "substa s (Var v) = s v"
 | 
|  |    232 |   "substa s (Num n) = Num n"
 | 
|  |    233 | 
 | 
|  |    234 |   "substb s (Less a1 a2) = Less (substa s a1) (substa s a2)"
 | 
|  |    235 |   "substb s (And b1 b2) = And (substb s b1) (substb s b2)"
 | 
|  |    236 |   "substb s (Neg b) = Neg (substb s b)"
 | 
|  |    237 | 
 | 
|  |    238 | lemma substitution_lemma:
 | 
|  |    239 |  "evala (substa s a) env = evala a (\<lambda>x. evala (s x) env) \<and>
 | 
| 12631 |    240 |   evalb (substb s b) env = evalb b (\<lambda>x. evala (s x) env)"
 | 
|  |    241 | apply(induct_tac a and b)
 | 
| 11235 |    242 | by simp_all
 | 
|  |    243 | 
 | 
|  |    244 | 
 | 
|  |    245 | subsubsection{*Nested Recursion*}
 | 
|  |    246 | 
 | 
|  |    247 | datatype tree = C "tree list"
 | 
|  |    248 | 
 | 
|  |    249 | term "C[]"
 | 
|  |    250 | term "C[C[C[]],C[]]"
 | 
|  |    251 | 
 | 
|  |    252 | consts
 | 
|  |    253 | mirror :: "tree \<Rightarrow> tree"
 | 
| 12631 |    254 | mirrors:: "tree list \<Rightarrow> tree list"
 | 
| 11235 |    255 | 
 | 
|  |    256 | primrec
 | 
|  |    257 |   "mirror(C ts) = C(mirrors ts)"
 | 
|  |    258 | 
 | 
|  |    259 |   "mirrors [] = []"
 | 
|  |    260 |   "mirrors (t # ts) = mirrors ts @ [mirror t]"
 | 
|  |    261 | 
 | 
|  |    262 | lemma "mirror(mirror t) = t \<and> mirrors(mirrors ts) = ts"
 | 
|  |    263 | apply(induct_tac t and ts)
 | 
|  |    264 | apply simp_all
 | 
|  |    265 | oops
 | 
|  |    266 | 
 | 
| 11236 |    267 | text{*
 | 
|  |    268 | \begin{exercise}
 | 
|  |    269 | Complete the above proof.
 | 
|  |    270 | \end{exercise}
 | 
|  |    271 | *}
 | 
| 11235 |    272 | 
 | 
|  |    273 | 
 | 
|  |    274 | subsubsection{*Datatypes Involving Functions*}
 | 
|  |    275 | 
 | 
|  |    276 | datatype ('a,'i)bigtree = Tip | Br 'a "'i \<Rightarrow> ('a,'i)bigtree"
 | 
|  |    277 | 
 | 
|  |    278 | term "Br 0 (\<lambda>i. Br i (\<lambda>n. Tip))"
 | 
|  |    279 | 
 | 
|  |    280 | consts map_bt :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a,'i)bigtree \<Rightarrow> ('b,'i)bigtree"
 | 
|  |    281 | primrec
 | 
|  |    282 | "map_bt f Tip      = Tip"
 | 
|  |    283 | "map_bt f (Br a F) = Br (f a) (\<lambda>i. map_bt f (F i))"
 | 
|  |    284 | 
 | 
|  |    285 | lemma "map_bt (g o f) T = map_bt g (map_bt f T)"
 | 
|  |    286 | apply(induct_tac T, rename_tac[2] F)
 | 
|  |    287 | apply simp_all
 | 
|  |    288 | done
 | 
|  |    289 | 
 | 
|  |    290 | (* This is NOT allowed:
 | 
|  |    291 | datatype lambda = C "lambda \<Rightarrow> lambda"
 | 
|  |    292 | *)
 | 
|  |    293 | 
 | 
| 11236 |    294 | text{*
 | 
|  |    295 | \begin{exercise}
 | 
| 11237 |    296 | Define a datatype of ordinals and the ordinal $\Gamma_0$.
 | 
| 11236 |    297 | \end{exercise}
 | 
|  |    298 | *}
 | 
|  |    299 | 
 | 
| 11235 |    300 | end
 |