| author | nipkow | 
| Fri, 07 Feb 2014 22:37:43 +0100 | |
| changeset 55359 | 2d8222c76020 | 
| parent 54863 | 82acc20ded73 | 
| child 55913 | c1409c103b77 | 
| permissions | -rw-r--r-- | 
| 43920 | 1 | (* Title: HOL/Library/Extended_Real.thy | 
| 41983 | 2 | Author: Johannes Hölzl, TU München | 
| 3 | Author: Robert Himmelmann, TU München | |
| 4 | Author: Armin Heller, TU München | |
| 5 | Author: Bogdan Grechuk, University of Edinburgh | |
| 6 | *) | |
| 41973 | 7 | |
| 8 | header {* Extended real number line *}
 | |
| 9 | ||
| 43920 | 10 | theory Extended_Real | 
| 51340 
5e6296afe08d
move Liminf / Limsup lemmas on complete_lattices to its own file
 hoelzl parents: 
51329diff
changeset | 11 | imports Complex_Main Extended_Nat Liminf_Limsup | 
| 41973 | 12 | begin | 
| 13 | ||
| 51022 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 14 | text {*
 | 
| 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 15 | |
| 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 16 | For more lemmas about the extended real numbers go to | 
| 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 17 |   @{file "~~/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy"}
 | 
| 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 18 | |
| 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 19 | *} | 
| 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 20 | |
| 41973 | 21 | subsection {* Definition and basic properties *}
 | 
| 22 | ||
| 43920 | 23 | datatype ereal = ereal real | PInfty | MInfty | 
| 41973 | 24 | |
| 43920 | 25 | instantiation ereal :: uminus | 
| 41973 | 26 | begin | 
| 53873 | 27 | |
| 28 | fun uminus_ereal where | |
| 29 | "- (ereal r) = ereal (- r)" | |
| 30 | | "- PInfty = MInfty" | |
| 31 | | "- MInfty = PInfty" | |
| 32 | ||
| 33 | instance .. | |
| 34 | ||
| 41973 | 35 | end | 
| 36 | ||
| 43923 | 37 | instantiation ereal :: infinity | 
| 38 | begin | |
| 53873 | 39 | |
| 40 | definition "(\<infinity>::ereal) = PInfty" | |
| 41 | instance .. | |
| 42 | ||
| 43923 | 43 | end | 
| 41973 | 44 | |
| 43923 | 45 | declare [[coercion "ereal :: real \<Rightarrow> ereal"]] | 
| 41973 | 46 | |
| 43920 | 47 | lemma ereal_uminus_uminus[simp]: | 
| 53873 | 48 | fixes a :: ereal | 
| 49 | shows "- (- a) = a" | |
| 41973 | 50 | by (cases a) simp_all | 
| 51 | ||
| 43923 | 52 | lemma | 
| 53 | shows PInfty_eq_infinity[simp]: "PInfty = \<infinity>" | |
| 54 | and MInfty_eq_minfinity[simp]: "MInfty = - \<infinity>" | |
| 55 | and MInfty_neq_PInfty[simp]: "\<infinity> \<noteq> - (\<infinity>::ereal)" "- \<infinity> \<noteq> (\<infinity>::ereal)" | |
| 56 | and MInfty_neq_ereal[simp]: "ereal r \<noteq> - \<infinity>" "- \<infinity> \<noteq> ereal r" | |
| 57 | and PInfty_neq_ereal[simp]: "ereal r \<noteq> \<infinity>" "\<infinity> \<noteq> ereal r" | |
| 58 | and PInfty_cases[simp]: "(case \<infinity> of ereal r \<Rightarrow> f r | PInfty \<Rightarrow> y | MInfty \<Rightarrow> z) = y" | |
| 59 | and MInfty_cases[simp]: "(case - \<infinity> of ereal r \<Rightarrow> f r | PInfty \<Rightarrow> y | MInfty \<Rightarrow> z) = z" | |
| 60 | by (simp_all add: infinity_ereal_def) | |
| 41973 | 61 | |
| 43933 | 62 | declare | 
| 63 | PInfty_eq_infinity[code_post] | |
| 64 | MInfty_eq_minfinity[code_post] | |
| 65 | ||
| 66 | lemma [code_unfold]: | |
| 67 | "\<infinity> = PInfty" | |
| 53873 | 68 | "- PInfty = MInfty" | 
| 43933 | 69 | by simp_all | 
| 70 | ||
| 43923 | 71 | lemma inj_ereal[simp]: "inj_on ereal A" | 
| 72 | unfolding inj_on_def by auto | |
| 41973 | 73 | |
| 43920 | 74 | lemma ereal_cases[case_names real PInf MInf, cases type: ereal]: | 
| 75 | assumes "\<And>r. x = ereal r \<Longrightarrow> P" | |
| 41973 | 76 | assumes "x = \<infinity> \<Longrightarrow> P" | 
| 77 | assumes "x = -\<infinity> \<Longrightarrow> P" | |
| 78 | shows P | |
| 79 | using assms by (cases x) auto | |
| 80 | ||
| 43920 | 81 | lemmas ereal2_cases = ereal_cases[case_product ereal_cases] | 
| 82 | lemmas ereal3_cases = ereal2_cases[case_product ereal_cases] | |
| 41973 | 83 | |
| 43920 | 84 | lemma ereal_uminus_eq_iff[simp]: | 
| 53873 | 85 | fixes a b :: ereal | 
| 86 | shows "-a = -b \<longleftrightarrow> a = b" | |
| 43920 | 87 | by (cases rule: ereal2_cases[of a b]) simp_all | 
| 41973 | 88 | |
| 43920 | 89 | function of_ereal :: "ereal \<Rightarrow> real" where | 
| 53873 | 90 | "of_ereal (ereal r) = r" | 
| 91 | | "of_ereal \<infinity> = 0" | |
| 92 | | "of_ereal (-\<infinity>) = 0" | |
| 43920 | 93 | by (auto intro: ereal_cases) | 
| 53873 | 94 | termination by default (rule wf_empty) | 
| 41973 | 95 | |
| 96 | defs (overloaded) | |
| 43920 | 97 | real_of_ereal_def [code_unfold]: "real \<equiv> of_ereal" | 
| 41973 | 98 | |
| 43920 | 99 | lemma real_of_ereal[simp]: | 
| 53873 | 100 | "real (- x :: ereal) = - (real x)" | 
| 101 | "real (ereal r) = r" | |
| 102 | "real (\<infinity>::ereal) = 0" | |
| 43920 | 103 | by (cases x) (simp_all add: real_of_ereal_def) | 
| 41973 | 104 | |
| 43920 | 105 | lemma range_ereal[simp]: "range ereal = UNIV - {\<infinity>, -\<infinity>}"
 | 
| 41973 | 106 | proof safe | 
| 53873 | 107 | fix x | 
| 108 | assume "x \<notin> range ereal" "x \<noteq> \<infinity>" | |
| 109 | then show "x = -\<infinity>" | |
| 110 | by (cases x) auto | |
| 41973 | 111 | qed auto | 
| 112 | ||
| 43920 | 113 | lemma ereal_range_uminus[simp]: "range uminus = (UNIV::ereal set)" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 114 | proof safe | 
| 53873 | 115 | fix x :: ereal | 
| 116 | show "x \<in> range uminus" | |
| 117 | by (intro image_eqI[of _ _ "-x"]) auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 118 | qed auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 119 | |
| 43920 | 120 | instantiation ereal :: abs | 
| 41976 | 121 | begin | 
| 53873 | 122 | |
| 123 | function abs_ereal where | |
| 124 | "\<bar>ereal r\<bar> = ereal \<bar>r\<bar>" | |
| 125 | | "\<bar>-\<infinity>\<bar> = (\<infinity>::ereal)" | |
| 126 | | "\<bar>\<infinity>\<bar> = (\<infinity>::ereal)" | |
| 127 | by (auto intro: ereal_cases) | |
| 128 | termination proof qed (rule wf_empty) | |
| 129 | ||
| 130 | instance .. | |
| 131 | ||
| 41976 | 132 | end | 
| 133 | ||
| 53873 | 134 | lemma abs_eq_infinity_cases[elim!]: | 
| 135 | fixes x :: ereal | |
| 136 | assumes "\<bar>x\<bar> = \<infinity>" | |
| 137 | obtains "x = \<infinity>" | "x = -\<infinity>" | |
| 138 | using assms by (cases x) auto | |
| 41976 | 139 | |
| 53873 | 140 | lemma abs_neq_infinity_cases[elim!]: | 
| 141 | fixes x :: ereal | |
| 142 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 143 | obtains r where "x = ereal r" | |
| 144 | using assms by (cases x) auto | |
| 145 | ||
| 146 | lemma abs_ereal_uminus[simp]: | |
| 147 | fixes x :: ereal | |
| 148 | shows "\<bar>- x\<bar> = \<bar>x\<bar>" | |
| 41976 | 149 | by (cases x) auto | 
| 150 | ||
| 53873 | 151 | lemma ereal_infinity_cases: | 
| 152 | fixes a :: ereal | |
| 153 | shows "a \<noteq> \<infinity> \<Longrightarrow> a \<noteq> -\<infinity> \<Longrightarrow> \<bar>a\<bar> \<noteq> \<infinity>" | |
| 154 | by auto | |
| 41976 | 155 | |
| 50104 | 156 | |
| 41973 | 157 | subsubsection "Addition" | 
| 158 | ||
| 54408 | 159 | instantiation ereal :: "{one,comm_monoid_add,zero_neq_one}"
 | 
| 41973 | 160 | begin | 
| 161 | ||
| 43920 | 162 | definition "0 = ereal 0" | 
| 51351 | 163 | definition "1 = ereal 1" | 
| 41973 | 164 | |
| 43920 | 165 | function plus_ereal where | 
| 53873 | 166 | "ereal r + ereal p = ereal (r + p)" | 
| 167 | | "\<infinity> + a = (\<infinity>::ereal)" | |
| 168 | | "a + \<infinity> = (\<infinity>::ereal)" | |
| 169 | | "ereal r + -\<infinity> = - \<infinity>" | |
| 170 | | "-\<infinity> + ereal p = -(\<infinity>::ereal)" | |
| 171 | | "-\<infinity> + -\<infinity> = -(\<infinity>::ereal)" | |
| 41973 | 172 | proof - | 
| 173 | case (goal1 P x) | |
| 53873 | 174 | then obtain a b where "x = (a, b)" | 
| 175 | by (cases x) auto | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 176 | with goal1 show P | 
| 43920 | 177 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 178 | qed auto | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 179 | termination by default (rule wf_empty) | 
| 41973 | 180 | |
| 181 | lemma Infty_neq_0[simp]: | |
| 43923 | 182 | "(\<infinity>::ereal) \<noteq> 0" "0 \<noteq> (\<infinity>::ereal)" | 
| 183 | "-(\<infinity>::ereal) \<noteq> 0" "0 \<noteq> -(\<infinity>::ereal)" | |
| 43920 | 184 | by (simp_all add: zero_ereal_def) | 
| 41973 | 185 | |
| 43920 | 186 | lemma ereal_eq_0[simp]: | 
| 187 | "ereal r = 0 \<longleftrightarrow> r = 0" | |
| 188 | "0 = ereal r \<longleftrightarrow> r = 0" | |
| 189 | unfolding zero_ereal_def by simp_all | |
| 41973 | 190 | |
| 54416 | 191 | lemma ereal_eq_1[simp]: | 
| 192 | "ereal r = 1 \<longleftrightarrow> r = 1" | |
| 193 | "1 = ereal r \<longleftrightarrow> r = 1" | |
| 194 | unfolding one_ereal_def by simp_all | |
| 195 | ||
| 41973 | 196 | instance | 
| 197 | proof | |
| 47082 | 198 | fix a b c :: ereal | 
| 199 | show "0 + a = a" | |
| 43920 | 200 | by (cases a) (simp_all add: zero_ereal_def) | 
| 47082 | 201 | show "a + b = b + a" | 
| 43920 | 202 | by (cases rule: ereal2_cases[of a b]) simp_all | 
| 47082 | 203 | show "a + b + c = a + (b + c)" | 
| 43920 | 204 | by (cases rule: ereal3_cases[of a b c]) simp_all | 
| 54408 | 205 | show "0 \<noteq> (1::ereal)" | 
| 206 | by (simp add: one_ereal_def zero_ereal_def) | |
| 41973 | 207 | qed | 
| 53873 | 208 | |
| 41973 | 209 | end | 
| 210 | ||
| 51351 | 211 | instance ereal :: numeral .. | 
| 212 | ||
| 43920 | 213 | lemma real_of_ereal_0[simp]: "real (0::ereal) = 0" | 
| 214 | unfolding real_of_ereal_def zero_ereal_def by simp | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 215 | |
| 43920 | 216 | lemma abs_ereal_zero[simp]: "\<bar>0\<bar> = (0::ereal)" | 
| 217 | unfolding zero_ereal_def abs_ereal.simps by simp | |
| 41976 | 218 | |
| 53873 | 219 | lemma ereal_uminus_zero[simp]: "- 0 = (0::ereal)" | 
| 43920 | 220 | by (simp add: zero_ereal_def) | 
| 41973 | 221 | |
| 43920 | 222 | lemma ereal_uminus_zero_iff[simp]: | 
| 53873 | 223 | fixes a :: ereal | 
| 224 | shows "-a = 0 \<longleftrightarrow> a = 0" | |
| 41973 | 225 | by (cases a) simp_all | 
| 226 | ||
| 43920 | 227 | lemma ereal_plus_eq_PInfty[simp]: | 
| 53873 | 228 | fixes a b :: ereal | 
| 229 | shows "a + b = \<infinity> \<longleftrightarrow> a = \<infinity> \<or> b = \<infinity>" | |
| 43920 | 230 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 231 | |
| 43920 | 232 | lemma ereal_plus_eq_MInfty[simp]: | 
| 53873 | 233 | fixes a b :: ereal | 
| 234 | shows "a + b = -\<infinity> \<longleftrightarrow> (a = -\<infinity> \<or> b = -\<infinity>) \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>" | |
| 43920 | 235 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 236 | |
| 43920 | 237 | lemma ereal_add_cancel_left: | 
| 53873 | 238 | fixes a b :: ereal | 
| 239 | assumes "a \<noteq> -\<infinity>" | |
| 240 | shows "a + b = a + c \<longleftrightarrow> a = \<infinity> \<or> b = c" | |
| 43920 | 241 | using assms by (cases rule: ereal3_cases[of a b c]) auto | 
| 41973 | 242 | |
| 43920 | 243 | lemma ereal_add_cancel_right: | 
| 53873 | 244 | fixes a b :: ereal | 
| 245 | assumes "a \<noteq> -\<infinity>" | |
| 246 | shows "b + a = c + a \<longleftrightarrow> a = \<infinity> \<or> b = c" | |
| 43920 | 247 | using assms by (cases rule: ereal3_cases[of a b c]) auto | 
| 41973 | 248 | |
| 53873 | 249 | lemma ereal_real: "ereal (real x) = (if \<bar>x\<bar> = \<infinity> then 0 else x)" | 
| 41973 | 250 | by (cases x) simp_all | 
| 251 | ||
| 43920 | 252 | lemma real_of_ereal_add: | 
| 253 | fixes a b :: ereal | |
| 47082 | 254 | shows "real (a + b) = | 
| 255 | (if (\<bar>a\<bar> = \<infinity>) \<and> (\<bar>b\<bar> = \<infinity>) \<or> (\<bar>a\<bar> \<noteq> \<infinity>) \<and> (\<bar>b\<bar> \<noteq> \<infinity>) then real a + real b else 0)" | |
| 43920 | 256 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 257 | |
| 53873 | 258 | |
| 43920 | 259 | subsubsection "Linear order on @{typ ereal}"
 | 
| 41973 | 260 | |
| 43920 | 261 | instantiation ereal :: linorder | 
| 41973 | 262 | begin | 
| 263 | ||
| 47082 | 264 | function less_ereal | 
| 265 | where | |
| 266 | " ereal x < ereal y \<longleftrightarrow> x < y" | |
| 267 | | "(\<infinity>::ereal) < a \<longleftrightarrow> False" | |
| 268 | | " a < -(\<infinity>::ereal) \<longleftrightarrow> False" | |
| 269 | | "ereal x < \<infinity> \<longleftrightarrow> True" | |
| 270 | | " -\<infinity> < ereal r \<longleftrightarrow> True" | |
| 271 | | " -\<infinity> < (\<infinity>::ereal) \<longleftrightarrow> True" | |
| 41973 | 272 | proof - | 
| 273 | case (goal1 P x) | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 274 | then obtain a b where "x = (a,b)" by (cases x) auto | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 275 | with goal1 show P by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 276 | qed simp_all | 
| 277 | termination by (relation "{}") simp
 | |
| 278 | ||
| 43920 | 279 | definition "x \<le> (y::ereal) \<longleftrightarrow> x < y \<or> x = y" | 
| 41973 | 280 | |
| 43920 | 281 | lemma ereal_infty_less[simp]: | 
| 43923 | 282 | fixes x :: ereal | 
| 283 | shows "x < \<infinity> \<longleftrightarrow> (x \<noteq> \<infinity>)" | |
| 284 | "-\<infinity> < x \<longleftrightarrow> (x \<noteq> -\<infinity>)" | |
| 41973 | 285 | by (cases x, simp_all) (cases x, simp_all) | 
| 286 | ||
| 43920 | 287 | lemma ereal_infty_less_eq[simp]: | 
| 43923 | 288 | fixes x :: ereal | 
| 289 | shows "\<infinity> \<le> x \<longleftrightarrow> x = \<infinity>" | |
| 53873 | 290 | and "x \<le> -\<infinity> \<longleftrightarrow> x = -\<infinity>" | 
| 43920 | 291 | by (auto simp add: less_eq_ereal_def) | 
| 41973 | 292 | |
| 43920 | 293 | lemma ereal_less[simp]: | 
| 294 | "ereal r < 0 \<longleftrightarrow> (r < 0)" | |
| 295 | "0 < ereal r \<longleftrightarrow> (0 < r)" | |
| 54416 | 296 | "ereal r < 1 \<longleftrightarrow> (r < 1)" | 
| 297 | "1 < ereal r \<longleftrightarrow> (1 < r)" | |
| 43923 | 298 | "0 < (\<infinity>::ereal)" | 
| 299 | "-(\<infinity>::ereal) < 0" | |
| 54416 | 300 | by (simp_all add: zero_ereal_def one_ereal_def) | 
| 41973 | 301 | |
| 43920 | 302 | lemma ereal_less_eq[simp]: | 
| 43923 | 303 | "x \<le> (\<infinity>::ereal)" | 
| 304 | "-(\<infinity>::ereal) \<le> x" | |
| 43920 | 305 | "ereal r \<le> ereal p \<longleftrightarrow> r \<le> p" | 
| 306 | "ereal r \<le> 0 \<longleftrightarrow> r \<le> 0" | |
| 307 | "0 \<le> ereal r \<longleftrightarrow> 0 \<le> r" | |
| 54416 | 308 | "ereal r \<le> 1 \<longleftrightarrow> r \<le> 1" | 
| 309 | "1 \<le> ereal r \<longleftrightarrow> 1 \<le> r" | |
| 310 | by (auto simp add: less_eq_ereal_def zero_ereal_def one_ereal_def) | |
| 41973 | 311 | |
| 43920 | 312 | lemma ereal_infty_less_eq2: | 
| 43923 | 313 | "a \<le> b \<Longrightarrow> a = \<infinity> \<Longrightarrow> b = (\<infinity>::ereal)" | 
| 314 | "a \<le> b \<Longrightarrow> b = -\<infinity> \<Longrightarrow> a = -(\<infinity>::ereal)" | |
| 41973 | 315 | by simp_all | 
| 316 | ||
| 317 | instance | |
| 318 | proof | |
| 47082 | 319 | fix x y z :: ereal | 
| 320 | show "x \<le> x" | |
| 41973 | 321 | by (cases x) simp_all | 
| 47082 | 322 | show "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x" | 
| 43920 | 323 | by (cases rule: ereal2_cases[of x y]) auto | 
| 41973 | 324 | show "x \<le> y \<or> y \<le> x " | 
| 43920 | 325 | by (cases rule: ereal2_cases[of x y]) auto | 
| 53873 | 326 |   {
 | 
| 327 | assume "x \<le> y" "y \<le> x" | |
| 328 | then show "x = y" | |
| 329 | by (cases rule: ereal2_cases[of x y]) auto | |
| 330 | } | |
| 331 |   {
 | |
| 332 | assume "x \<le> y" "y \<le> z" | |
| 333 | then show "x \<le> z" | |
| 334 | by (cases rule: ereal3_cases[of x y z]) auto | |
| 335 | } | |
| 41973 | 336 | qed | 
| 47082 | 337 | |
| 41973 | 338 | end | 
| 339 | ||
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 340 | lemma ereal_dense2: "x < y \<Longrightarrow> \<exists>z. x < ereal z \<and> ereal z < y" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 341 | using lt_ex gt_ex dense by (cases x y rule: ereal2_cases) auto | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 342 | |
| 53216 | 343 | instance ereal :: dense_linorder | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 344 | by default (blast dest: ereal_dense2) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 345 | |
| 43920 | 346 | instance ereal :: ordered_ab_semigroup_add | 
| 41978 | 347 | proof | 
| 53873 | 348 | fix a b c :: ereal | 
| 349 | assume "a \<le> b" | |
| 350 | then show "c + a \<le> c + b" | |
| 43920 | 351 | by (cases rule: ereal3_cases[of a b c]) auto | 
| 41978 | 352 | qed | 
| 353 | ||
| 43920 | 354 | lemma real_of_ereal_positive_mono: | 
| 53873 | 355 | fixes x y :: ereal | 
| 356 | shows "0 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<noteq> \<infinity> \<Longrightarrow> real x \<le> real y" | |
| 43920 | 357 | by (cases rule: ereal2_cases[of x y]) auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 358 | |
| 43920 | 359 | lemma ereal_MInfty_lessI[intro, simp]: | 
| 53873 | 360 | fixes a :: ereal | 
| 361 | shows "a \<noteq> -\<infinity> \<Longrightarrow> -\<infinity> < a" | |
| 41973 | 362 | by (cases a) auto | 
| 363 | ||
| 43920 | 364 | lemma ereal_less_PInfty[intro, simp]: | 
| 53873 | 365 | fixes a :: ereal | 
| 366 | shows "a \<noteq> \<infinity> \<Longrightarrow> a < \<infinity>" | |
| 41973 | 367 | by (cases a) auto | 
| 368 | ||
| 43920 | 369 | lemma ereal_less_ereal_Ex: | 
| 370 | fixes a b :: ereal | |
| 371 | shows "x < ereal r \<longleftrightarrow> x = -\<infinity> \<or> (\<exists>p. p < r \<and> x = ereal p)" | |
| 41973 | 372 | by (cases x) auto | 
| 373 | ||
| 43920 | 374 | lemma less_PInf_Ex_of_nat: "x \<noteq> \<infinity> \<longleftrightarrow> (\<exists>n::nat. x < ereal (real n))" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 375 | proof (cases x) | 
| 53873 | 376 | case (real r) | 
| 377 | then show ?thesis | |
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 378 | using reals_Archimedean2[of r] by simp | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 379 | qed simp_all | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 380 | |
| 43920 | 381 | lemma ereal_add_mono: | 
| 53873 | 382 | fixes a b c d :: ereal | 
| 383 | assumes "a \<le> b" | |
| 384 | and "c \<le> d" | |
| 385 | shows "a + c \<le> b + d" | |
| 41973 | 386 | using assms | 
| 387 | apply (cases a) | |
| 43920 | 388 | apply (cases rule: ereal3_cases[of b c d], auto) | 
| 389 | apply (cases rule: ereal3_cases[of b c d], auto) | |
| 41973 | 390 | done | 
| 391 | ||
| 43920 | 392 | lemma ereal_minus_le_minus[simp]: | 
| 53873 | 393 | fixes a b :: ereal | 
| 394 | shows "- a \<le> - b \<longleftrightarrow> b \<le> a" | |
| 43920 | 395 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 396 | |
| 43920 | 397 | lemma ereal_minus_less_minus[simp]: | 
| 53873 | 398 | fixes a b :: ereal | 
| 399 | shows "- a < - b \<longleftrightarrow> b < a" | |
| 43920 | 400 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 401 | |
| 43920 | 402 | lemma ereal_le_real_iff: | 
| 53873 | 403 | "x \<le> real y \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x \<le> y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x \<le> 0)" | 
| 41973 | 404 | by (cases y) auto | 
| 405 | ||
| 43920 | 406 | lemma real_le_ereal_iff: | 
| 53873 | 407 | "real y \<le> x \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y \<le> ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 \<le> x)" | 
| 41973 | 408 | by (cases y) auto | 
| 409 | ||
| 43920 | 410 | lemma ereal_less_real_iff: | 
| 53873 | 411 | "x < real y \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x < y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x < 0)" | 
| 41973 | 412 | by (cases y) auto | 
| 413 | ||
| 43920 | 414 | lemma real_less_ereal_iff: | 
| 53873 | 415 | "real y < x \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y < ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 < x)" | 
| 41973 | 416 | by (cases y) auto | 
| 417 | ||
| 43920 | 418 | lemma real_of_ereal_pos: | 
| 53873 | 419 | fixes x :: ereal | 
| 420 | shows "0 \<le> x \<Longrightarrow> 0 \<le> real x" by (cases x) auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 421 | |
| 43920 | 422 | lemmas real_of_ereal_ord_simps = | 
| 423 | ereal_le_real_iff real_le_ereal_iff ereal_less_real_iff real_less_ereal_iff | |
| 41973 | 424 | |
| 43920 | 425 | lemma abs_ereal_ge0[simp]: "0 \<le> x \<Longrightarrow> \<bar>x :: ereal\<bar> = x" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 426 | by (cases x) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 427 | |
| 43920 | 428 | lemma abs_ereal_less0[simp]: "x < 0 \<Longrightarrow> \<bar>x :: ereal\<bar> = -x" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 429 | by (cases x) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 430 | |
| 43920 | 431 | lemma abs_ereal_pos[simp]: "0 \<le> \<bar>x :: ereal\<bar>" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 432 | by (cases x) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 433 | |
| 53873 | 434 | lemma real_of_ereal_le_0[simp]: "real (x :: ereal) \<le> 0 \<longleftrightarrow> x \<le> 0 \<or> x = \<infinity>" | 
| 43923 | 435 | by (cases x) auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 436 | |
| 43923 | 437 | lemma abs_real_of_ereal[simp]: "\<bar>real (x :: ereal)\<bar> = real \<bar>x\<bar>" | 
| 438 | by (cases x) auto | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 439 | |
| 43923 | 440 | lemma zero_less_real_of_ereal: | 
| 53873 | 441 | fixes x :: ereal | 
| 442 | shows "0 < real x \<longleftrightarrow> 0 < x \<and> x \<noteq> \<infinity>" | |
| 43923 | 443 | by (cases x) auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 444 | |
| 43920 | 445 | lemma ereal_0_le_uminus_iff[simp]: | 
| 53873 | 446 | fixes a :: ereal | 
| 447 | shows "0 \<le> - a \<longleftrightarrow> a \<le> 0" | |
| 43920 | 448 | by (cases rule: ereal2_cases[of a]) auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 449 | |
| 43920 | 450 | lemma ereal_uminus_le_0_iff[simp]: | 
| 53873 | 451 | fixes a :: ereal | 
| 452 | shows "- a \<le> 0 \<longleftrightarrow> 0 \<le> a" | |
| 43920 | 453 | by (cases rule: ereal2_cases[of a]) auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 454 | |
| 43920 | 455 | lemma ereal_add_strict_mono: | 
| 456 | fixes a b c d :: ereal | |
| 53873 | 457 | assumes "a = b" | 
| 458 | and "0 \<le> a" | |
| 459 | and "a \<noteq> \<infinity>" | |
| 460 | and "c < d" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 461 | shows "a + c < b + d" | 
| 53873 | 462 | using assms | 
| 463 | by (cases rule: ereal3_cases[case_product ereal_cases, of a b c d]) auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 464 | |
| 53873 | 465 | lemma ereal_less_add: | 
| 466 | fixes a b c :: ereal | |
| 467 | shows "\<bar>a\<bar> \<noteq> \<infinity> \<Longrightarrow> c < b \<Longrightarrow> a + c < a + b" | |
| 43920 | 468 | by (cases rule: ereal2_cases[of b c]) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 469 | |
| 54416 | 470 | lemma ereal_add_nonneg_eq_0_iff: | 
| 471 | fixes a b :: ereal | |
| 472 | shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> a + b = 0 \<longleftrightarrow> a = 0 \<and> b = 0" | |
| 473 | by (cases a b rule: ereal2_cases) auto | |
| 474 | ||
| 53873 | 475 | lemma ereal_uminus_eq_reorder: "- a = b \<longleftrightarrow> a = (-b::ereal)" | 
| 476 | by auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 477 | |
| 43920 | 478 | lemma ereal_uminus_less_reorder: "- a < b \<longleftrightarrow> -b < (a::ereal)" | 
| 479 | by (subst (3) ereal_uminus_uminus[symmetric]) (simp only: ereal_minus_less_minus) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 480 | |
| 43920 | 481 | lemma ereal_uminus_le_reorder: "- a \<le> b \<longleftrightarrow> -b \<le> (a::ereal)" | 
| 482 | by (subst (3) ereal_uminus_uminus[symmetric]) (simp only: ereal_minus_le_minus) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 483 | |
| 43920 | 484 | lemmas ereal_uminus_reorder = | 
| 485 | ereal_uminus_eq_reorder ereal_uminus_less_reorder ereal_uminus_le_reorder | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 486 | |
| 43920 | 487 | lemma ereal_bot: | 
| 53873 | 488 | fixes x :: ereal | 
| 489 | assumes "\<And>B. x \<le> ereal B" | |
| 490 | shows "x = - \<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 491 | proof (cases x) | 
| 53873 | 492 | case (real r) | 
| 493 | with assms[of "r - 1"] show ?thesis | |
| 494 | by auto | |
| 47082 | 495 | next | 
| 53873 | 496 | case PInf | 
| 497 | with assms[of 0] show ?thesis | |
| 498 | by auto | |
| 47082 | 499 | next | 
| 53873 | 500 | case MInf | 
| 501 | then show ?thesis | |
| 502 | by simp | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 503 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 504 | |
| 43920 | 505 | lemma ereal_top: | 
| 53873 | 506 | fixes x :: ereal | 
| 507 | assumes "\<And>B. x \<ge> ereal B" | |
| 508 | shows "x = \<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 509 | proof (cases x) | 
| 53873 | 510 | case (real r) | 
| 511 | with assms[of "r + 1"] show ?thesis | |
| 512 | by auto | |
| 47082 | 513 | next | 
| 53873 | 514 | case MInf | 
| 515 | with assms[of 0] show ?thesis | |
| 516 | by auto | |
| 47082 | 517 | next | 
| 53873 | 518 | case PInf | 
| 519 | then show ?thesis | |
| 520 | by simp | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 521 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 522 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 523 | lemma | 
| 43920 | 524 | shows ereal_max[simp]: "ereal (max x y) = max (ereal x) (ereal y)" | 
| 525 | and ereal_min[simp]: "ereal (min x y) = min (ereal x) (ereal y)" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 526 | by (simp_all add: min_def max_def) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 527 | |
| 43920 | 528 | lemma ereal_max_0: "max 0 (ereal r) = ereal (max 0 r)" | 
| 529 | by (auto simp: zero_ereal_def) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 530 | |
| 41978 | 531 | lemma | 
| 43920 | 532 | fixes f :: "nat \<Rightarrow> ereal" | 
| 54416 | 533 | shows ereal_incseq_uminus[simp]: "incseq (\<lambda>x. - f x) \<longleftrightarrow> decseq f" | 
| 534 | and ereal_decseq_uminus[simp]: "decseq (\<lambda>x. - f x) \<longleftrightarrow> incseq f" | |
| 41978 | 535 | unfolding decseq_def incseq_def by auto | 
| 536 | ||
| 43920 | 537 | lemma incseq_ereal: "incseq f \<Longrightarrow> incseq (\<lambda>x. ereal (f x))" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 538 | unfolding incseq_def by auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 539 | |
| 43920 | 540 | lemma ereal_add_nonneg_nonneg: | 
| 53873 | 541 | fixes a b :: ereal | 
| 542 | shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a + b" | |
| 41978 | 543 | using add_mono[of 0 a 0 b] by simp | 
| 544 | ||
| 53873 | 545 | lemma image_eqD: "f ` A = B \<Longrightarrow> \<forall>x\<in>A. f x \<in> B" | 
| 41978 | 546 | by auto | 
| 547 | ||
| 548 | lemma incseq_setsumI: | |
| 53873 | 549 |   fixes f :: "nat \<Rightarrow> 'a::{comm_monoid_add,ordered_ab_semigroup_add}"
 | 
| 41978 | 550 | assumes "\<And>i. 0 \<le> f i" | 
| 551 |   shows "incseq (\<lambda>i. setsum f {..< i})"
 | |
| 552 | proof (intro incseq_SucI) | |
| 53873 | 553 | fix n | 
| 554 |   have "setsum f {..< n} + 0 \<le> setsum f {..<n} + f n"
 | |
| 41978 | 555 | using assms by (rule add_left_mono) | 
| 556 |   then show "setsum f {..< n} \<le> setsum f {..< Suc n}"
 | |
| 557 | by auto | |
| 558 | qed | |
| 559 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 560 | lemma incseq_setsumI2: | 
| 53873 | 561 |   fixes f :: "'i \<Rightarrow> nat \<Rightarrow> 'a::{comm_monoid_add,ordered_ab_semigroup_add}"
 | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 562 | assumes "\<And>n. n \<in> A \<Longrightarrow> incseq (f n)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 563 | shows "incseq (\<lambda>i. \<Sum>n\<in>A. f n i)" | 
| 53873 | 564 | using assms | 
| 565 | unfolding incseq_def by (auto intro: setsum_mono) | |
| 566 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 567 | |
| 41973 | 568 | subsubsection "Multiplication" | 
| 569 | ||
| 53873 | 570 | instantiation ereal :: "{comm_monoid_mult,sgn}"
 | 
| 41973 | 571 | begin | 
| 572 | ||
| 51351 | 573 | function sgn_ereal :: "ereal \<Rightarrow> ereal" where | 
| 43920 | 574 | "sgn (ereal r) = ereal (sgn r)" | 
| 43923 | 575 | | "sgn (\<infinity>::ereal) = 1" | 
| 576 | | "sgn (-\<infinity>::ereal) = -1" | |
| 43920 | 577 | by (auto intro: ereal_cases) | 
| 53873 | 578 | termination by default (rule wf_empty) | 
| 41976 | 579 | |
| 43920 | 580 | function times_ereal where | 
| 53873 | 581 | "ereal r * ereal p = ereal (r * p)" | 
| 582 | | "ereal r * \<infinity> = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)" | |
| 583 | | "\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)" | |
| 584 | | "ereal r * -\<infinity> = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)" | |
| 585 | | "-\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)" | |
| 586 | | "(\<infinity>::ereal) * \<infinity> = \<infinity>" | |
| 587 | | "-(\<infinity>::ereal) * \<infinity> = -\<infinity>" | |
| 588 | | "(\<infinity>::ereal) * -\<infinity> = -\<infinity>" | |
| 589 | | "-(\<infinity>::ereal) * -\<infinity> = \<infinity>" | |
| 41973 | 590 | proof - | 
| 591 | case (goal1 P x) | |
| 53873 | 592 | then obtain a b where "x = (a, b)" | 
| 593 | by (cases x) auto | |
| 594 | with goal1 show P | |
| 595 | by (cases rule: ereal2_cases[of a b]) auto | |
| 41973 | 596 | qed simp_all | 
| 597 | termination by (relation "{}") simp
 | |
| 598 | ||
| 599 | instance | |
| 600 | proof | |
| 53873 | 601 | fix a b c :: ereal | 
| 602 | show "1 * a = a" | |
| 43920 | 603 | by (cases a) (simp_all add: one_ereal_def) | 
| 47082 | 604 | show "a * b = b * a" | 
| 43920 | 605 | by (cases rule: ereal2_cases[of a b]) simp_all | 
| 47082 | 606 | show "a * b * c = a * (b * c)" | 
| 43920 | 607 | by (cases rule: ereal3_cases[of a b c]) | 
| 608 | (simp_all add: zero_ereal_def zero_less_mult_iff) | |
| 41973 | 609 | qed | 
| 53873 | 610 | |
| 41973 | 611 | end | 
| 612 | ||
| 50104 | 613 | lemma real_ereal_1[simp]: "real (1::ereal) = 1" | 
| 614 | unfolding one_ereal_def by simp | |
| 615 | ||
| 43920 | 616 | lemma real_of_ereal_le_1: | 
| 53873 | 617 | fixes a :: ereal | 
| 618 | shows "a \<le> 1 \<Longrightarrow> real a \<le> 1" | |
| 43920 | 619 | by (cases a) (auto simp: one_ereal_def) | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 620 | |
| 43920 | 621 | lemma abs_ereal_one[simp]: "\<bar>1\<bar> = (1::ereal)" | 
| 622 | unfolding one_ereal_def by simp | |
| 41976 | 623 | |
| 43920 | 624 | lemma ereal_mult_zero[simp]: | 
| 53873 | 625 | fixes a :: ereal | 
| 626 | shows "a * 0 = 0" | |
| 43920 | 627 | by (cases a) (simp_all add: zero_ereal_def) | 
| 41973 | 628 | |
| 43920 | 629 | lemma ereal_zero_mult[simp]: | 
| 53873 | 630 | fixes a :: ereal | 
| 631 | shows "0 * a = 0" | |
| 43920 | 632 | by (cases a) (simp_all add: zero_ereal_def) | 
| 41973 | 633 | |
| 53873 | 634 | lemma ereal_m1_less_0[simp]: "-(1::ereal) < 0" | 
| 43920 | 635 | by (simp add: zero_ereal_def one_ereal_def) | 
| 41973 | 636 | |
| 43920 | 637 | lemma ereal_times[simp]: | 
| 43923 | 638 | "1 \<noteq> (\<infinity>::ereal)" "(\<infinity>::ereal) \<noteq> 1" | 
| 639 | "1 \<noteq> -(\<infinity>::ereal)" "-(\<infinity>::ereal) \<noteq> 1" | |
| 43920 | 640 | by (auto simp add: times_ereal_def one_ereal_def) | 
| 41973 | 641 | |
| 43920 | 642 | lemma ereal_plus_1[simp]: | 
| 53873 | 643 | "1 + ereal r = ereal (r + 1)" | 
| 644 | "ereal r + 1 = ereal (r + 1)" | |
| 645 | "1 + -(\<infinity>::ereal) = -\<infinity>" | |
| 646 | "-(\<infinity>::ereal) + 1 = -\<infinity>" | |
| 43920 | 647 | unfolding one_ereal_def by auto | 
| 41973 | 648 | |
| 43920 | 649 | lemma ereal_zero_times[simp]: | 
| 53873 | 650 | fixes a b :: ereal | 
| 651 | shows "a * b = 0 \<longleftrightarrow> a = 0 \<or> b = 0" | |
| 43920 | 652 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 653 | |
| 43920 | 654 | lemma ereal_mult_eq_PInfty[simp]: | 
| 53873 | 655 | "a * b = (\<infinity>::ereal) \<longleftrightarrow> | 
| 41973 | 656 | (a = \<infinity> \<and> b > 0) \<or> (a > 0 \<and> b = \<infinity>) \<or> (a = -\<infinity> \<and> b < 0) \<or> (a < 0 \<and> b = -\<infinity>)" | 
| 43920 | 657 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 658 | |
| 43920 | 659 | lemma ereal_mult_eq_MInfty[simp]: | 
| 53873 | 660 | "a * b = -(\<infinity>::ereal) \<longleftrightarrow> | 
| 41973 | 661 | (a = \<infinity> \<and> b < 0) \<or> (a < 0 \<and> b = \<infinity>) \<or> (a = -\<infinity> \<and> b > 0) \<or> (a > 0 \<and> b = -\<infinity>)" | 
| 43920 | 662 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 663 | |
| 54416 | 664 | lemma ereal_abs_mult: "\<bar>x * y :: ereal\<bar> = \<bar>x\<bar> * \<bar>y\<bar>" | 
| 665 | by (cases x y rule: ereal2_cases) (auto simp: abs_mult) | |
| 666 | ||
| 43920 | 667 | lemma ereal_0_less_1[simp]: "0 < (1::ereal)" | 
| 668 | by (simp_all add: zero_ereal_def one_ereal_def) | |
| 41973 | 669 | |
| 43920 | 670 | lemma ereal_mult_minus_left[simp]: | 
| 53873 | 671 | fixes a b :: ereal | 
| 672 | shows "-a * b = - (a * b)" | |
| 43920 | 673 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 674 | |
| 43920 | 675 | lemma ereal_mult_minus_right[simp]: | 
| 53873 | 676 | fixes a b :: ereal | 
| 677 | shows "a * -b = - (a * b)" | |
| 43920 | 678 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 679 | |
| 43920 | 680 | lemma ereal_mult_infty[simp]: | 
| 43923 | 681 | "a * (\<infinity>::ereal) = (if a = 0 then 0 else if 0 < a then \<infinity> else - \<infinity>)" | 
| 41973 | 682 | by (cases a) auto | 
| 683 | ||
| 43920 | 684 | lemma ereal_infty_mult[simp]: | 
| 43923 | 685 | "(\<infinity>::ereal) * a = (if a = 0 then 0 else if 0 < a then \<infinity> else - \<infinity>)" | 
| 41973 | 686 | by (cases a) auto | 
| 687 | ||
| 43920 | 688 | lemma ereal_mult_strict_right_mono: | 
| 53873 | 689 | assumes "a < b" | 
| 690 | and "0 < c" | |
| 691 | and "c < (\<infinity>::ereal)" | |
| 41973 | 692 | shows "a * c < b * c" | 
| 693 | using assms | |
| 53873 | 694 | by (cases rule: ereal3_cases[of a b c]) (auto simp: zero_le_mult_iff) | 
| 41973 | 695 | |
| 43920 | 696 | lemma ereal_mult_strict_left_mono: | 
| 53873 | 697 | "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c < (\<infinity>::ereal) \<Longrightarrow> c * a < c * b" | 
| 698 | using ereal_mult_strict_right_mono | |
| 699 | by (simp add: mult_commute[of c]) | |
| 41973 | 700 | |
| 43920 | 701 | lemma ereal_mult_right_mono: | 
| 53873 | 702 | fixes a b c :: ereal | 
| 703 | shows "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * c" | |
| 41973 | 704 | using assms | 
| 53873 | 705 | apply (cases "c = 0") | 
| 706 | apply simp | |
| 707 | apply (cases rule: ereal3_cases[of a b c]) | |
| 708 | apply (auto simp: zero_le_mult_iff) | |
| 709 | done | |
| 41973 | 710 | |
| 43920 | 711 | lemma ereal_mult_left_mono: | 
| 53873 | 712 | fixes a b c :: ereal | 
| 713 | shows "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" | |
| 714 | using ereal_mult_right_mono | |
| 715 | by (simp add: mult_commute[of c]) | |
| 41973 | 716 | |
| 43920 | 717 | lemma zero_less_one_ereal[simp]: "0 \<le> (1::ereal)" | 
| 718 | by (simp add: one_ereal_def zero_ereal_def) | |
| 41978 | 719 | |
| 43920 | 720 | lemma ereal_0_le_mult[simp]: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * (b :: ereal)" | 
| 721 | by (cases rule: ereal2_cases[of a b]) (auto simp: mult_nonneg_nonneg) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 722 | |
| 43920 | 723 | lemma ereal_right_distrib: | 
| 53873 | 724 | fixes r a b :: ereal | 
| 725 | shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> r * (a + b) = r * a + r * b" | |
| 43920 | 726 | by (cases rule: ereal3_cases[of r a b]) (simp_all add: field_simps) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 727 | |
| 43920 | 728 | lemma ereal_left_distrib: | 
| 53873 | 729 | fixes r a b :: ereal | 
| 730 | shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> (a + b) * r = a * r + b * r" | |
| 43920 | 731 | by (cases rule: ereal3_cases[of r a b]) (simp_all add: field_simps) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 732 | |
| 43920 | 733 | lemma ereal_mult_le_0_iff: | 
| 734 | fixes a b :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 735 | shows "a * b \<le> 0 \<longleftrightarrow> (0 \<le> a \<and> b \<le> 0) \<or> (a \<le> 0 \<and> 0 \<le> b)" | 
| 43920 | 736 | by (cases rule: ereal2_cases[of a b]) (simp_all add: mult_le_0_iff) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 737 | |
| 43920 | 738 | lemma ereal_zero_le_0_iff: | 
| 739 | fixes a b :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 740 | shows "0 \<le> a * b \<longleftrightarrow> (0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0)" | 
| 43920 | 741 | by (cases rule: ereal2_cases[of a b]) (simp_all add: zero_le_mult_iff) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 742 | |
| 43920 | 743 | lemma ereal_mult_less_0_iff: | 
| 744 | fixes a b :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 745 | shows "a * b < 0 \<longleftrightarrow> (0 < a \<and> b < 0) \<or> (a < 0 \<and> 0 < b)" | 
| 43920 | 746 | by (cases rule: ereal2_cases[of a b]) (simp_all add: mult_less_0_iff) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 747 | |
| 43920 | 748 | lemma ereal_zero_less_0_iff: | 
| 749 | fixes a b :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 750 | shows "0 < a * b \<longleftrightarrow> (0 < a \<and> 0 < b) \<or> (a < 0 \<and> b < 0)" | 
| 43920 | 751 | by (cases rule: ereal2_cases[of a b]) (simp_all add: zero_less_mult_iff) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 752 | |
| 50104 | 753 | lemma ereal_left_mult_cong: | 
| 754 | fixes a b c :: ereal | |
| 755 | shows "(c \<noteq> 0 \<Longrightarrow> a = b) \<Longrightarrow> c * a = c * b" | |
| 756 | by (cases "c = 0") simp_all | |
| 757 | ||
| 758 | lemma ereal_right_mult_cong: | |
| 759 | fixes a b c :: ereal | |
| 760 | shows "(c \<noteq> 0 \<Longrightarrow> a = b) \<Longrightarrow> a * c = b * c" | |
| 761 | by (cases "c = 0") simp_all | |
| 762 | ||
| 43920 | 763 | lemma ereal_distrib: | 
| 764 | fixes a b c :: ereal | |
| 53873 | 765 | assumes "a \<noteq> \<infinity> \<or> b \<noteq> -\<infinity>" | 
| 766 | and "a \<noteq> -\<infinity> \<or> b \<noteq> \<infinity>" | |
| 767 | and "\<bar>c\<bar> \<noteq> \<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 768 | shows "(a + b) * c = a * c + b * c" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 769 | using assms | 
| 43920 | 770 | by (cases rule: ereal3_cases[of a b c]) (simp_all add: field_simps) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 771 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 772 | lemma numeral_eq_ereal [simp]: "numeral w = ereal (numeral w)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 773 | apply (induct w rule: num_induct) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 774 | apply (simp only: numeral_One one_ereal_def) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 775 | apply (simp only: numeral_inc ereal_plus_1) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 776 | done | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 777 | |
| 43920 | 778 | lemma ereal_le_epsilon: | 
| 779 | fixes x y :: ereal | |
| 53873 | 780 | assumes "\<forall>e. 0 < e \<longrightarrow> x \<le> y + e" | 
| 781 | shows "x \<le> y" | |
| 782 | proof - | |
| 783 |   {
 | |
| 784 | assume a: "\<exists>r. y = ereal r" | |
| 785 | then obtain r where r_def: "y = ereal r" | |
| 786 | by auto | |
| 787 |     {
 | |
| 788 | assume "x = -\<infinity>" | |
| 789 | then have ?thesis by auto | |
| 790 | } | |
| 791 | moreover | |
| 792 |     {
 | |
| 793 | assume "x \<noteq> -\<infinity>" | |
| 794 | then obtain p where p_def: "x = ereal p" | |
| 795 | using a assms[rule_format, of 1] | |
| 796 | by (cases x) auto | |
| 797 |       {
 | |
| 798 | fix e | |
| 799 | have "0 < e \<longrightarrow> p \<le> r + e" | |
| 800 | using assms[rule_format, of "ereal e"] p_def r_def by auto | |
| 801 | } | |
| 802 | then have "p \<le> r" | |
| 803 | apply (subst field_le_epsilon) | |
| 804 | apply auto | |
| 805 | done | |
| 806 | then have ?thesis | |
| 807 | using r_def p_def by auto | |
| 808 | } | |
| 809 | ultimately have ?thesis | |
| 810 | by blast | |
| 811 | } | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 812 | moreover | 
| 53873 | 813 |   {
 | 
| 814 | assume "y = -\<infinity> | y = \<infinity>" | |
| 815 | then have ?thesis | |
| 816 | using assms[rule_format, of 1] by (cases x) auto | |
| 817 | } | |
| 818 | ultimately show ?thesis | |
| 819 | by (cases y) auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 820 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 821 | |
| 43920 | 822 | lemma ereal_le_epsilon2: | 
| 823 | fixes x y :: ereal | |
| 53873 | 824 | assumes "\<forall>e. 0 < e \<longrightarrow> x \<le> y + ereal e" | 
| 825 | shows "x \<le> y" | |
| 826 | proof - | |
| 827 |   {
 | |
| 828 | fix e :: ereal | |
| 829 | assume "e > 0" | |
| 830 |     {
 | |
| 831 | assume "e = \<infinity>" | |
| 832 | then have "x \<le> y + e" | |
| 833 | by auto | |
| 834 | } | |
| 835 | moreover | |
| 836 |     {
 | |
| 837 | assume "e \<noteq> \<infinity>" | |
| 838 | then obtain r where "e = ereal r" | |
| 839 | using `e > 0` by (cases e) auto | |
| 840 | then have "x \<le> y + e" | |
| 841 | using assms[rule_format, of r] `e>0` by auto | |
| 842 | } | |
| 843 | ultimately have "x \<le> y + e" | |
| 844 | by blast | |
| 845 | } | |
| 846 | then show ?thesis | |
| 847 | using ereal_le_epsilon by auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 848 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 849 | |
| 43920 | 850 | lemma ereal_le_real: | 
| 851 | fixes x y :: ereal | |
| 53873 | 852 | assumes "\<forall>z. x \<le> ereal z \<longrightarrow> y \<le> ereal z" | 
| 853 | shows "y \<le> x" | |
| 854 | by (metis assms ereal_bot ereal_cases ereal_infty_less_eq(2) ereal_less_eq(1) linorder_le_cases) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 855 | |
| 43920 | 856 | lemma setprod_ereal_0: | 
| 857 | fixes f :: "'a \<Rightarrow> ereal" | |
| 53873 | 858 | shows "(\<Prod>i\<in>A. f i) = 0 \<longleftrightarrow> finite A \<and> (\<exists>i\<in>A. f i = 0)" | 
| 859 | proof (cases "finite A") | |
| 860 | case True | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 861 | then show ?thesis by (induct A) auto | 
| 53873 | 862 | next | 
| 863 | case False | |
| 864 | then show ?thesis by auto | |
| 865 | qed | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 866 | |
| 43920 | 867 | lemma setprod_ereal_pos: | 
| 53873 | 868 | fixes f :: "'a \<Rightarrow> ereal" | 
| 869 | assumes pos: "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" | |
| 870 | shows "0 \<le> (\<Prod>i\<in>I. f i)" | |
| 871 | proof (cases "finite I") | |
| 872 | case True | |
| 873 | from this pos show ?thesis | |
| 874 | by induct auto | |
| 875 | next | |
| 876 | case False | |
| 877 | then show ?thesis by simp | |
| 878 | qed | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 879 | |
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 880 | lemma setprod_PInf: | 
| 43923 | 881 | fixes f :: "'a \<Rightarrow> ereal" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 882 | assumes "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 883 | shows "(\<Prod>i\<in>I. f i) = \<infinity> \<longleftrightarrow> finite I \<and> (\<exists>i\<in>I. f i = \<infinity>) \<and> (\<forall>i\<in>I. f i \<noteq> 0)" | 
| 53873 | 884 | proof (cases "finite I") | 
| 885 | case True | |
| 886 | from this assms show ?thesis | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 887 | proof (induct I) | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 888 | case (insert i I) | 
| 53873 | 889 | then have pos: "0 \<le> f i" "0 \<le> setprod f I" | 
| 890 | by (auto intro!: setprod_ereal_pos) | |
| 891 | from insert have "(\<Prod>j\<in>insert i I. f j) = \<infinity> \<longleftrightarrow> setprod f I * f i = \<infinity>" | |
| 892 | by auto | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 893 | also have "\<dots> \<longleftrightarrow> (setprod f I = \<infinity> \<or> f i = \<infinity>) \<and> f i \<noteq> 0 \<and> setprod f I \<noteq> 0" | 
| 43920 | 894 | using setprod_ereal_pos[of I f] pos | 
| 895 | by (cases rule: ereal2_cases[of "f i" "setprod f I"]) auto | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 896 | also have "\<dots> \<longleftrightarrow> finite (insert i I) \<and> (\<exists>j\<in>insert i I. f j = \<infinity>) \<and> (\<forall>j\<in>insert i I. f j \<noteq> 0)" | 
| 43920 | 897 | using insert by (auto simp: setprod_ereal_0) | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 898 | finally show ?case . | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 899 | qed simp | 
| 53873 | 900 | next | 
| 901 | case False | |
| 902 | then show ?thesis by simp | |
| 903 | qed | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 904 | |
| 43920 | 905 | lemma setprod_ereal: "(\<Prod>i\<in>A. ereal (f i)) = ereal (setprod f A)" | 
| 53873 | 906 | proof (cases "finite A") | 
| 907 | case True | |
| 908 | then show ?thesis | |
| 43920 | 909 | by induct (auto simp: one_ereal_def) | 
| 53873 | 910 | next | 
| 911 | case False | |
| 912 | then show ?thesis | |
| 913 | by (simp add: one_ereal_def) | |
| 914 | qed | |
| 915 | ||
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 916 | |
| 41978 | 917 | subsubsection {* Power *}
 | 
| 918 | ||
| 43920 | 919 | lemma ereal_power[simp]: "(ereal x) ^ n = ereal (x^n)" | 
| 920 | by (induct n) (auto simp: one_ereal_def) | |
| 41978 | 921 | |
| 43923 | 922 | lemma ereal_power_PInf[simp]: "(\<infinity>::ereal) ^ n = (if n = 0 then 1 else \<infinity>)" | 
| 43920 | 923 | by (induct n) (auto simp: one_ereal_def) | 
| 41978 | 924 | |
| 43920 | 925 | lemma ereal_power_uminus[simp]: | 
| 926 | fixes x :: ereal | |
| 41978 | 927 | shows "(- x) ^ n = (if even n then x ^ n else - (x^n))" | 
| 43920 | 928 | by (induct n) (auto simp: one_ereal_def) | 
| 41978 | 929 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 930 | lemma ereal_power_numeral[simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 931 | "(numeral num :: ereal) ^ n = ereal (numeral num ^ n)" | 
| 43920 | 932 | by (induct n) (auto simp: one_ereal_def) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 933 | |
| 43920 | 934 | lemma zero_le_power_ereal[simp]: | 
| 53873 | 935 | fixes a :: ereal | 
| 936 | assumes "0 \<le> a" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 937 | shows "0 \<le> a ^ n" | 
| 43920 | 938 | using assms by (induct n) (auto simp: ereal_zero_le_0_iff) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 939 | |
| 53873 | 940 | |
| 41973 | 941 | subsubsection {* Subtraction *}
 | 
| 942 | ||
| 43920 | 943 | lemma ereal_minus_minus_image[simp]: | 
| 944 | fixes S :: "ereal set" | |
| 41973 | 945 | shows "uminus ` uminus ` S = S" | 
| 946 | by (auto simp: image_iff) | |
| 947 | ||
| 43920 | 948 | lemma ereal_uminus_lessThan[simp]: | 
| 53873 | 949 | fixes a :: ereal | 
| 950 |   shows "uminus ` {..<a} = {-a<..}"
 | |
| 47082 | 951 | proof - | 
| 952 |   {
 | |
| 53873 | 953 | fix x | 
| 954 | assume "-a < x" | |
| 955 | then have "- x < - (- a)" | |
| 956 | by (simp del: ereal_uminus_uminus) | |
| 957 | then have "- x < a" | |
| 958 | by simp | |
| 47082 | 959 | } | 
| 53873 | 960 | then show ?thesis | 
| 54416 | 961 | by force | 
| 47082 | 962 | qed | 
| 41973 | 963 | |
| 53873 | 964 | lemma ereal_uminus_greaterThan[simp]: "uminus ` {(a::ereal)<..} = {..<-a}"
 | 
| 965 | by (metis ereal_uminus_lessThan ereal_uminus_uminus ereal_minus_minus_image) | |
| 41973 | 966 | |
| 43920 | 967 | instantiation ereal :: minus | 
| 41973 | 968 | begin | 
| 53873 | 969 | |
| 43920 | 970 | definition "x - y = x + -(y::ereal)" | 
| 41973 | 971 | instance .. | 
| 53873 | 972 | |
| 41973 | 973 | end | 
| 974 | ||
| 43920 | 975 | lemma ereal_minus[simp]: | 
| 976 | "ereal r - ereal p = ereal (r - p)" | |
| 977 | "-\<infinity> - ereal r = -\<infinity>" | |
| 978 | "ereal r - \<infinity> = -\<infinity>" | |
| 43923 | 979 | "(\<infinity>::ereal) - x = \<infinity>" | 
| 980 | "-(\<infinity>::ereal) - \<infinity> = -\<infinity>" | |
| 41973 | 981 | "x - -y = x + y" | 
| 982 | "x - 0 = x" | |
| 983 | "0 - x = -x" | |
| 43920 | 984 | by (simp_all add: minus_ereal_def) | 
| 41973 | 985 | |
| 53873 | 986 | lemma ereal_x_minus_x[simp]: "x - x = (if \<bar>x\<bar> = \<infinity> then \<infinity> else 0::ereal)" | 
| 41973 | 987 | by (cases x) simp_all | 
| 988 | ||
| 43920 | 989 | lemma ereal_eq_minus_iff: | 
| 990 | fixes x y z :: ereal | |
| 41973 | 991 | shows "x = z - y \<longleftrightarrow> | 
| 41976 | 992 | (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x + y = z) \<and> | 
| 41973 | 993 | (y = -\<infinity> \<longrightarrow> x = \<infinity>) \<and> | 
| 994 | (y = \<infinity> \<longrightarrow> z = \<infinity> \<longrightarrow> x = \<infinity>) \<and> | |
| 995 | (y = \<infinity> \<longrightarrow> z \<noteq> \<infinity> \<longrightarrow> x = -\<infinity>)" | |
| 43920 | 996 | by (cases rule: ereal3_cases[of x y z]) auto | 
| 41973 | 997 | |
| 43920 | 998 | lemma ereal_eq_minus: | 
| 999 | fixes x y z :: ereal | |
| 41976 | 1000 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x = z - y \<longleftrightarrow> x + y = z" | 
| 43920 | 1001 | by (auto simp: ereal_eq_minus_iff) | 
| 41973 | 1002 | |
| 43920 | 1003 | lemma ereal_less_minus_iff: | 
| 1004 | fixes x y z :: ereal | |
| 41973 | 1005 | shows "x < z - y \<longleftrightarrow> | 
| 1006 | (y = \<infinity> \<longrightarrow> z = \<infinity> \<and> x \<noteq> \<infinity>) \<and> | |
| 1007 | (y = -\<infinity> \<longrightarrow> x \<noteq> \<infinity>) \<and> | |
| 41976 | 1008 | (\<bar>y\<bar> \<noteq> \<infinity>\<longrightarrow> x + y < z)" | 
| 43920 | 1009 | by (cases rule: ereal3_cases[of x y z]) auto | 
| 41973 | 1010 | |
| 43920 | 1011 | lemma ereal_less_minus: | 
| 1012 | fixes x y z :: ereal | |
| 41976 | 1013 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x < z - y \<longleftrightarrow> x + y < z" | 
| 43920 | 1014 | by (auto simp: ereal_less_minus_iff) | 
| 41973 | 1015 | |
| 43920 | 1016 | lemma ereal_le_minus_iff: | 
| 1017 | fixes x y z :: ereal | |
| 53873 | 1018 | shows "x \<le> z - y \<longleftrightarrow> (y = \<infinity> \<longrightarrow> z \<noteq> \<infinity> \<longrightarrow> x = -\<infinity>) \<and> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x + y \<le> z)" | 
| 43920 | 1019 | by (cases rule: ereal3_cases[of x y z]) auto | 
| 41973 | 1020 | |
| 43920 | 1021 | lemma ereal_le_minus: | 
| 1022 | fixes x y z :: ereal | |
| 41976 | 1023 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x \<le> z - y \<longleftrightarrow> x + y \<le> z" | 
| 43920 | 1024 | by (auto simp: ereal_le_minus_iff) | 
| 41973 | 1025 | |
| 43920 | 1026 | lemma ereal_minus_less_iff: | 
| 1027 | fixes x y z :: ereal | |
| 53873 | 1028 | shows "x - y < z \<longleftrightarrow> y \<noteq> -\<infinity> \<and> (y = \<infinity> \<longrightarrow> x \<noteq> \<infinity> \<and> z \<noteq> -\<infinity>) \<and> (y \<noteq> \<infinity> \<longrightarrow> x < z + y)" | 
| 43920 | 1029 | by (cases rule: ereal3_cases[of x y z]) auto | 
| 41973 | 1030 | |
| 43920 | 1031 | lemma ereal_minus_less: | 
| 1032 | fixes x y z :: ereal | |
| 41976 | 1033 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x - y < z \<longleftrightarrow> x < z + y" | 
| 43920 | 1034 | by (auto simp: ereal_minus_less_iff) | 
| 41973 | 1035 | |
| 43920 | 1036 | lemma ereal_minus_le_iff: | 
| 1037 | fixes x y z :: ereal | |
| 41973 | 1038 | shows "x - y \<le> z \<longleftrightarrow> | 
| 1039 | (y = -\<infinity> \<longrightarrow> z = \<infinity>) \<and> | |
| 1040 | (y = \<infinity> \<longrightarrow> x = \<infinity> \<longrightarrow> z = \<infinity>) \<and> | |
| 41976 | 1041 | (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x \<le> z + y)" | 
| 43920 | 1042 | by (cases rule: ereal3_cases[of x y z]) auto | 
| 41973 | 1043 | |
| 43920 | 1044 | lemma ereal_minus_le: | 
| 1045 | fixes x y z :: ereal | |
| 41976 | 1046 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x - y \<le> z \<longleftrightarrow> x \<le> z + y" | 
| 43920 | 1047 | by (auto simp: ereal_minus_le_iff) | 
| 41973 | 1048 | |
| 43920 | 1049 | lemma ereal_minus_eq_minus_iff: | 
| 1050 | fixes a b c :: ereal | |
| 41973 | 1051 | shows "a - b = a - c \<longleftrightarrow> | 
| 1052 | b = c \<or> a = \<infinity> \<or> (a = -\<infinity> \<and> b \<noteq> -\<infinity> \<and> c \<noteq> -\<infinity>)" | |
| 43920 | 1053 | by (cases rule: ereal3_cases[of a b c]) auto | 
| 41973 | 1054 | |
| 43920 | 1055 | lemma ereal_add_le_add_iff: | 
| 43923 | 1056 | fixes a b c :: ereal | 
| 1057 | shows "c + a \<le> c + b \<longleftrightarrow> | |
| 41973 | 1058 | a \<le> b \<or> c = \<infinity> \<or> (c = -\<infinity> \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>)" | 
| 43920 | 1059 | by (cases rule: ereal3_cases[of a b c]) (simp_all add: field_simps) | 
| 41973 | 1060 | |
| 43920 | 1061 | lemma ereal_mult_le_mult_iff: | 
| 43923 | 1062 | fixes a b c :: ereal | 
| 1063 | shows "\<bar>c\<bar> \<noteq> \<infinity> \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | |
| 43920 | 1064 | by (cases rule: ereal3_cases[of a b c]) (simp_all add: mult_le_cancel_left) | 
| 41973 | 1065 | |
| 43920 | 1066 | lemma ereal_minus_mono: | 
| 1067 | fixes A B C D :: ereal assumes "A \<le> B" "D \<le> C" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1068 | shows "A - C \<le> B - D" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1069 | using assms | 
| 43920 | 1070 | by (cases rule: ereal3_cases[case_product ereal_cases, of A B C D]) simp_all | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1071 | |
| 43920 | 1072 | lemma real_of_ereal_minus: | 
| 43923 | 1073 | fixes a b :: ereal | 
| 1074 | shows "real (a - b) = (if \<bar>a\<bar> = \<infinity> \<or> \<bar>b\<bar> = \<infinity> then 0 else real a - real b)" | |
| 43920 | 1075 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1076 | |
| 43920 | 1077 | lemma ereal_diff_positive: | 
| 1078 | fixes a b :: ereal shows "a \<le> b \<Longrightarrow> 0 \<le> b - a" | |
| 1079 | by (cases rule: ereal2_cases[of a b]) auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1080 | |
| 43920 | 1081 | lemma ereal_between: | 
| 1082 | fixes x e :: ereal | |
| 53873 | 1083 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" | 
| 1084 | and "0 < e" | |
| 1085 | shows "x - e < x" | |
| 1086 | and "x < x + e" | |
| 1087 | using assms | |
| 1088 | apply (cases x, cases e) | |
| 1089 | apply auto | |
| 1090 | using assms | |
| 1091 | apply (cases x, cases e) | |
| 1092 | apply auto | |
| 1093 | done | |
| 41973 | 1094 | |
| 50104 | 1095 | lemma ereal_minus_eq_PInfty_iff: | 
| 53873 | 1096 | fixes x y :: ereal | 
| 1097 | shows "x - y = \<infinity> \<longleftrightarrow> y = -\<infinity> \<or> x = \<infinity>" | |
| 50104 | 1098 | by (cases x y rule: ereal2_cases) simp_all | 
| 1099 | ||
| 53873 | 1100 | |
| 41973 | 1101 | subsubsection {* Division *}
 | 
| 1102 | ||
| 43920 | 1103 | instantiation ereal :: inverse | 
| 41973 | 1104 | begin | 
| 1105 | ||
| 43920 | 1106 | function inverse_ereal where | 
| 53873 | 1107 | "inverse (ereal r) = (if r = 0 then \<infinity> else ereal (inverse r))" | 
| 1108 | | "inverse (\<infinity>::ereal) = 0" | |
| 1109 | | "inverse (-\<infinity>::ereal) = 0" | |
| 43920 | 1110 | by (auto intro: ereal_cases) | 
| 41973 | 1111 | termination by (relation "{}") simp
 | 
| 1112 | ||
| 43920 | 1113 | definition "x / y = x * inverse (y :: ereal)" | 
| 41973 | 1114 | |
| 47082 | 1115 | instance .. | 
| 53873 | 1116 | |
| 41973 | 1117 | end | 
| 1118 | ||
| 43920 | 1119 | lemma real_of_ereal_inverse[simp]: | 
| 1120 | fixes a :: ereal | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1121 | shows "real (inverse a) = 1 / real a" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1122 | by (cases a) (auto simp: inverse_eq_divide) | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1123 | |
| 43920 | 1124 | lemma ereal_inverse[simp]: | 
| 43923 | 1125 | "inverse (0::ereal) = \<infinity>" | 
| 43920 | 1126 | "inverse (1::ereal) = 1" | 
| 1127 | by (simp_all add: one_ereal_def zero_ereal_def) | |
| 41973 | 1128 | |
| 43920 | 1129 | lemma ereal_divide[simp]: | 
| 1130 | "ereal r / ereal p = (if p = 0 then ereal r * \<infinity> else ereal (r / p))" | |
| 1131 | unfolding divide_ereal_def by (auto simp: divide_real_def) | |
| 41973 | 1132 | |
| 43920 | 1133 | lemma ereal_divide_same[simp]: | 
| 53873 | 1134 | fixes x :: ereal | 
| 1135 | shows "x / x = (if \<bar>x\<bar> = \<infinity> \<or> x = 0 then 0 else 1)" | |
| 1136 | by (cases x) (simp_all add: divide_real_def divide_ereal_def one_ereal_def) | |
| 41973 | 1137 | |
| 43920 | 1138 | lemma ereal_inv_inv[simp]: | 
| 53873 | 1139 | fixes x :: ereal | 
| 1140 | shows "inverse (inverse x) = (if x \<noteq> -\<infinity> then x else \<infinity>)" | |
| 41973 | 1141 | by (cases x) auto | 
| 1142 | ||
| 43920 | 1143 | lemma ereal_inverse_minus[simp]: | 
| 53873 | 1144 | fixes x :: ereal | 
| 1145 | shows "inverse (- x) = (if x = 0 then \<infinity> else -inverse x)" | |
| 41973 | 1146 | by (cases x) simp_all | 
| 1147 | ||
| 43920 | 1148 | lemma ereal_uminus_divide[simp]: | 
| 53873 | 1149 | fixes x y :: ereal | 
| 1150 | shows "- x / y = - (x / y)" | |
| 43920 | 1151 | unfolding divide_ereal_def by simp | 
| 41973 | 1152 | |
| 43920 | 1153 | lemma ereal_divide_Infty[simp]: | 
| 53873 | 1154 | fixes x :: ereal | 
| 1155 | shows "x / \<infinity> = 0" "x / -\<infinity> = 0" | |
| 43920 | 1156 | unfolding divide_ereal_def by simp_all | 
| 41973 | 1157 | |
| 53873 | 1158 | lemma ereal_divide_one[simp]: "x / 1 = (x::ereal)" | 
| 43920 | 1159 | unfolding divide_ereal_def by simp | 
| 41973 | 1160 | |
| 53873 | 1161 | lemma ereal_divide_ereal[simp]: "\<infinity> / ereal r = (if 0 \<le> r then \<infinity> else -\<infinity>)" | 
| 43920 | 1162 | unfolding divide_ereal_def by simp | 
| 41973 | 1163 | |
| 43920 | 1164 | lemma zero_le_divide_ereal[simp]: | 
| 53873 | 1165 | fixes a :: ereal | 
| 1166 | assumes "0 \<le> a" | |
| 1167 | and "0 \<le> b" | |
| 41978 | 1168 | shows "0 \<le> a / b" | 
| 43920 | 1169 | using assms by (cases rule: ereal2_cases[of a b]) (auto simp: zero_le_divide_iff) | 
| 41978 | 1170 | |
| 43920 | 1171 | lemma ereal_le_divide_pos: | 
| 53873 | 1172 | fixes x y z :: ereal | 
| 1173 | shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> x * y \<le> z" | |
| 43920 | 1174 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 1175 | |
| 43920 | 1176 | lemma ereal_divide_le_pos: | 
| 53873 | 1177 | fixes x y z :: ereal | 
| 1178 | shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> z \<le> x * y" | |
| 43920 | 1179 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 1180 | |
| 43920 | 1181 | lemma ereal_le_divide_neg: | 
| 53873 | 1182 | fixes x y z :: ereal | 
| 1183 | shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> z \<le> x * y" | |
| 43920 | 1184 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 1185 | |
| 43920 | 1186 | lemma ereal_divide_le_neg: | 
| 53873 | 1187 | fixes x y z :: ereal | 
| 1188 | shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> x * y \<le> z" | |
| 43920 | 1189 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 1190 | |
| 43920 | 1191 | lemma ereal_inverse_antimono_strict: | 
| 1192 | fixes x y :: ereal | |
| 41973 | 1193 | shows "0 \<le> x \<Longrightarrow> x < y \<Longrightarrow> inverse y < inverse x" | 
| 43920 | 1194 | by (cases rule: ereal2_cases[of x y]) auto | 
| 41973 | 1195 | |
| 43920 | 1196 | lemma ereal_inverse_antimono: | 
| 1197 | fixes x y :: ereal | |
| 53873 | 1198 | shows "0 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> inverse y \<le> inverse x" | 
| 43920 | 1199 | by (cases rule: ereal2_cases[of x y]) auto | 
| 41973 | 1200 | |
| 1201 | lemma inverse_inverse_Pinfty_iff[simp]: | |
| 53873 | 1202 | fixes x :: ereal | 
| 1203 | shows "inverse x = \<infinity> \<longleftrightarrow> x = 0" | |
| 41973 | 1204 | by (cases x) auto | 
| 1205 | ||
| 43920 | 1206 | lemma ereal_inverse_eq_0: | 
| 53873 | 1207 | fixes x :: ereal | 
| 1208 | shows "inverse x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity>" | |
| 41973 | 1209 | by (cases x) auto | 
| 1210 | ||
| 43920 | 1211 | lemma ereal_0_gt_inverse: | 
| 53873 | 1212 | fixes x :: ereal | 
| 1213 | shows "0 < inverse x \<longleftrightarrow> x \<noteq> \<infinity> \<and> 0 \<le> x" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1214 | by (cases x) auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1215 | |
| 43920 | 1216 | lemma ereal_mult_less_right: | 
| 43923 | 1217 | fixes a b c :: ereal | 
| 53873 | 1218 | assumes "b * a < c * a" | 
| 1219 | and "0 < a" | |
| 1220 | and "a < \<infinity>" | |
| 41973 | 1221 | shows "b < c" | 
| 1222 | using assms | |
| 43920 | 1223 | by (cases rule: ereal3_cases[of a b c]) | 
| 41973 | 1224 | (auto split: split_if_asm simp: zero_less_mult_iff zero_le_mult_iff) | 
| 1225 | ||
| 43920 | 1226 | lemma ereal_power_divide: | 
| 53873 | 1227 | fixes x y :: ereal | 
| 1228 | shows "y \<noteq> 0 \<Longrightarrow> (x / y) ^ n = x^n / y^n" | |
| 43920 | 1229 | by (cases rule: ereal2_cases[of x y]) | 
| 1230 | (auto simp: one_ereal_def zero_ereal_def power_divide not_le | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1231 | power_less_zero_eq zero_le_power_iff) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1232 | |
| 43920 | 1233 | lemma ereal_le_mult_one_interval: | 
| 1234 | fixes x y :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1235 | assumes y: "y \<noteq> -\<infinity>" | 
| 53873 | 1236 | assumes z: "\<And>z. 0 < z \<Longrightarrow> z < 1 \<Longrightarrow> z * x \<le> y" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1237 | shows "x \<le> y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1238 | proof (cases x) | 
| 53873 | 1239 | case PInf | 
| 1240 | with z[of "1 / 2"] show "x \<le> y" | |
| 1241 | by (simp add: one_ereal_def) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1242 | next | 
| 53873 | 1243 | case (real r) | 
| 1244 | note r = this | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1245 | show "x \<le> y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1246 | proof (cases y) | 
| 53873 | 1247 | case (real p) | 
| 1248 | note p = this | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1249 | have "r \<le> p" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1250 | proof (rule field_le_mult_one_interval) | 
| 53873 | 1251 | fix z :: real | 
| 1252 | assume "0 < z" and "z < 1" | |
| 1253 | with z[of "ereal z"] show "z * r \<le> p" | |
| 1254 | using p r by (auto simp: zero_le_mult_iff one_ereal_def) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1255 | qed | 
| 53873 | 1256 | then show "x \<le> y" | 
| 1257 | using p r by simp | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1258 | qed (insert y, simp_all) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1259 | qed simp | 
| 41978 | 1260 | |
| 45934 | 1261 | lemma ereal_divide_right_mono[simp]: | 
| 1262 | fixes x y z :: ereal | |
| 53873 | 1263 | assumes "x \<le> y" | 
| 1264 | and "0 < z" | |
| 1265 | shows "x / z \<le> y / z" | |
| 1266 | using assms by (cases x y z rule: ereal3_cases) (auto intro: divide_right_mono) | |
| 45934 | 1267 | |
| 1268 | lemma ereal_divide_left_mono[simp]: | |
| 1269 | fixes x y z :: ereal | |
| 53873 | 1270 | assumes "y \<le> x" | 
| 1271 | and "0 < z" | |
| 1272 | and "0 < x * y" | |
| 45934 | 1273 | shows "z / x \<le> z / y" | 
| 53873 | 1274 | using assms | 
| 1275 | by (cases x y z rule: ereal3_cases) | |
| 54416 | 1276 | (auto intro: divide_left_mono simp: field_simps zero_less_mult_iff mult_less_0_iff split: split_if_asm) | 
| 45934 | 1277 | |
| 1278 | lemma ereal_divide_zero_left[simp]: | |
| 1279 | fixes a :: ereal | |
| 1280 | shows "0 / a = 0" | |
| 1281 | by (cases a) (auto simp: zero_ereal_def) | |
| 1282 | ||
| 1283 | lemma ereal_times_divide_eq_left[simp]: | |
| 1284 | fixes a b c :: ereal | |
| 1285 | shows "b / c * a = b * a / c" | |
| 54416 | 1286 | by (cases a b c rule: ereal3_cases) (auto simp: field_simps zero_less_mult_iff mult_less_0_iff) | 
| 45934 | 1287 | |
| 53873 | 1288 | |
| 41973 | 1289 | subsection "Complete lattice" | 
| 1290 | ||
| 43920 | 1291 | instantiation ereal :: lattice | 
| 41973 | 1292 | begin | 
| 53873 | 1293 | |
| 43920 | 1294 | definition [simp]: "sup x y = (max x y :: ereal)" | 
| 1295 | definition [simp]: "inf x y = (min x y :: ereal)" | |
| 47082 | 1296 | instance by default simp_all | 
| 53873 | 1297 | |
| 41973 | 1298 | end | 
| 1299 | ||
| 43920 | 1300 | instantiation ereal :: complete_lattice | 
| 41973 | 1301 | begin | 
| 1302 | ||
| 43923 | 1303 | definition "bot = (-\<infinity>::ereal)" | 
| 1304 | definition "top = (\<infinity>::ereal)" | |
| 41973 | 1305 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1306 | definition "Sup S = (SOME x :: ereal. (\<forall>y\<in>S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>S. y \<le> z) \<longrightarrow> x \<le> z))" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1307 | definition "Inf S = (SOME x :: ereal. (\<forall>y\<in>S. x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> x))" | 
| 41973 | 1308 | |
| 43920 | 1309 | lemma ereal_complete_Sup: | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1310 | fixes S :: "ereal set" | 
| 41973 | 1311 | shows "\<exists>x. (\<forall>y\<in>S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>S. y \<le> z) \<longrightarrow> x \<le> z)" | 
| 53873 | 1312 | proof (cases "\<exists>x. \<forall>a\<in>S. a \<le> ereal x") | 
| 1313 | case True | |
| 1314 | then obtain y where y: "\<And>a. a\<in>S \<Longrightarrow> a \<le> ereal y" | |
| 1315 | by auto | |
| 1316 | then have "\<infinity> \<notin> S" | |
| 1317 | by force | |
| 41973 | 1318 | show ?thesis | 
| 53873 | 1319 |   proof (cases "S \<noteq> {-\<infinity>} \<and> S \<noteq> {}")
 | 
| 1320 | case True | |
| 1321 | with `\<infinity> \<notin> S` obtain x where x: "x \<in> S" "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 1322 | by auto | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1323 | obtain s where s: "\<forall>x\<in>ereal -` S. x \<le> s" "\<And>z. (\<forall>x\<in>ereal -` S. x \<le> z) \<Longrightarrow> s \<le> z" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1324 | proof (atomize_elim, rule complete_real) | 
| 53873 | 1325 | show "\<exists>x. x \<in> ereal -` S" | 
| 1326 | using x by auto | |
| 1327 | show "\<exists>z. \<forall>x\<in>ereal -` S. x \<le> z" | |
| 1328 | by (auto dest: y intro!: exI[of _ y]) | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1329 | qed | 
| 41973 | 1330 | show ?thesis | 
| 43920 | 1331 | proof (safe intro!: exI[of _ "ereal s"]) | 
| 53873 | 1332 | fix y | 
| 1333 | assume "y \<in> S" | |
| 1334 | with s `\<infinity> \<notin> S` show "y \<le> ereal s" | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1335 | by (cases y) auto | 
| 41973 | 1336 | next | 
| 53873 | 1337 | fix z | 
| 1338 | assume "\<forall>y\<in>S. y \<le> z" | |
| 1339 |       with `S \<noteq> {-\<infinity>} \<and> S \<noteq> {}` show "ereal s \<le> z"
 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1340 | by (cases z) (auto intro!: s) | 
| 41973 | 1341 | qed | 
| 53873 | 1342 | next | 
| 1343 | case False | |
| 1344 | then show ?thesis | |
| 1345 | by (auto intro!: exI[of _ "-\<infinity>"]) | |
| 1346 | qed | |
| 1347 | next | |
| 1348 | case False | |
| 1349 | then show ?thesis | |
| 1350 | by (fastforce intro!: exI[of _ \<infinity>] ereal_top intro: order_trans dest: less_imp_le simp: not_le) | |
| 1351 | qed | |
| 41973 | 1352 | |
| 43920 | 1353 | lemma ereal_complete_uminus_eq: | 
| 1354 | fixes S :: "ereal set" | |
| 41973 | 1355 | shows "(\<forall>y\<in>uminus`S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>uminus`S. y \<le> z) \<longrightarrow> x \<le> z) | 
| 1356 | \<longleftrightarrow> (\<forall>y\<in>S. -x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> -x)" | |
| 43920 | 1357 | by simp (metis ereal_minus_le_minus ereal_uminus_uminus) | 
| 41973 | 1358 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1359 | lemma ereal_complete_Inf: | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1360 | "\<exists>x. (\<forall>y\<in>S::ereal set. x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> x)" | 
| 53873 | 1361 | using ereal_complete_Sup[of "uminus ` S"] | 
| 1362 | unfolding ereal_complete_uminus_eq | |
| 1363 | by auto | |
| 41973 | 1364 | |
| 1365 | instance | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51775diff
changeset | 1366 | proof | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51775diff
changeset | 1367 |   show "Sup {} = (bot::ereal)"
 | 
| 53873 | 1368 | apply (auto simp: bot_ereal_def Sup_ereal_def) | 
| 1369 | apply (rule some1_equality) | |
| 1370 | apply (metis ereal_bot ereal_less_eq(2)) | |
| 1371 | apply (metis ereal_less_eq(2)) | |
| 1372 | done | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51775diff
changeset | 1373 |   show "Inf {} = (top::ereal)"
 | 
| 53873 | 1374 | apply (auto simp: top_ereal_def Inf_ereal_def) | 
| 1375 | apply (rule some1_equality) | |
| 1376 | apply (metis ereal_top ereal_less_eq(1)) | |
| 1377 | apply (metis ereal_less_eq(1)) | |
| 1378 | done | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51775diff
changeset | 1379 | qed (auto intro: someI2_ex ereal_complete_Sup ereal_complete_Inf | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51775diff
changeset | 1380 | simp: Sup_ereal_def Inf_ereal_def bot_ereal_def top_ereal_def) | 
| 43941 | 1381 | |
| 41973 | 1382 | end | 
| 1383 | ||
| 43941 | 1384 | instance ereal :: complete_linorder .. | 
| 1385 | ||
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 1386 | instance ereal :: linear_continuum | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 1387 | proof | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 1388 | show "\<exists>a b::ereal. a \<noteq> b" | 
| 54416 | 1389 | using zero_neq_one by blast | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 1390 | qed | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 1391 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1392 | lemma ereal_Sup_uminus_image_eq: "Sup (uminus ` S::ereal set) = - Inf S" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1393 | by (auto intro!: Sup_eqI | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1394 | simp: Ball_def[symmetric] ereal_uminus_le_reorder le_Inf_iff | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1395 | intro!: complete_lattice_class.Inf_lower2) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1396 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1397 | lemma ereal_inj_on_uminus[intro, simp]: "inj_on uminus (A :: ereal set)" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1398 | by (auto intro!: inj_onI) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1399 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1400 | lemma ereal_Inf_uminus_image_eq: "Inf (uminus ` S::ereal set) = - Sup S" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1401 | using ereal_Sup_uminus_image_eq[of "uminus ` S"] by simp | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1402 | |
| 54416 | 1403 | lemma ereal_SUP_not_infty: | 
| 1404 | fixes f :: "_ \<Rightarrow> ereal" | |
| 1405 |   shows "A \<noteq> {} \<Longrightarrow> l \<noteq> -\<infinity> \<Longrightarrow> u \<noteq> \<infinity> \<Longrightarrow> \<forall>a\<in>A. l \<le> f a \<and> f a \<le> u \<Longrightarrow> \<bar>SUPR A f\<bar> \<noteq> \<infinity>"
 | |
| 1406 | using SUP_upper2[of _ A l f] SUP_least[of A f u] | |
| 1407 | by (cases "SUPR A f") auto | |
| 1408 | ||
| 1409 | lemma ereal_INF_not_infty: | |
| 1410 | fixes f :: "_ \<Rightarrow> ereal" | |
| 1411 |   shows "A \<noteq> {} \<Longrightarrow> l \<noteq> -\<infinity> \<Longrightarrow> u \<noteq> \<infinity> \<Longrightarrow> \<forall>a\<in>A. l \<le> f a \<and> f a \<le> u \<Longrightarrow> \<bar>INFI A f\<bar> \<noteq> \<infinity>"
 | |
| 1412 | using INF_lower2[of _ A f u] INF_greatest[of A l f] | |
| 1413 | by (cases "INFI A f") auto | |
| 1414 | ||
| 43920 | 1415 | lemma ereal_SUPR_uminus: | 
| 53873 | 1416 | fixes f :: "'a \<Rightarrow> ereal" | 
| 41973 | 1417 | shows "(SUP i : R. -(f i)) = -(INF i : R. f i)" | 
| 43920 | 1418 | using ereal_Sup_uminus_image_eq[of "f`R"] | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1419 | by (simp add: SUP_def INF_def image_image) | 
| 41973 | 1420 | |
| 43920 | 1421 | lemma ereal_INFI_uminus: | 
| 53873 | 1422 | fixes f :: "'a \<Rightarrow> ereal" | 
| 1423 | shows "(INF i : R. - f i) = - (SUP i : R. f i)" | |
| 43920 | 1424 | using ereal_SUPR_uminus[of _ "\<lambda>x. - f x"] by simp | 
| 41973 | 1425 | |
| 43920 | 1426 | lemma ereal_image_uminus_shift: | 
| 53873 | 1427 | fixes X Y :: "ereal set" | 
| 1428 | shows "uminus ` X = Y \<longleftrightarrow> X = uminus ` Y" | |
| 41973 | 1429 | proof | 
| 1430 | assume "uminus ` X = Y" | |
| 1431 | then have "uminus ` uminus ` X = uminus ` Y" | |
| 1432 | by (simp add: inj_image_eq_iff) | |
| 53873 | 1433 | then show "X = uminus ` Y" | 
| 1434 | by (simp add: image_image) | |
| 41973 | 1435 | qed (simp add: image_image) | 
| 1436 | ||
| 43920 | 1437 | lemma Inf_ereal_iff: | 
| 1438 | fixes z :: ereal | |
| 53873 | 1439 | shows "(\<And>x. x \<in> X \<Longrightarrow> z \<le> x) \<Longrightarrow> (\<exists>x\<in>X. x < y) \<longleftrightarrow> Inf X < y" | 
| 1440 | by (metis complete_lattice_class.Inf_greatest complete_lattice_class.Inf_lower | |
| 1441 | less_le_not_le linear order_less_le_trans) | |
| 41973 | 1442 | |
| 1443 | lemma Sup_eq_MInfty: | |
| 53873 | 1444 | fixes S :: "ereal set" | 
| 1445 |   shows "Sup S = -\<infinity> \<longleftrightarrow> S = {} \<or> S = {-\<infinity>}"
 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1446 | unfolding bot_ereal_def[symmetric] by auto | 
| 41973 | 1447 | |
| 1448 | lemma Inf_eq_PInfty: | |
| 53873 | 1449 | fixes S :: "ereal set" | 
| 1450 |   shows "Inf S = \<infinity> \<longleftrightarrow> S = {} \<or> S = {\<infinity>}"
 | |
| 41973 | 1451 | using Sup_eq_MInfty[of "uminus`S"] | 
| 43920 | 1452 | unfolding ereal_Sup_uminus_image_eq ereal_image_uminus_shift by simp | 
| 41973 | 1453 | |
| 53873 | 1454 | lemma Inf_eq_MInfty: | 
| 1455 | fixes S :: "ereal set" | |
| 1456 | shows "-\<infinity> \<in> S \<Longrightarrow> Inf S = -\<infinity>" | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1457 | unfolding bot_ereal_def[symmetric] by auto | 
| 41973 | 1458 | |
| 43923 | 1459 | lemma Sup_eq_PInfty: | 
| 53873 | 1460 | fixes S :: "ereal set" | 
| 1461 | shows "\<infinity> \<in> S \<Longrightarrow> Sup S = \<infinity>" | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1462 | unfolding top_ereal_def[symmetric] by auto | 
| 41973 | 1463 | |
| 43920 | 1464 | lemma Sup_ereal_close: | 
| 1465 | fixes e :: ereal | |
| 53873 | 1466 | assumes "0 < e" | 
| 1467 |     and S: "\<bar>Sup S\<bar> \<noteq> \<infinity>" "S \<noteq> {}"
 | |
| 41973 | 1468 | shows "\<exists>x\<in>S. Sup S - e < x" | 
| 41976 | 1469 | using assms by (cases e) (auto intro!: less_Sup_iff[THEN iffD1]) | 
| 41973 | 1470 | |
| 43920 | 1471 | lemma Inf_ereal_close: | 
| 53873 | 1472 | fixes e :: ereal | 
| 1473 | assumes "\<bar>Inf X\<bar> \<noteq> \<infinity>" | |
| 1474 | and "0 < e" | |
| 41973 | 1475 | shows "\<exists>x\<in>X. x < Inf X + e" | 
| 1476 | proof (rule Inf_less_iff[THEN iffD1]) | |
| 53873 | 1477 | show "Inf X < Inf X + e" | 
| 1478 | using assms by (cases e) auto | |
| 41973 | 1479 | qed | 
| 1480 | ||
| 43920 | 1481 | lemma SUP_nat_Infty: "(SUP i::nat. ereal (real i)) = \<infinity>" | 
| 41973 | 1482 | proof - | 
| 53873 | 1483 |   {
 | 
| 1484 | fix x :: ereal | |
| 1485 | assume "x \<noteq> \<infinity>" | |
| 43920 | 1486 | then have "\<exists>k::nat. x < ereal (real k)" | 
| 41973 | 1487 | proof (cases x) | 
| 53873 | 1488 | case MInf | 
| 1489 | then show ?thesis | |
| 1490 | by (intro exI[of _ 0]) auto | |
| 41973 | 1491 | next | 
| 1492 | case (real r) | |
| 1493 | moreover obtain k :: nat where "r < real k" | |
| 1494 | using ex_less_of_nat by (auto simp: real_eq_of_nat) | |
| 53873 | 1495 | ultimately show ?thesis | 
| 1496 | by auto | |
| 1497 | qed simp | |
| 1498 | } | |
| 41973 | 1499 | then show ?thesis | 
| 43920 | 1500 | using SUP_eq_top_iff[of UNIV "\<lambda>n::nat. ereal (real n)"] | 
| 1501 | by (auto simp: top_ereal_def) | |
| 41973 | 1502 | qed | 
| 1503 | ||
| 1504 | lemma Inf_less: | |
| 43920 | 1505 | fixes x :: ereal | 
| 41973 | 1506 | assumes "(INF i:A. f i) < x" | 
| 53873 | 1507 | shows "\<exists>i. i \<in> A \<and> f i \<le> x" | 
| 1508 | proof (rule ccontr) | |
| 1509 | assume "\<not> ?thesis" | |
| 1510 | then have "\<forall>i\<in>A. f i > x" | |
| 1511 | by auto | |
| 1512 | then have "(INF i:A. f i) \<ge> x" | |
| 1513 | by (subst INF_greatest) auto | |
| 1514 | then show False | |
| 1515 | using assms by auto | |
| 41973 | 1516 | qed | 
| 1517 | ||
| 43920 | 1518 | lemma SUP_ereal_le_addI: | 
| 43923 | 1519 | fixes f :: "'i \<Rightarrow> ereal" | 
| 53873 | 1520 | assumes "\<And>i. f i + y \<le> z" | 
| 1521 | and "y \<noteq> -\<infinity>" | |
| 41978 | 1522 | shows "SUPR UNIV f + y \<le> z" | 
| 1523 | proof (cases y) | |
| 1524 | case (real r) | |
| 53873 | 1525 | then have "\<And>i. f i \<le> z - y" | 
| 1526 | using assms by (simp add: ereal_le_minus_iff) | |
| 1527 | then have "SUPR UNIV f \<le> z - y" | |
| 1528 | by (rule SUP_least) | |
| 1529 | then show ?thesis | |
| 1530 | using real by (simp add: ereal_le_minus_iff) | |
| 41978 | 1531 | qed (insert assms, auto) | 
| 1532 | ||
| 43920 | 1533 | lemma SUPR_ereal_add: | 
| 1534 | fixes f g :: "nat \<Rightarrow> ereal" | |
| 53873 | 1535 | assumes "incseq f" | 
| 1536 | and "incseq g" | |
| 1537 | and pos: "\<And>i. f i \<noteq> -\<infinity>" "\<And>i. g i \<noteq> -\<infinity>" | |
| 41978 | 1538 | shows "(SUP i. f i + g i) = SUPR UNIV f + SUPR UNIV g" | 
| 51000 | 1539 | proof (rule SUP_eqI) | 
| 53873 | 1540 | fix y | 
| 1541 | assume *: "\<And>i. i \<in> UNIV \<Longrightarrow> f i + g i \<le> y" | |
| 1542 | have f: "SUPR UNIV f \<noteq> -\<infinity>" | |
| 1543 | using pos | |
| 1544 | unfolding SUP_def Sup_eq_MInfty | |
| 1545 | by (auto dest: image_eqD) | |
| 1546 |   {
 | |
| 1547 | fix j | |
| 1548 |     {
 | |
| 1549 | fix i | |
| 41978 | 1550 | have "f i + g j \<le> f i + g (max i j)" | 
| 53873 | 1551 | using `incseq g`[THEN incseqD] | 
| 1552 | by (rule add_left_mono) auto | |
| 41978 | 1553 | also have "\<dots> \<le> f (max i j) + g (max i j)" | 
| 53873 | 1554 | using `incseq f`[THEN incseqD] | 
| 1555 | by (rule add_right_mono) auto | |
| 41978 | 1556 | also have "\<dots> \<le> y" using * by auto | 
| 53873 | 1557 | finally have "f i + g j \<le> y" . | 
| 1558 | } | |
| 41978 | 1559 | then have "SUPR UNIV f + g j \<le> y" | 
| 43920 | 1560 | using assms(4)[of j] by (intro SUP_ereal_le_addI) auto | 
| 53873 | 1561 | then have "g j + SUPR UNIV f \<le> y" by (simp add: ac_simps) | 
| 1562 | } | |
| 41978 | 1563 | then have "SUPR UNIV g + SUPR UNIV f \<le> y" | 
| 43920 | 1564 | using f by (rule SUP_ereal_le_addI) | 
| 53873 | 1565 | then show "SUPR UNIV f + SUPR UNIV g \<le> y" | 
| 1566 | by (simp add: ac_simps) | |
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1567 | qed (auto intro!: add_mono SUP_upper) | 
| 41978 | 1568 | |
| 43920 | 1569 | lemma SUPR_ereal_add_pos: | 
| 1570 | fixes f g :: "nat \<Rightarrow> ereal" | |
| 53873 | 1571 | assumes inc: "incseq f" "incseq g" | 
| 1572 | and pos: "\<And>i. 0 \<le> f i" "\<And>i. 0 \<le> g i" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1573 | shows "(SUP i. f i + g i) = SUPR UNIV f + SUPR UNIV g" | 
| 43920 | 1574 | proof (intro SUPR_ereal_add inc) | 
| 53873 | 1575 | fix i | 
| 1576 | show "f i \<noteq> -\<infinity>" "g i \<noteq> -\<infinity>" | |
| 1577 | using pos[of i] by auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1578 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1579 | |
| 43920 | 1580 | lemma SUPR_ereal_setsum: | 
| 1581 | fixes f g :: "'a \<Rightarrow> nat \<Rightarrow> ereal" | |
| 53873 | 1582 | assumes "\<And>n. n \<in> A \<Longrightarrow> incseq (f n)" | 
| 1583 | and pos: "\<And>n i. n \<in> A \<Longrightarrow> 0 \<le> f n i" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1584 | shows "(SUP i. \<Sum>n\<in>A. f n i) = (\<Sum>n\<in>A. SUPR UNIV (f n))" | 
| 53873 | 1585 | proof (cases "finite A") | 
| 1586 | case True | |
| 1587 | then show ?thesis using assms | |
| 43920 | 1588 | by induct (auto simp: incseq_setsumI2 setsum_nonneg SUPR_ereal_add_pos) | 
| 53873 | 1589 | next | 
| 1590 | case False | |
| 1591 | then show ?thesis by simp | |
| 1592 | qed | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1593 | |
| 43920 | 1594 | lemma SUPR_ereal_cmult: | 
| 53873 | 1595 | fixes f :: "nat \<Rightarrow> ereal" | 
| 1596 | assumes "\<And>i. 0 \<le> f i" | |
| 1597 | and "0 \<le> c" | |
| 41978 | 1598 | shows "(SUP i. c * f i) = c * SUPR UNIV f" | 
| 51000 | 1599 | proof (rule SUP_eqI) | 
| 53873 | 1600 | fix i | 
| 1601 | have "f i \<le> SUPR UNIV f" | |
| 1602 | by (rule SUP_upper) auto | |
| 41978 | 1603 | then show "c * f i \<le> c * SUPR UNIV f" | 
| 43920 | 1604 | using `0 \<le> c` by (rule ereal_mult_left_mono) | 
| 41978 | 1605 | next | 
| 53873 | 1606 | fix y | 
| 1607 | assume *: "\<And>i. i \<in> UNIV \<Longrightarrow> c * f i \<le> y" | |
| 41978 | 1608 | show "c * SUPR UNIV f \<le> y" | 
| 53873 | 1609 | proof (cases "0 < c \<and> c \<noteq> \<infinity>") | 
| 1610 | case True | |
| 41978 | 1611 | with * have "SUPR UNIV f \<le> y / c" | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1612 | by (intro SUP_least) (auto simp: ereal_le_divide_pos) | 
| 53873 | 1613 | with True show ?thesis | 
| 43920 | 1614 | by (auto simp: ereal_le_divide_pos) | 
| 41978 | 1615 | next | 
| 53873 | 1616 | case False | 
| 1617 |     {
 | |
| 1618 | assume "c = \<infinity>" | |
| 1619 | have ?thesis | |
| 1620 | proof (cases "\<forall>i. f i = 0") | |
| 1621 | case True | |
| 1622 |         then have "range f = {0}"
 | |
| 1623 | by auto | |
| 1624 | with True show "c * SUPR UNIV f \<le> y" | |
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
54416diff
changeset | 1625 | using * by (auto simp: SUP_def max.absorb1) | 
| 41978 | 1626 | next | 
| 53873 | 1627 | case False | 
| 1628 | then obtain i where "f i \<noteq> 0" | |
| 1629 | by auto | |
| 1630 | with *[of i] `c = \<infinity>` `0 \<le> f i` show ?thesis | |
| 1631 | by (auto split: split_if_asm) | |
| 1632 | qed | |
| 1633 | } | |
| 1634 | moreover note False | |
| 1635 | ultimately show ?thesis | |
| 1636 | using * `0 \<le> c` by auto | |
| 41978 | 1637 | qed | 
| 1638 | qed | |
| 1639 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1640 | lemma SUP_PInfty: | 
| 43920 | 1641 | fixes f :: "'a \<Rightarrow> ereal" | 
| 1642 | assumes "\<And>n::nat. \<exists>i\<in>A. ereal (real n) \<le> f i" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1643 | shows "(SUP i:A. f i) = \<infinity>" | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1644 | unfolding SUP_def Sup_eq_top_iff[where 'a=ereal, unfolded top_ereal_def] | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1645 | apply simp | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1646 | proof safe | 
| 53873 | 1647 | fix x :: ereal | 
| 1648 | assume "x \<noteq> \<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1649 | show "\<exists>i\<in>A. x < f i" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1650 | proof (cases x) | 
| 53873 | 1651 | case PInf | 
| 1652 | with `x \<noteq> \<infinity>` show ?thesis | |
| 1653 | by simp | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1654 | next | 
| 53873 | 1655 | case MInf | 
| 1656 | with assms[of "0"] show ?thesis | |
| 1657 | by force | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1658 | next | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1659 | case (real r) | 
| 53873 | 1660 | with less_PInf_Ex_of_nat[of x] obtain n :: nat where "x < ereal (real n)" | 
| 1661 | by auto | |
| 53381 | 1662 | moreover obtain i where "i \<in> A" "ereal (real n) \<le> f i" | 
| 1663 | using assms .. | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1664 | ultimately show ?thesis | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1665 | by (auto intro!: bexI[of _ i]) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1666 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1667 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1668 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1669 | lemma Sup_countable_SUPR: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1670 |   assumes "A \<noteq> {}"
 | 
| 43920 | 1671 | shows "\<exists>f::nat \<Rightarrow> ereal. range f \<subseteq> A \<and> Sup A = SUPR UNIV f" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1672 | proof (cases "Sup A") | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1673 | case (real r) | 
| 43920 | 1674 | have "\<forall>n::nat. \<exists>x. x \<in> A \<and> Sup A < x + 1 / ereal (real n)" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1675 | proof | 
| 53873 | 1676 | fix n :: nat | 
| 1677 | have "\<exists>x\<in>A. Sup A - 1 / ereal (real n) < x" | |
| 43920 | 1678 | using assms real by (intro Sup_ereal_close) (auto simp: one_ereal_def) | 
| 53381 | 1679 | then obtain x where "x \<in> A" "Sup A - 1 / ereal (real n) < x" .. | 
| 43920 | 1680 | then show "\<exists>x. x \<in> A \<and> Sup A < x + 1 / ereal (real n)" | 
| 1681 | by (auto intro!: exI[of _ x] simp: ereal_minus_less_iff) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1682 | qed | 
| 53381 | 1683 | from choice[OF this] obtain f :: "nat \<Rightarrow> ereal" | 
| 1684 | where f: "\<forall>x. f x \<in> A \<and> Sup A < f x + 1 / ereal (real x)" .. | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1685 | have "SUPR UNIV f = Sup A" | 
| 51000 | 1686 | proof (rule SUP_eqI) | 
| 53873 | 1687 | fix i | 
| 1688 | show "f i \<le> Sup A" | |
| 1689 | using f by (auto intro!: complete_lattice_class.Sup_upper) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1690 | next | 
| 53873 | 1691 | fix y | 
| 1692 | assume bound: "\<And>i. i \<in> UNIV \<Longrightarrow> f i \<le> y" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1693 | show "Sup A \<le> y" | 
| 43920 | 1694 | proof (rule ereal_le_epsilon, intro allI impI) | 
| 53873 | 1695 | fix e :: ereal | 
| 1696 | assume "0 < e" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1697 | show "Sup A \<le> y + e" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1698 | proof (cases e) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1699 | case (real r) | 
| 53873 | 1700 | then have "0 < r" | 
| 1701 | using `0 < e` by auto | |
| 1702 | then obtain n :: nat where *: "1 / real n < r" "0 < n" | |
| 1703 | using ex_inverse_of_nat_less | |
| 1704 | by (auto simp: real_eq_of_nat inverse_eq_divide) | |
| 1705 | have "Sup A \<le> f n + 1 / ereal (real n)" | |
| 1706 | using f[THEN spec, of n] | |
| 44918 | 1707 | by auto | 
| 53873 | 1708 | also have "1 / ereal (real n) \<le> e" | 
| 1709 | using real * | |
| 1710 | by (auto simp: one_ereal_def ) | |
| 1711 | with bound have "f n + 1 / ereal (real n) \<le> y + e" | |
| 1712 | by (rule add_mono) simp | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1713 | finally show "Sup A \<le> y + e" . | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1714 | qed (insert `0 < e`, auto) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1715 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1716 | qed | 
| 53873 | 1717 | with f show ?thesis | 
| 1718 | by (auto intro!: exI[of _ f]) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1719 | next | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1720 | case PInf | 
| 53873 | 1721 |   from `A \<noteq> {}` obtain x where "x \<in> A"
 | 
| 1722 | by auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1723 | show ?thesis | 
| 53873 | 1724 | proof (cases "\<infinity> \<in> A") | 
| 1725 | case True | |
| 1726 | then have "\<infinity> \<le> Sup A" | |
| 1727 | by (intro complete_lattice_class.Sup_upper) | |
| 1728 | with True show ?thesis | |
| 1729 | by (auto intro!: exI[of _ "\<lambda>x. \<infinity>"]) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1730 | next | 
| 53873 | 1731 | case False | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1732 | have "\<exists>x\<in>A. 0 \<le> x" | 
| 54416 | 1733 | by (metis Infty_neq_0(2) PInf complete_lattice_class.Sup_least ereal_infty_less_eq2(1) linorder_linear) | 
| 53873 | 1734 | then obtain x where "x \<in> A" and "0 \<le> x" | 
| 1735 | by auto | |
| 43920 | 1736 | have "\<forall>n::nat. \<exists>f. f \<in> A \<and> x + ereal (real n) \<le> f" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1737 | proof (rule ccontr) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1738 | assume "\<not> ?thesis" | 
| 43920 | 1739 | then have "\<exists>n::nat. Sup A \<le> x + ereal (real n)" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1740 | by (simp add: Sup_le_iff not_le less_imp_le Ball_def) (metis less_imp_le) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1741 | then show False using `x \<in> A` `\<infinity> \<notin> A` PInf | 
| 53873 | 1742 | by (cases x) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1743 | qed | 
| 53381 | 1744 | from choice[OF this] obtain f :: "nat \<Rightarrow> ereal" | 
| 1745 | where f: "\<forall>z. f z \<in> A \<and> x + ereal (real z) \<le> f z" .. | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1746 | have "SUPR UNIV f = \<infinity>" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1747 | proof (rule SUP_PInfty) | 
| 53381 | 1748 | fix n :: nat | 
| 1749 | show "\<exists>i\<in>UNIV. ereal (real n) \<le> f i" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1750 | using f[THEN spec, of n] `0 \<le> x` | 
| 43920 | 1751 | by (cases rule: ereal2_cases[of "f n" x]) (auto intro!: exI[of _ n]) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1752 | qed | 
| 53873 | 1753 | then show ?thesis | 
| 1754 | using f PInf by (auto intro!: exI[of _ f]) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1755 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1756 | next | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1757 | case MInf | 
| 53873 | 1758 |   with `A \<noteq> {}` have "A = {-\<infinity>}"
 | 
| 1759 | by (auto simp: Sup_eq_MInfty) | |
| 1760 | then show ?thesis | |
| 1761 | using MInf by (auto intro!: exI[of _ "\<lambda>x. -\<infinity>"]) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1762 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1763 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1764 | lemma SUPR_countable_SUPR: | 
| 43920 | 1765 |   "A \<noteq> {} \<Longrightarrow> \<exists>f::nat \<Rightarrow> ereal. range f \<subseteq> g`A \<and> SUPR A g = SUPR UNIV f"
 | 
| 53873 | 1766 | using Sup_countable_SUPR[of "g`A"] | 
| 1767 | by (auto simp: SUP_def) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1768 | |
| 43920 | 1769 | lemma Sup_ereal_cadd: | 
| 53873 | 1770 | fixes A :: "ereal set" | 
| 1771 |   assumes "A \<noteq> {}"
 | |
| 1772 | and "a \<noteq> -\<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1773 | shows "Sup ((\<lambda>x. a + x) ` A) = a + Sup A" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1774 | proof (rule antisym) | 
| 43920 | 1775 | have *: "\<And>a::ereal. \<And>A. Sup ((\<lambda>x. a + x) ` A) \<le> a + Sup A" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1776 | by (auto intro!: add_mono complete_lattice_class.Sup_least complete_lattice_class.Sup_upper) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1777 | then show "Sup ((\<lambda>x. a + x) ` A) \<le> a + Sup A" . | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1778 | show "a + Sup A \<le> Sup ((\<lambda>x. a + x) ` A)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1779 | proof (cases a) | 
| 53873 | 1780 |     case PInf with `A \<noteq> {}`
 | 
| 1781 | show ?thesis | |
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
54416diff
changeset | 1782 | by (auto simp: image_constant max.absorb1) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1783 | next | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1784 | case (real r) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1785 | then have **: "op + (- a) ` op + a ` A = A" | 
| 43920 | 1786 | by (auto simp: image_iff ac_simps zero_ereal_def[symmetric]) | 
| 53873 | 1787 | from *[of "-a" "(\<lambda>x. a + x) ` A"] real show ?thesis | 
| 1788 | unfolding ** | |
| 43920 | 1789 | by (cases rule: ereal2_cases[of "Sup A" "Sup (op + a ` A)"]) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1790 | qed (insert `a \<noteq> -\<infinity>`, auto) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1791 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1792 | |
| 43920 | 1793 | lemma Sup_ereal_cminus: | 
| 53873 | 1794 | fixes A :: "ereal set" | 
| 1795 |   assumes "A \<noteq> {}"
 | |
| 1796 | and "a \<noteq> -\<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1797 | shows "Sup ((\<lambda>x. a - x) ` A) = a - Inf A" | 
| 43920 | 1798 | using Sup_ereal_cadd[of "uminus ` A" a] assms | 
| 53873 | 1799 | by (simp add: comp_def image_image minus_ereal_def ereal_Sup_uminus_image_eq) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1800 | |
| 43920 | 1801 | lemma SUPR_ereal_cminus: | 
| 43923 | 1802 | fixes f :: "'i \<Rightarrow> ereal" | 
| 53873 | 1803 | fixes A | 
| 1804 |   assumes "A \<noteq> {}"
 | |
| 1805 | and "a \<noteq> -\<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1806 | shows "(SUP x:A. a - f x) = a - (INF x:A. f x)" | 
| 43920 | 1807 | using Sup_ereal_cminus[of "f`A" a] assms | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1808 | unfolding SUP_def INF_def image_image by auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1809 | |
| 43920 | 1810 | lemma Inf_ereal_cminus: | 
| 53873 | 1811 | fixes A :: "ereal set" | 
| 1812 |   assumes "A \<noteq> {}"
 | |
| 1813 | and "\<bar>a\<bar> \<noteq> \<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1814 | shows "Inf ((\<lambda>x. a - x) ` A) = a - Sup A" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1815 | proof - | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1816 |   {
 | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1817 | fix x | 
| 53873 | 1818 | have "-a - -x = -(a - x)" | 
| 1819 | using assms by (cases x) auto | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1820 | } note * = this | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1821 | then have "(\<lambda>x. -a - x)`uminus`A = uminus ` (\<lambda>x. a - x) ` A" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1822 | by (auto simp: image_image) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1823 | with * show ?thesis | 
| 43920 | 1824 | using Sup_ereal_cminus[of "uminus ` A" "-a"] assms | 
| 1825 | by (auto simp add: ereal_Sup_uminus_image_eq ereal_Inf_uminus_image_eq) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1826 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1827 | |
| 43920 | 1828 | lemma INFI_ereal_cminus: | 
| 53873 | 1829 | fixes a :: ereal | 
| 1830 |   assumes "A \<noteq> {}"
 | |
| 1831 | and "\<bar>a\<bar> \<noteq> \<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1832 | shows "(INF x:A. a - f x) = a - (SUP x:A. f x)" | 
| 43920 | 1833 | using Inf_ereal_cminus[of "f`A" a] assms | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1834 | unfolding SUP_def INF_def image_image | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1835 | by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1836 | |
| 43920 | 1837 | lemma uminus_ereal_add_uminus_uminus: | 
| 53873 | 1838 | fixes a b :: ereal | 
| 1839 | shows "a \<noteq> \<infinity> \<Longrightarrow> b \<noteq> \<infinity> \<Longrightarrow> - (- a + - b) = a + b" | |
| 43920 | 1840 | by (cases rule: ereal2_cases[of a b]) auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1841 | |
| 43920 | 1842 | lemma INFI_ereal_add: | 
| 43923 | 1843 | fixes f :: "nat \<Rightarrow> ereal" | 
| 53873 | 1844 | assumes "decseq f" "decseq g" | 
| 1845 | and fin: "\<And>i. f i \<noteq> \<infinity>" "\<And>i. g i \<noteq> \<infinity>" | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1846 | shows "(INF i. f i + g i) = INFI UNIV f + INFI UNIV g" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1847 | proof - | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1848 | have INF_less: "(INF i. f i) < \<infinity>" "(INF i. g i) < \<infinity>" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1849 | using assms unfolding INF_less_iff by auto | 
| 53873 | 1850 |   {
 | 
| 1851 | fix i | |
| 1852 | from fin[of i] have "- ((- f i) + (- g i)) = f i + g i" | |
| 1853 | by (rule uminus_ereal_add_uminus_uminus) | |
| 1854 | } | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1855 | then have "(INF i. f i + g i) = (INF i. - ((- f i) + (- g i)))" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1856 | by simp | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1857 | also have "\<dots> = INFI UNIV f + INFI UNIV g" | 
| 43920 | 1858 | unfolding ereal_INFI_uminus | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1859 | using assms INF_less | 
| 43920 | 1860 | by (subst SUPR_ereal_add) | 
| 1861 | (auto simp: ereal_SUPR_uminus intro!: uminus_ereal_add_uminus_uminus) | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1862 | finally show ?thesis . | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1863 | qed | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1864 | |
| 45934 | 1865 | subsection "Relation to @{typ enat}"
 | 
| 1866 | ||
| 1867 | definition "ereal_of_enat n = (case n of enat n \<Rightarrow> ereal (real n) | \<infinity> \<Rightarrow> \<infinity>)" | |
| 1868 | ||
| 1869 | declare [[coercion "ereal_of_enat :: enat \<Rightarrow> ereal"]] | |
| 1870 | declare [[coercion "(\<lambda>n. ereal (real n)) :: nat \<Rightarrow> ereal"]] | |
| 1871 | ||
| 1872 | lemma ereal_of_enat_simps[simp]: | |
| 1873 | "ereal_of_enat (enat n) = ereal n" | |
| 1874 | "ereal_of_enat \<infinity> = \<infinity>" | |
| 1875 | by (simp_all add: ereal_of_enat_def) | |
| 1876 | ||
| 53873 | 1877 | lemma ereal_of_enat_le_iff[simp]: "ereal_of_enat m \<le> ereal_of_enat n \<longleftrightarrow> m \<le> n" | 
| 1878 | by (cases m n rule: enat2_cases) auto | |
| 45934 | 1879 | |
| 53873 | 1880 | lemma ereal_of_enat_less_iff[simp]: "ereal_of_enat m < ereal_of_enat n \<longleftrightarrow> m < n" | 
| 1881 | by (cases m n rule: enat2_cases) auto | |
| 50819 
5601ae592679
added some ereal_of_enat_* lemmas (from $AFP/thys/Girth_Chromatic)
 noschinl parents: 
50104diff
changeset | 1882 | |
| 53873 | 1883 | lemma numeral_le_ereal_of_enat_iff[simp]: "numeral m \<le> ereal_of_enat n \<longleftrightarrow> numeral m \<le> n" | 
| 1884 | by (cases n) (auto dest: natceiling_le intro: natceiling_le_eq[THEN iffD1]) | |
| 45934 | 1885 | |
| 53873 | 1886 | lemma numeral_less_ereal_of_enat_iff[simp]: "numeral m < ereal_of_enat n \<longleftrightarrow> numeral m < n" | 
| 1887 | by (cases n) (auto simp: real_of_nat_less_iff[symmetric]) | |
| 50819 
5601ae592679
added some ereal_of_enat_* lemmas (from $AFP/thys/Girth_Chromatic)
 noschinl parents: 
50104diff
changeset | 1888 | |
| 53873 | 1889 | lemma ereal_of_enat_ge_zero_cancel_iff[simp]: "0 \<le> ereal_of_enat n \<longleftrightarrow> 0 \<le> n" | 
| 1890 | by (cases n) (auto simp: enat_0[symmetric]) | |
| 45934 | 1891 | |
| 53873 | 1892 | lemma ereal_of_enat_gt_zero_cancel_iff[simp]: "0 < ereal_of_enat n \<longleftrightarrow> 0 < n" | 
| 1893 | by (cases n) (auto simp: enat_0[symmetric]) | |
| 45934 | 1894 | |
| 53873 | 1895 | lemma ereal_of_enat_zero[simp]: "ereal_of_enat 0 = 0" | 
| 1896 | by (auto simp: enat_0[symmetric]) | |
| 45934 | 1897 | |
| 53873 | 1898 | lemma ereal_of_enat_inf[simp]: "ereal_of_enat n = \<infinity> \<longleftrightarrow> n = \<infinity>" | 
| 50819 
5601ae592679
added some ereal_of_enat_* lemmas (from $AFP/thys/Girth_Chromatic)
 noschinl parents: 
50104diff
changeset | 1899 | by (cases n) auto | 
| 
5601ae592679
added some ereal_of_enat_* lemmas (from $AFP/thys/Girth_Chromatic)
 noschinl parents: 
50104diff
changeset | 1900 | |
| 53873 | 1901 | lemma ereal_of_enat_add: "ereal_of_enat (m + n) = ereal_of_enat m + ereal_of_enat n" | 
| 1902 | by (cases m n rule: enat2_cases) auto | |
| 45934 | 1903 | |
| 1904 | lemma ereal_of_enat_sub: | |
| 53873 | 1905 | assumes "n \<le> m" | 
| 1906 | shows "ereal_of_enat (m - n) = ereal_of_enat m - ereal_of_enat n " | |
| 1907 | using assms by (cases m n rule: enat2_cases) auto | |
| 45934 | 1908 | |
| 1909 | lemma ereal_of_enat_mult: | |
| 1910 | "ereal_of_enat (m * n) = ereal_of_enat m * ereal_of_enat n" | |
| 53873 | 1911 | by (cases m n rule: enat2_cases) auto | 
| 45934 | 1912 | |
| 1913 | lemmas ereal_of_enat_pushin = ereal_of_enat_add ereal_of_enat_sub ereal_of_enat_mult | |
| 1914 | lemmas ereal_of_enat_pushout = ereal_of_enat_pushin[symmetric] | |
| 1915 | ||
| 1916 | ||
| 43920 | 1917 | subsection "Limits on @{typ ereal}"
 | 
| 41973 | 1918 | |
| 1919 | subsubsection "Topological space" | |
| 1920 | ||
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 1921 | instantiation ereal :: linear_continuum_topology | 
| 41973 | 1922 | begin | 
| 1923 | ||
| 51000 | 1924 | definition "open_ereal" :: "ereal set \<Rightarrow> bool" where | 
| 1925 | open_ereal_generated: "open_ereal = generate_topology (range lessThan \<union> range greaterThan)" | |
| 1926 | ||
| 1927 | instance | |
| 1928 | by default (simp add: open_ereal_generated) | |
| 53873 | 1929 | |
| 51000 | 1930 | end | 
| 41973 | 1931 | |
| 43920 | 1932 | lemma open_PInfty: "open A \<Longrightarrow> \<infinity> \<in> A \<Longrightarrow> (\<exists>x. {ereal x<..} \<subseteq> A)"
 | 
| 51000 | 1933 | unfolding open_ereal_generated | 
| 1934 | proof (induct rule: generate_topology.induct) | |
| 1935 | case (Int A B) | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1936 |   then obtain x z where "\<infinity> \<in> A \<Longrightarrow> {ereal x <..} \<subseteq> A" "\<infinity> \<in> B \<Longrightarrow> {ereal z <..} \<subseteq> B"
 | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1937 | by auto | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1938 | with Int show ?case | 
| 51000 | 1939 | by (intro exI[of _ "max x z"]) fastforce | 
| 1940 | next | |
| 53873 | 1941 | case (Basis S) | 
| 1942 |   {
 | |
| 1943 | fix x | |
| 1944 | have "x \<noteq> \<infinity> \<Longrightarrow> \<exists>t. x \<le> ereal t" | |
| 1945 | by (cases x) auto | |
| 1946 | } | |
| 1947 | moreover note Basis | |
| 51000 | 1948 | ultimately show ?case | 
| 1949 | by (auto split: ereal.split) | |
| 1950 | qed (fastforce simp add: vimage_Union)+ | |
| 41973 | 1951 | |
| 43920 | 1952 | lemma open_MInfty: "open A \<Longrightarrow> -\<infinity> \<in> A \<Longrightarrow> (\<exists>x. {..<ereal x} \<subseteq> A)"
 | 
| 51000 | 1953 | unfolding open_ereal_generated | 
| 1954 | proof (induct rule: generate_topology.induct) | |
| 1955 | case (Int A B) | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1956 |   then obtain x z where "-\<infinity> \<in> A \<Longrightarrow> {..< ereal x} \<subseteq> A" "-\<infinity> \<in> B \<Longrightarrow> {..< ereal z} \<subseteq> B"
 | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1957 | by auto | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1958 | with Int show ?case | 
| 51000 | 1959 | by (intro exI[of _ "min x z"]) fastforce | 
| 1960 | next | |
| 53873 | 1961 | case (Basis S) | 
| 1962 |   {
 | |
| 1963 | fix x | |
| 1964 | have "x \<noteq> - \<infinity> \<Longrightarrow> \<exists>t. ereal t \<le> x" | |
| 1965 | by (cases x) auto | |
| 1966 | } | |
| 1967 | moreover note Basis | |
| 51000 | 1968 | ultimately show ?case | 
| 1969 | by (auto split: ereal.split) | |
| 1970 | qed (fastforce simp add: vimage_Union)+ | |
| 1971 | ||
| 1972 | lemma open_ereal_vimage: "open S \<Longrightarrow> open (ereal -` S)" | |
| 1973 | unfolding open_ereal_generated | |
| 1974 | proof (induct rule: generate_topology.induct) | |
| 53873 | 1975 | case (Int A B) | 
| 1976 | then show ?case | |
| 1977 | by auto | |
| 51000 | 1978 | next | 
| 53873 | 1979 | case (Basis S) | 
| 1980 |   {
 | |
| 1981 | fix x have | |
| 51000 | 1982 |       "ereal -` {..<x} = (case x of PInfty \<Rightarrow> UNIV | MInfty \<Rightarrow> {} | ereal r \<Rightarrow> {..<r})"
 | 
| 1983 |       "ereal -` {x<..} = (case x of PInfty \<Rightarrow> {} | MInfty \<Rightarrow> UNIV | ereal r \<Rightarrow> {r<..})"
 | |
| 53873 | 1984 | by (induct x) auto | 
| 1985 | } | |
| 1986 | moreover note Basis | |
| 51000 | 1987 | ultimately show ?case | 
| 1988 | by (auto split: ereal.split) | |
| 1989 | qed (fastforce simp add: vimage_Union)+ | |
| 1990 | ||
| 1991 | lemma open_ereal: "open S \<Longrightarrow> open (ereal ` S)" | |
| 1992 | unfolding open_generated_order[where 'a=real] | |
| 1993 | proof (induct rule: generate_topology.induct) | |
| 1994 | case (Basis S) | |
| 53873 | 1995 |   moreover {
 | 
| 1996 | fix x | |
| 1997 |     have "ereal ` {..< x} = { -\<infinity> <..< ereal x }"
 | |
| 1998 | apply auto | |
| 1999 | apply (case_tac xa) | |
| 2000 | apply auto | |
| 2001 | done | |
| 2002 | } | |
| 2003 |   moreover {
 | |
| 2004 | fix x | |
| 2005 |     have "ereal ` {x <..} = { ereal x <..< \<infinity> }"
 | |
| 2006 | apply auto | |
| 2007 | apply (case_tac xa) | |
| 2008 | apply auto | |
| 2009 | done | |
| 2010 | } | |
| 51000 | 2011 | ultimately show ?case | 
| 2012 | by auto | |
| 2013 | qed (auto simp add: image_Union image_Int) | |
| 2014 | ||
| 53873 | 2015 | lemma open_ereal_def: | 
| 2016 |   "open A \<longleftrightarrow> open (ereal -` A) \<and> (\<infinity> \<in> A \<longrightarrow> (\<exists>x. {ereal x <..} \<subseteq> A)) \<and> (-\<infinity> \<in> A \<longrightarrow> (\<exists>x. {..<ereal x} \<subseteq> A))"
 | |
| 51000 | 2017 | (is "open A \<longleftrightarrow> ?rhs") | 
| 2018 | proof | |
| 53873 | 2019 | assume "open A" | 
| 2020 | then show ?rhs | |
| 51000 | 2021 | using open_PInfty open_MInfty open_ereal_vimage by auto | 
| 2022 | next | |
| 2023 | assume "?rhs" | |
| 2024 |   then obtain x y where A: "open (ereal -` A)" "\<infinity> \<in> A \<Longrightarrow> {ereal x<..} \<subseteq> A" "-\<infinity> \<in> A \<Longrightarrow> {..< ereal y} \<subseteq> A"
 | |
| 2025 | by auto | |
| 2026 |   have *: "A = ereal ` (ereal -` A) \<union> (if \<infinity> \<in> A then {ereal x<..} else {}) \<union> (if -\<infinity> \<in> A then {..< ereal y} else {})"
 | |
| 2027 | using A(2,3) by auto | |
| 2028 | from open_ereal[OF A(1)] show "open A" | |
| 2029 | by (subst *) (auto simp: open_Un) | |
| 2030 | qed | |
| 41973 | 2031 | |
| 53873 | 2032 | lemma open_PInfty2: | 
| 2033 | assumes "open A" | |
| 2034 | and "\<infinity> \<in> A" | |
| 2035 |   obtains x where "{ereal x<..} \<subseteq> A"
 | |
| 41973 | 2036 | using open_PInfty[OF assms] by auto | 
| 2037 | ||
| 53873 | 2038 | lemma open_MInfty2: | 
| 2039 | assumes "open A" | |
| 2040 | and "-\<infinity> \<in> A" | |
| 2041 |   obtains x where "{..<ereal x} \<subseteq> A"
 | |
| 41973 | 2042 | using open_MInfty[OF assms] by auto | 
| 2043 | ||
| 53873 | 2044 | lemma ereal_openE: | 
| 2045 | assumes "open A" | |
| 2046 | obtains x y where "open (ereal -` A)" | |
| 2047 |     and "\<infinity> \<in> A \<Longrightarrow> {ereal x<..} \<subseteq> A"
 | |
| 2048 |     and "-\<infinity> \<in> A \<Longrightarrow> {..<ereal y} \<subseteq> A"
 | |
| 43920 | 2049 | using assms open_ereal_def by auto | 
| 41973 | 2050 | |
| 51000 | 2051 | lemmas open_ereal_lessThan = open_lessThan[where 'a=ereal] | 
| 2052 | lemmas open_ereal_greaterThan = open_greaterThan[where 'a=ereal] | |
| 2053 | lemmas ereal_open_greaterThanLessThan = open_greaterThanLessThan[where 'a=ereal] | |
| 2054 | lemmas closed_ereal_atLeast = closed_atLeast[where 'a=ereal] | |
| 2055 | lemmas closed_ereal_atMost = closed_atMost[where 'a=ereal] | |
| 2056 | lemmas closed_ereal_atLeastAtMost = closed_atLeastAtMost[where 'a=ereal] | |
| 2057 | lemmas closed_ereal_singleton = closed_singleton[where 'a=ereal] | |
| 53873 | 2058 | |
| 43920 | 2059 | lemma ereal_open_cont_interval: | 
| 43923 | 2060 | fixes S :: "ereal set" | 
| 53873 | 2061 | assumes "open S" | 
| 2062 | and "x \<in> S" | |
| 2063 | and "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 2064 |   obtains e where "e > 0" and "{x-e <..< x+e} \<subseteq> S"
 | |
| 2065 | proof - | |
| 2066 | from `open S` | |
| 2067 | have "open (ereal -` S)" | |
| 2068 | by (rule ereal_openE) | |
| 2069 | then obtain e where "e > 0" and e: "\<And>y. dist y (real x) < e \<Longrightarrow> ereal y \<in> S" | |
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 2070 | using assms unfolding open_dist by force | 
| 41975 | 2071 | show thesis | 
| 2072 | proof (intro that subsetI) | |
| 53873 | 2073 | show "0 < ereal e" | 
| 2074 | using `0 < e` by auto | |
| 2075 | fix y | |
| 2076 |     assume "y \<in> {x - ereal e<..<x + ereal e}"
 | |
| 43920 | 2077 | with assms obtain t where "y = ereal t" "dist t (real x) < e" | 
| 53873 | 2078 | by (cases y) (auto simp: dist_real_def) | 
| 2079 | then show "y \<in> S" | |
| 2080 | using e[of t] by auto | |
| 41975 | 2081 | qed | 
| 41973 | 2082 | qed | 
| 2083 | ||
| 43920 | 2084 | lemma ereal_open_cont_interval2: | 
| 43923 | 2085 | fixes S :: "ereal set" | 
| 53873 | 2086 | assumes "open S" | 
| 2087 | and "x \<in> S" | |
| 2088 | and x: "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 2089 |   obtains a b where "a < x" and "x < b" and "{a <..< b} \<subseteq> S"
 | |
| 53381 | 2090 | proof - | 
| 2091 |   obtain e where "0 < e" "{x - e<..<x + e} \<subseteq> S"
 | |
| 2092 | using assms by (rule ereal_open_cont_interval) | |
| 53873 | 2093 | with that[of "x - e" "x + e"] ereal_between[OF x, of e] | 
| 2094 | show thesis | |
| 2095 | by auto | |
| 41973 | 2096 | qed | 
| 2097 | ||
| 53873 | 2098 | |
| 41973 | 2099 | subsubsection {* Convergent sequences *}
 | 
| 2100 | ||
| 53873 | 2101 | lemma lim_ereal[simp]: "((\<lambda>n. ereal (f n)) ---> ereal x) net \<longleftrightarrow> (f ---> x) net" | 
| 2102 | (is "?l = ?r") | |
| 41973 | 2103 | proof (intro iffI topological_tendstoI) | 
| 53873 | 2104 | fix S | 
| 2105 | assume "?l" and "open S" and "x \<in> S" | |
| 41973 | 2106 | then show "eventually (\<lambda>x. f x \<in> S) net" | 
| 43920 | 2107 | using `?l`[THEN topological_tendstoD, OF open_ereal, OF `open S`] | 
| 41973 | 2108 | by (simp add: inj_image_mem_iff) | 
| 2109 | next | |
| 53873 | 2110 | fix S | 
| 2111 | assume "?r" and "open S" and "ereal x \<in> S" | |
| 43920 | 2112 | show "eventually (\<lambda>x. ereal (f x) \<in> S) net" | 
| 2113 | using `?r`[THEN topological_tendstoD, OF open_ereal_vimage, OF `open S`] | |
| 53873 | 2114 | using `ereal x \<in> S` | 
| 2115 | by auto | |
| 41973 | 2116 | qed | 
| 2117 | ||
| 43920 | 2118 | lemma lim_real_of_ereal[simp]: | 
| 2119 | assumes lim: "(f ---> ereal x) net" | |
| 41973 | 2120 | shows "((\<lambda>x. real (f x)) ---> x) net" | 
| 2121 | proof (intro topological_tendstoI) | |
| 53873 | 2122 | fix S | 
| 2123 | assume "open S" and "x \<in> S" | |
| 43920 | 2124 | then have S: "open S" "ereal x \<in> ereal ` S" | 
| 41973 | 2125 | by (simp_all add: inj_image_mem_iff) | 
| 53873 | 2126 | have "\<forall>x. f x \<in> ereal ` S \<longrightarrow> real (f x) \<in> S" | 
| 2127 | by auto | |
| 43920 | 2128 | from this lim[THEN topological_tendstoD, OF open_ereal, OF S] | 
| 41973 | 2129 | show "eventually (\<lambda>x. real (f x) \<in> S) net" | 
| 2130 | by (rule eventually_mono) | |
| 2131 | qed | |
| 2132 | ||
| 51000 | 2133 | lemma tendsto_PInfty: "(f ---> \<infinity>) F \<longleftrightarrow> (\<forall>r. eventually (\<lambda>x. ereal r < f x) F)" | 
| 51022 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 2134 | proof - | 
| 53873 | 2135 |   {
 | 
| 2136 | fix l :: ereal | |
| 2137 | assume "\<forall>r. eventually (\<lambda>x. ereal r < f x) F" | |
| 2138 | from this[THEN spec, of "real l"] have "l \<noteq> \<infinity> \<Longrightarrow> eventually (\<lambda>x. l < f x) F" | |
| 2139 | by (cases l) (auto elim: eventually_elim1) | |
| 2140 | } | |
| 51022 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 2141 | then show ?thesis | 
| 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 2142 | by (auto simp: order_tendsto_iff) | 
| 41973 | 2143 | qed | 
| 2144 | ||
| 51000 | 2145 | lemma tendsto_MInfty: "(f ---> -\<infinity>) F \<longleftrightarrow> (\<forall>r. eventually (\<lambda>x. f x < ereal r) F)" | 
| 2146 | unfolding tendsto_def | |
| 2147 | proof safe | |
| 53381 | 2148 | fix S :: "ereal set" | 
| 2149 | assume "open S" "-\<infinity> \<in> S" | |
| 2150 |   from open_MInfty[OF this] obtain B where "{..<ereal B} \<subseteq> S" ..
 | |
| 51000 | 2151 | moreover | 
| 2152 | assume "\<forall>r::real. eventually (\<lambda>z. f z < r) F" | |
| 53873 | 2153 |   then have "eventually (\<lambda>z. f z \<in> {..< B}) F"
 | 
| 2154 | by auto | |
| 2155 | ultimately show "eventually (\<lambda>z. f z \<in> S) F" | |
| 2156 | by (auto elim!: eventually_elim1) | |
| 51000 | 2157 | next | 
| 53873 | 2158 | fix x | 
| 2159 | assume "\<forall>S. open S \<longrightarrow> -\<infinity> \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) F" | |
| 2160 |   from this[rule_format, of "{..< ereal x}"] show "eventually (\<lambda>y. f y < ereal x) F"
 | |
| 2161 | by auto | |
| 41973 | 2162 | qed | 
| 2163 | ||
| 51000 | 2164 | lemma Lim_PInfty: "f ----> \<infinity> \<longleftrightarrow> (\<forall>B. \<exists>N. \<forall>n\<ge>N. f n \<ge> ereal B)" | 
| 2165 | unfolding tendsto_PInfty eventually_sequentially | |
| 2166 | proof safe | |
| 53873 | 2167 | fix r | 
| 2168 | assume "\<forall>r. \<exists>N. \<forall>n\<ge>N. ereal r \<le> f n" | |
| 2169 | then obtain N where "\<forall>n\<ge>N. ereal (r + 1) \<le> f n" | |
| 2170 | by blast | |
| 2171 | moreover have "ereal r < ereal (r + 1)" | |
| 2172 | by auto | |
| 51000 | 2173 | ultimately show "\<exists>N. \<forall>n\<ge>N. ereal r < f n" | 
| 2174 | by (blast intro: less_le_trans) | |
| 2175 | qed (blast intro: less_imp_le) | |
| 41973 | 2176 | |
| 51000 | 2177 | lemma Lim_MInfty: "f ----> -\<infinity> \<longleftrightarrow> (\<forall>B. \<exists>N. \<forall>n\<ge>N. ereal B \<ge> f n)" | 
| 2178 | unfolding tendsto_MInfty eventually_sequentially | |
| 2179 | proof safe | |
| 53873 | 2180 | fix r | 
| 2181 | assume "\<forall>r. \<exists>N. \<forall>n\<ge>N. f n \<le> ereal r" | |
| 2182 | then obtain N where "\<forall>n\<ge>N. f n \<le> ereal (r - 1)" | |
| 2183 | by blast | |
| 2184 | moreover have "ereal (r - 1) < ereal r" | |
| 2185 | by auto | |
| 51000 | 2186 | ultimately show "\<exists>N. \<forall>n\<ge>N. f n < ereal r" | 
| 2187 | by (blast intro: le_less_trans) | |
| 2188 | qed (blast intro: less_imp_le) | |
| 41973 | 2189 | |
| 51000 | 2190 | lemma Lim_bounded_PInfty: "f ----> l \<Longrightarrow> (\<And>n. f n \<le> ereal B) \<Longrightarrow> l \<noteq> \<infinity>" | 
| 2191 | using LIMSEQ_le_const2[of f l "ereal B"] by auto | |
| 41973 | 2192 | |
| 51000 | 2193 | lemma Lim_bounded_MInfty: "f ----> l \<Longrightarrow> (\<And>n. ereal B \<le> f n) \<Longrightarrow> l \<noteq> -\<infinity>" | 
| 2194 | using LIMSEQ_le_const[of f l "ereal B"] by auto | |
| 41973 | 2195 | |
| 2196 | lemma tendsto_explicit: | |
| 53873 | 2197 | "f ----> f0 \<longleftrightarrow> (\<forall>S. open S \<longrightarrow> f0 \<in> S \<longrightarrow> (\<exists>N. \<forall>n\<ge>N. f n \<in> S))" | 
| 41973 | 2198 | unfolding tendsto_def eventually_sequentially by auto | 
| 2199 | ||
| 53873 | 2200 | lemma Lim_bounded_PInfty2: "f ----> l \<Longrightarrow> \<forall>n\<ge>N. f n \<le> ereal B \<Longrightarrow> l \<noteq> \<infinity>" | 
| 51000 | 2201 | using LIMSEQ_le_const2[of f l "ereal B"] by fastforce | 
| 41973 | 2202 | |
| 53873 | 2203 | lemma Lim_bounded_ereal: "f ----> (l :: 'a::linorder_topology) \<Longrightarrow> \<forall>n\<ge>M. f n \<le> C \<Longrightarrow> l \<le> C" | 
| 51000 | 2204 | by (intro LIMSEQ_le_const2) auto | 
| 41973 | 2205 | |
| 51351 | 2206 | lemma Lim_bounded2_ereal: | 
| 53873 | 2207 | assumes lim:"f ----> (l :: 'a::linorder_topology)" | 
| 2208 | and ge: "\<forall>n\<ge>N. f n \<ge> C" | |
| 2209 | shows "l \<ge> C" | |
| 51351 | 2210 | using ge | 
| 2211 | by (intro tendsto_le[OF trivial_limit_sequentially lim tendsto_const]) | |
| 2212 | (auto simp: eventually_sequentially) | |
| 2213 | ||
| 43920 | 2214 | lemma real_of_ereal_mult[simp]: | 
| 53873 | 2215 | fixes a b :: ereal | 
| 2216 | shows "real (a * b) = real a * real b" | |
| 43920 | 2217 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 2218 | |
| 43920 | 2219 | lemma real_of_ereal_eq_0: | 
| 53873 | 2220 | fixes x :: ereal | 
| 2221 | shows "real x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity> \<or> x = 0" | |
| 41973 | 2222 | by (cases x) auto | 
| 2223 | ||
| 43920 | 2224 | lemma tendsto_ereal_realD: | 
| 2225 | fixes f :: "'a \<Rightarrow> ereal" | |
| 53873 | 2226 | assumes "x \<noteq> 0" | 
| 2227 | and tendsto: "((\<lambda>x. ereal (real (f x))) ---> x) net" | |
| 41973 | 2228 | shows "(f ---> x) net" | 
| 2229 | proof (intro topological_tendstoI) | |
| 53873 | 2230 | fix S | 
| 2231 | assume S: "open S" "x \<in> S" | |
| 2232 |   with `x \<noteq> 0` have "open (S - {0})" "x \<in> S - {0}"
 | |
| 2233 | by auto | |
| 41973 | 2234 | from tendsto[THEN topological_tendstoD, OF this] | 
| 2235 | show "eventually (\<lambda>x. f x \<in> S) net" | |
| 44142 | 2236 | by (rule eventually_rev_mp) (auto simp: ereal_real) | 
| 41973 | 2237 | qed | 
| 2238 | ||
| 43920 | 2239 | lemma tendsto_ereal_realI: | 
| 2240 | fixes f :: "'a \<Rightarrow> ereal" | |
| 41976 | 2241 | assumes x: "\<bar>x\<bar> \<noteq> \<infinity>" and tendsto: "(f ---> x) net" | 
| 43920 | 2242 | shows "((\<lambda>x. ereal (real (f x))) ---> x) net" | 
| 41973 | 2243 | proof (intro topological_tendstoI) | 
| 53873 | 2244 | fix S | 
| 2245 | assume "open S" and "x \<in> S" | |
| 2246 |   with x have "open (S - {\<infinity>, -\<infinity>})" "x \<in> S - {\<infinity>, -\<infinity>}"
 | |
| 2247 | by auto | |
| 41973 | 2248 | from tendsto[THEN topological_tendstoD, OF this] | 
| 43920 | 2249 | show "eventually (\<lambda>x. ereal (real (f x)) \<in> S) net" | 
| 2250 | by (elim eventually_elim1) (auto simp: ereal_real) | |
| 41973 | 2251 | qed | 
| 2252 | ||
| 43920 | 2253 | lemma ereal_mult_cancel_left: | 
| 53873 | 2254 | fixes a b c :: ereal | 
| 2255 | shows "a * b = a * c \<longleftrightarrow> (\<bar>a\<bar> = \<infinity> \<and> 0 < b * c) \<or> a = 0 \<or> b = c" | |
| 2256 | by (cases rule: ereal3_cases[of a b c]) (simp_all add: zero_less_mult_iff) | |
| 41973 | 2257 | |
| 43920 | 2258 | lemma ereal_inj_affinity: | 
| 43923 | 2259 | fixes m t :: ereal | 
| 53873 | 2260 | assumes "\<bar>m\<bar> \<noteq> \<infinity>" | 
| 2261 | and "m \<noteq> 0" | |
| 2262 | and "\<bar>t\<bar> \<noteq> \<infinity>" | |
| 41973 | 2263 | shows "inj_on (\<lambda>x. m * x + t) A" | 
| 2264 | using assms | |
| 43920 | 2265 | by (cases rule: ereal2_cases[of m t]) | 
| 2266 | (auto intro!: inj_onI simp: ereal_add_cancel_right ereal_mult_cancel_left) | |
| 41973 | 2267 | |
| 43920 | 2268 | lemma ereal_PInfty_eq_plus[simp]: | 
| 43923 | 2269 | fixes a b :: ereal | 
| 41973 | 2270 | shows "\<infinity> = a + b \<longleftrightarrow> a = \<infinity> \<or> b = \<infinity>" | 
| 43920 | 2271 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 2272 | |
| 43920 | 2273 | lemma ereal_MInfty_eq_plus[simp]: | 
| 43923 | 2274 | fixes a b :: ereal | 
| 41973 | 2275 | shows "-\<infinity> = a + b \<longleftrightarrow> (a = -\<infinity> \<and> b \<noteq> \<infinity>) \<or> (b = -\<infinity> \<and> a \<noteq> \<infinity>)" | 
| 43920 | 2276 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 2277 | |
| 43920 | 2278 | lemma ereal_less_divide_pos: | 
| 43923 | 2279 | fixes x y :: ereal | 
| 2280 | shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y < z / x \<longleftrightarrow> x * y < z" | |
| 43920 | 2281 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 2282 | |
| 43920 | 2283 | lemma ereal_divide_less_pos: | 
| 43923 | 2284 | fixes x y z :: ereal | 
| 2285 | shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y / x < z \<longleftrightarrow> y < x * z" | |
| 43920 | 2286 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 2287 | |
| 43920 | 2288 | lemma ereal_divide_eq: | 
| 43923 | 2289 | fixes a b c :: ereal | 
| 2290 | shows "b \<noteq> 0 \<Longrightarrow> \<bar>b\<bar> \<noteq> \<infinity> \<Longrightarrow> a / b = c \<longleftrightarrow> a = b * c" | |
| 43920 | 2291 | by (cases rule: ereal3_cases[of a b c]) | 
| 41973 | 2292 | (simp_all add: field_simps) | 
| 2293 | ||
| 43923 | 2294 | lemma ereal_inverse_not_MInfty[simp]: "inverse (a::ereal) \<noteq> -\<infinity>" | 
| 41973 | 2295 | by (cases a) auto | 
| 2296 | ||
| 43920 | 2297 | lemma ereal_mult_m1[simp]: "x * ereal (-1) = -x" | 
| 41973 | 2298 | by (cases x) auto | 
| 2299 | ||
| 53873 | 2300 | lemma ereal_real': | 
| 2301 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 2302 | shows "ereal (real x) = x" | |
| 41976 | 2303 | using assms by auto | 
| 41973 | 2304 | |
| 53873 | 2305 | lemma real_ereal_id: "real \<circ> ereal = id" | 
| 2306 | proof - | |
| 2307 |   {
 | |
| 2308 | fix x | |
| 2309 | have "(real o ereal) x = id x" | |
| 2310 | by auto | |
| 2311 | } | |
| 2312 | then show ?thesis | |
| 2313 | using ext by blast | |
| 41973 | 2314 | qed | 
| 2315 | ||
| 43923 | 2316 | lemma open_image_ereal: "open(UNIV-{ \<infinity> , (-\<infinity> :: ereal)})"
 | 
| 53873 | 2317 | by (metis range_ereal open_ereal open_UNIV) | 
| 41973 | 2318 | |
| 43920 | 2319 | lemma ereal_le_distrib: | 
| 53873 | 2320 | fixes a b c :: ereal | 
| 2321 | shows "c * (a + b) \<le> c * a + c * b" | |
| 43920 | 2322 | by (cases rule: ereal3_cases[of a b c]) | 
| 41973 | 2323 | (auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff) | 
| 2324 | ||
| 43920 | 2325 | lemma ereal_pos_distrib: | 
| 53873 | 2326 | fixes a b c :: ereal | 
| 2327 | assumes "0 \<le> c" | |
| 2328 | and "c \<noteq> \<infinity>" | |
| 2329 | shows "c * (a + b) = c * a + c * b" | |
| 2330 | using assms | |
| 2331 | by (cases rule: ereal3_cases[of a b c]) | |
| 2332 | (auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff) | |
| 41973 | 2333 | |
| 43920 | 2334 | lemma ereal_pos_le_distrib: | 
| 53873 | 2335 | fixes a b c :: ereal | 
| 2336 | assumes "c \<ge> 0" | |
| 2337 | shows "c * (a + b) \<le> c * a + c * b" | |
| 2338 | using assms | |
| 2339 | by (cases rule: ereal3_cases[of a b c]) (auto simp add: field_simps) | |
| 41973 | 2340 | |
| 53873 | 2341 | lemma ereal_max_mono: "(a::ereal) \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> max a c \<le> max b d" | 
| 43920 | 2342 | by (metis sup_ereal_def sup_mono) | 
| 41973 | 2343 | |
| 53873 | 2344 | lemma ereal_max_least: "(a::ereal) \<le> x \<Longrightarrow> c \<le> x \<Longrightarrow> max a c \<le> x" | 
| 43920 | 2345 | by (metis sup_ereal_def sup_least) | 
| 41973 | 2346 | |
| 51000 | 2347 | lemma ereal_LimI_finite: | 
| 2348 | fixes x :: ereal | |
| 2349 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 53873 | 2350 | and "\<And>r. 0 < r \<Longrightarrow> \<exists>N. \<forall>n\<ge>N. u n < x + r \<and> x < u n + r" | 
| 51000 | 2351 | shows "u ----> x" | 
| 2352 | proof (rule topological_tendstoI, unfold eventually_sequentially) | |
| 53873 | 2353 | obtain rx where rx: "x = ereal rx" | 
| 2354 | using assms by (cases x) auto | |
| 2355 | fix S | |
| 2356 | assume "open S" and "x \<in> S" | |
| 2357 | then have "open (ereal -` S)" | |
| 2358 | unfolding open_ereal_def by auto | |
| 2359 | with `x \<in> S` obtain r where "0 < r" and dist: "\<And>y. dist y rx < r \<Longrightarrow> ereal y \<in> S" | |
| 2360 | unfolding open_real_def rx by auto | |
| 51000 | 2361 | then obtain n where | 
| 53873 | 2362 | upper: "\<And>N. n \<le> N \<Longrightarrow> u N < x + ereal r" and | 
| 2363 | lower: "\<And>N. n \<le> N \<Longrightarrow> x < u N + ereal r" | |
| 2364 | using assms(2)[of "ereal r"] by auto | |
| 2365 | show "\<exists>N. \<forall>n\<ge>N. u n \<in> S" | |
| 51000 | 2366 | proof (safe intro!: exI[of _ n]) | 
| 53873 | 2367 | fix N | 
| 2368 | assume "n \<le> N" | |
| 51000 | 2369 | from upper[OF this] lower[OF this] assms `0 < r` | 
| 53873 | 2370 |     have "u N \<notin> {\<infinity>,(-\<infinity>)}"
 | 
| 2371 | by auto | |
| 2372 | then obtain ra where ra_def: "(u N) = ereal ra" | |
| 2373 | by (cases "u N") auto | |
| 2374 | then have "rx < ra + r" and "ra < rx + r" | |
| 2375 | using rx assms `0 < r` lower[OF `n \<le> N`] upper[OF `n \<le> N`] | |
| 2376 | by auto | |
| 2377 | then have "dist (real (u N)) rx < r" | |
| 2378 | using rx ra_def | |
| 51000 | 2379 | by (auto simp: dist_real_def abs_diff_less_iff field_simps) | 
| 53873 | 2380 | from dist[OF this] show "u N \<in> S" | 
| 2381 |       using `u N  \<notin> {\<infinity>, -\<infinity>}`
 | |
| 51000 | 2382 | by (auto simp: ereal_real split: split_if_asm) | 
| 2383 | qed | |
| 2384 | qed | |
| 2385 | ||
| 2386 | lemma tendsto_obtains_N: | |
| 2387 | assumes "f ----> f0" | |
| 53873 | 2388 | assumes "open S" | 
| 2389 | and "f0 \<in> S" | |
| 2390 | obtains N where "\<forall>n\<ge>N. f n \<in> S" | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 2391 | using assms using tendsto_def | 
| 51000 | 2392 | using tendsto_explicit[of f f0] assms by auto | 
| 2393 | ||
| 2394 | lemma ereal_LimI_finite_iff: | |
| 2395 | fixes x :: ereal | |
| 2396 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 53873 | 2397 | shows "u ----> x \<longleftrightarrow> (\<forall>r. 0 < r \<longrightarrow> (\<exists>N. \<forall>n\<ge>N. u n < x + r \<and> x < u n + r))" | 
| 2398 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 51000 | 2399 | proof | 
| 2400 | assume lim: "u ----> x" | |
| 53873 | 2401 |   {
 | 
| 2402 | fix r :: ereal | |
| 2403 | assume "r > 0" | |
| 2404 |     then obtain N where "\<forall>n\<ge>N. u n \<in> {x - r <..< x + r}"
 | |
| 51000 | 2405 |        apply (subst tendsto_obtains_N[of u x "{x - r <..< x + r}"])
 | 
| 53873 | 2406 | using lim ereal_between[of x r] assms `r > 0` | 
| 2407 | apply auto | |
| 2408 | done | |
| 2409 | then have "\<exists>N. \<forall>n\<ge>N. u n < x + r \<and> x < u n + r" | |
| 2410 | using ereal_minus_less[of r x] | |
| 2411 | by (cases r) auto | |
| 2412 | } | |
| 2413 | then show ?rhs | |
| 2414 | by auto | |
| 51000 | 2415 | next | 
| 53873 | 2416 | assume ?rhs | 
| 2417 | then show "u ----> x" | |
| 51000 | 2418 | using ereal_LimI_finite[of x] assms by auto | 
| 2419 | qed | |
| 2420 | ||
| 51340 
5e6296afe08d
move Liminf / Limsup lemmas on complete_lattices to its own file
 hoelzl parents: 
51329diff
changeset | 2421 | lemma ereal_Limsup_uminus: | 
| 53873 | 2422 | fixes f :: "'a \<Rightarrow> ereal" | 
| 2423 | shows "Limsup net (\<lambda>x. - (f x)) = - Liminf net f" | |
| 51340 
5e6296afe08d
move Liminf / Limsup lemmas on complete_lattices to its own file
 hoelzl parents: 
51329diff
changeset | 2424 | unfolding Limsup_def Liminf_def ereal_SUPR_uminus ereal_INFI_uminus .. | 
| 51000 | 2425 | |
| 51340 
5e6296afe08d
move Liminf / Limsup lemmas on complete_lattices to its own file
 hoelzl parents: 
51329diff
changeset | 2426 | lemma liminf_bounded_iff: | 
| 
5e6296afe08d
move Liminf / Limsup lemmas on complete_lattices to its own file
 hoelzl parents: 
51329diff
changeset | 2427 | fixes x :: "nat \<Rightarrow> ereal" | 
| 53873 | 2428 | shows "C \<le> liminf x \<longleftrightarrow> (\<forall>B<C. \<exists>N. \<forall>n\<ge>N. B < x n)" | 
| 2429 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 51340 
5e6296afe08d
move Liminf / Limsup lemmas on complete_lattices to its own file
 hoelzl parents: 
51329diff
changeset | 2430 | unfolding le_Liminf_iff eventually_sequentially .. | 
| 51000 | 2431 | |
| 53873 | 2432 | |
| 43933 | 2433 | subsubsection {* Tests for code generator *}
 | 
| 2434 | ||
| 2435 | (* A small list of simple arithmetic expressions *) | |
| 2436 | ||
| 2437 | value [code] "- \<infinity> :: ereal" | |
| 2438 | value [code] "\<bar>-\<infinity>\<bar> :: ereal" | |
| 2439 | value [code] "4 + 5 / 4 - ereal 2 :: ereal" | |
| 2440 | value [code] "ereal 3 < \<infinity>" | |
| 2441 | value [code] "real (\<infinity>::ereal) = 0" | |
| 2442 | ||
| 41973 | 2443 | end |