37744
|
1 |
(* Title: FOLP/hypsubst.ML
|
1459
|
2 |
Author: Martin D Coen, Cambridge University Computer Laboratory
|
1022
|
3 |
Copyright 1995 University of Cambridge
|
|
4 |
|
|
5 |
Original version of Provers/hypsubst. Cannot use new version because it
|
|
6 |
relies on the new simplifier!
|
|
7 |
|
|
8 |
Martin Coen's tactic for substitution in the hypotheses
|
|
9 |
*)
|
|
10 |
|
|
11 |
signature HYPSUBST_DATA =
|
|
12 |
sig
|
1459
|
13 |
val dest_eq : term -> term*term
|
|
14 |
val imp_intr : thm (* (P ==> Q) ==> P-->Q *)
|
|
15 |
val rev_mp : thm (* [| P; P-->Q |] ==> Q *)
|
|
16 |
val subst : thm (* [| a=b; P(a) |] ==> P(b) *)
|
|
17 |
val sym : thm (* a=b ==> b=a *)
|
1022
|
18 |
end;
|
|
19 |
|
|
20 |
signature HYPSUBST =
|
|
21 |
sig
|
60754
|
22 |
val bound_hyp_subst_tac : Proof.context -> int -> tactic
|
|
23 |
val hyp_subst_tac : Proof.context -> int -> tactic
|
1022
|
24 |
(*exported purely for debugging purposes*)
|
|
25 |
val eq_var : bool -> term -> int * thm
|
|
26 |
val inspect_pair : bool -> term * term -> thm
|
|
27 |
end;
|
|
28 |
|
42799
|
29 |
functor Hypsubst(Data: HYPSUBST_DATA): HYPSUBST =
|
1022
|
30 |
struct
|
|
31 |
|
|
32 |
local open Data in
|
|
33 |
|
|
34 |
exception EQ_VAR;
|
|
35 |
|
|
36 |
(*It's not safe to substitute for a constant; consider 0=1.
|
|
37 |
It's not safe to substitute for x=t[x] since x is not eliminated.
|
|
38 |
It's not safe to substitute for a Var; what if it appears in other goals?
|
|
39 |
It's not safe to substitute for a variable free in the premises,
|
|
40 |
but how could we check for this?*)
|
42125
|
41 |
fun inspect_pair bnd (t, u) =
|
|
42 |
(case (Envir.eta_contract t, Envir.eta_contract u) of
|
|
43 |
(Bound i, _) =>
|
|
44 |
if loose_bvar1 (u, i) then raise Match
|
|
45 |
else sym (*eliminates t*)
|
|
46 |
| (_, Bound i) =>
|
|
47 |
if loose_bvar (t, i) then raise Match
|
|
48 |
else asm_rl (*eliminates u*)
|
|
49 |
| (Free _, _) =>
|
|
50 |
if bnd orelse Logic.occs (t, u) then raise Match
|
|
51 |
else sym (*eliminates t*)
|
|
52 |
| (_, Free _) =>
|
|
53 |
if bnd orelse Logic.occs(u,t) then raise Match
|
|
54 |
else asm_rl (*eliminates u*)
|
|
55 |
| _ => raise Match);
|
1022
|
56 |
|
|
57 |
(*Locates a substitutable variable on the left (resp. right) of an equality
|
|
58 |
assumption. Returns the number of intervening assumptions, paried with
|
|
59 |
the rule asm_rl (resp. sym). *)
|
|
60 |
fun eq_var bnd =
|
69593
|
61 |
let fun eq_var_aux k (Const(\<^const_name>\<open>Pure.all\<close>,_) $ Abs(_,_,t)) = eq_var_aux k t
|
|
62 |
| eq_var_aux k (Const(\<^const_name>\<open>Pure.imp\<close>,_) $ A $ B) =
|
1459
|
63 |
((k, inspect_pair bnd (dest_eq A))
|
|
64 |
(*Exception Match comes from inspect_pair or dest_eq*)
|
|
65 |
handle Match => eq_var_aux (k+1) B)
|
|
66 |
| eq_var_aux k _ = raise EQ_VAR
|
1022
|
67 |
in eq_var_aux 0 end;
|
|
68 |
|
|
69 |
(*Select a suitable equality assumption and substitute throughout the subgoal
|
|
70 |
Replaces only Bound variables if bnd is true*)
|
60754
|
71 |
fun gen_hyp_subst_tac bnd ctxt = SUBGOAL(fn (Bi,i) =>
|
3537
|
72 |
let val n = length(Logic.strip_assums_hyp Bi) - 1
|
1459
|
73 |
val (k,symopt) = eq_var bnd Bi
|
32449
|
74 |
in
|
3537
|
75 |
DETERM
|
60754
|
76 |
(EVERY [REPEAT_DETERM_N k (eresolve_tac ctxt [rev_mp] i),
|
|
77 |
eresolve_tac ctxt [revcut_rl] i,
|
|
78 |
REPEAT_DETERM_N (n-k) (eresolve_tac ctxt [rev_mp] i),
|
|
79 |
eresolve_tac ctxt [symopt RS subst] i,
|
|
80 |
REPEAT_DETERM_N n (resolve_tac ctxt [imp_intr] i)])
|
1022
|
81 |
end
|
3537
|
82 |
handle THM _ => no_tac | EQ_VAR => no_tac);
|
1022
|
83 |
|
|
84 |
(*Substitutes for Free or Bound variables*)
|
|
85 |
val hyp_subst_tac = gen_hyp_subst_tac false;
|
|
86 |
|
|
87 |
(*Substitutes for Bound variables only -- this is always safe*)
|
|
88 |
val bound_hyp_subst_tac = gen_hyp_subst_tac true;
|
|
89 |
|
|
90 |
end
|
|
91 |
end;
|
|
92 |
|