| 12516 |      1 | (*  Title:      HOL/MicroJava/BV/Opt.thy
 | 
| 10496 |      2 |     ID:         $Id$
 | 
|  |      3 |     Author:     Tobias Nipkow
 | 
|  |      4 |     Copyright   2000 TUM
 | 
|  |      5 | 
 | 
|  |      6 | More about options
 | 
|  |      7 | *)
 | 
|  |      8 | 
 | 
| 12911 |      9 | header {* \isaheader{More about Options} *}
 | 
| 10496 |     10 | 
 | 
| 16417 |     11 | theory Opt imports Err begin
 | 
| 10496 |     12 | 
 | 
|  |     13 | constdefs
 | 
| 13006 |     14 |  le :: "'a ord \<Rightarrow> 'a option ord"
 | 
|  |     15 | "le r o1 o2 == case o2 of None \<Rightarrow> o1=None |
 | 
|  |     16 |                               Some y \<Rightarrow> (case o1 of None \<Rightarrow> True
 | 
|  |     17 |                                                   | Some x \<Rightarrow> x <=_r y)"
 | 
| 10496 |     18 | 
 | 
| 13006 |     19 |  opt :: "'a set \<Rightarrow> 'a option set"
 | 
| 10496 |     20 | "opt A == insert None {x . ? y:A. x = Some y}"
 | 
|  |     21 | 
 | 
| 13006 |     22 |  sup :: "'a ebinop \<Rightarrow> 'a option ebinop"
 | 
| 10496 |     23 | "sup f o1 o2 ==  
 | 
| 13006 |     24 |  case o1 of None \<Rightarrow> OK o2 | Some x \<Rightarrow> (case o2 of None \<Rightarrow> OK o1
 | 
|  |     25 |      | Some y \<Rightarrow> (case f x y of Err \<Rightarrow> Err | OK z \<Rightarrow> OK (Some z)))"
 | 
| 10496 |     26 | 
 | 
| 13006 |     27 |  esl :: "'a esl \<Rightarrow> 'a option esl"
 | 
| 10496 |     28 | "esl == %(A,r,f). (opt A, le r, sup f)"
 | 
|  |     29 | 
 | 
|  |     30 | lemma unfold_le_opt:
 | 
|  |     31 |   "o1 <=_(le r) o2 = 
 | 
| 13006 |     32 |   (case o2 of None \<Rightarrow> o1=None | 
 | 
|  |     33 |               Some y \<Rightarrow> (case o1 of None \<Rightarrow> True | Some x \<Rightarrow> x <=_r y))"
 | 
| 10496 |     34 | apply (unfold lesub_def le_def)
 | 
|  |     35 | apply (rule refl)
 | 
|  |     36 | done
 | 
|  |     37 | 
 | 
|  |     38 | lemma le_opt_refl:
 | 
| 13006 |     39 |   "order r \<Longrightarrow> o1 <=_(le r) o1"
 | 
| 10496 |     40 | by (simp add: unfold_le_opt split: option.split)
 | 
|  |     41 | 
 | 
|  |     42 | lemma le_opt_trans [rule_format]:
 | 
| 13006 |     43 |   "order r \<Longrightarrow> 
 | 
|  |     44 |    o1 <=_(le r) o2 \<longrightarrow> o2 <=_(le r) o3 \<longrightarrow> o1 <=_(le r) o3"
 | 
| 10496 |     45 | apply (simp add: unfold_le_opt split: option.split)
 | 
|  |     46 | apply (blast intro: order_trans)
 | 
|  |     47 | done
 | 
|  |     48 | 
 | 
|  |     49 | lemma le_opt_antisym [rule_format]:
 | 
| 13006 |     50 |   "order r \<Longrightarrow> o1 <=_(le r) o2 \<longrightarrow> o2 <=_(le r) o1 \<longrightarrow> o1=o2"
 | 
| 10496 |     51 | apply (simp add: unfold_le_opt split: option.split)
 | 
|  |     52 | apply (blast intro: order_antisym)
 | 
|  |     53 | done
 | 
|  |     54 | 
 | 
|  |     55 | lemma order_le_opt [intro!,simp]:
 | 
| 13006 |     56 |   "order r \<Longrightarrow> order(le r)"
 | 
| 10496 |     57 | apply (subst order_def)
 | 
|  |     58 | apply (blast intro: le_opt_refl le_opt_trans le_opt_antisym)
 | 
|  |     59 | done 
 | 
|  |     60 | 
 | 
|  |     61 | lemma None_bot [iff]: 
 | 
|  |     62 |   "None <=_(le r) ox"
 | 
|  |     63 | apply (unfold lesub_def le_def)
 | 
|  |     64 | apply (simp split: option.split)
 | 
|  |     65 | done 
 | 
|  |     66 | 
 | 
|  |     67 | lemma Some_le [iff]:
 | 
|  |     68 |   "(Some x <=_(le r) ox) = (? y. ox = Some y & x <=_r y)"
 | 
|  |     69 | apply (unfold lesub_def le_def)
 | 
|  |     70 | apply (simp split: option.split)
 | 
|  |     71 | done 
 | 
|  |     72 | 
 | 
|  |     73 | lemma le_None [iff]:
 | 
|  |     74 |   "(ox <=_(le r) None) = (ox = None)";
 | 
|  |     75 | apply (unfold lesub_def le_def)
 | 
|  |     76 | apply (simp split: option.split)
 | 
|  |     77 | done 
 | 
|  |     78 | 
 | 
|  |     79 | 
 | 
|  |     80 | lemma OK_None_bot [iff]:
 | 
|  |     81 |   "OK None <=_(Err.le (le r)) x"
 | 
|  |     82 |   by (simp add: lesub_def Err.le_def le_def split: option.split err.split)
 | 
|  |     83 | 
 | 
|  |     84 | lemma sup_None1 [iff]:
 | 
|  |     85 |   "x +_(sup f) None = OK x"
 | 
|  |     86 |   by (simp add: plussub_def sup_def split: option.split)
 | 
|  |     87 | 
 | 
|  |     88 | lemma sup_None2 [iff]:
 | 
|  |     89 |   "None +_(sup f) x = OK x"
 | 
|  |     90 |   by (simp add: plussub_def sup_def split: option.split)
 | 
|  |     91 | 
 | 
|  |     92 | 
 | 
|  |     93 | lemma None_in_opt [iff]:
 | 
|  |     94 |   "None : opt A"
 | 
|  |     95 | by (simp add: opt_def)
 | 
|  |     96 | 
 | 
|  |     97 | lemma Some_in_opt [iff]:
 | 
|  |     98 |   "(Some x : opt A) = (x:A)"
 | 
|  |     99 | apply (unfold opt_def)
 | 
|  |    100 | apply auto
 | 
|  |    101 | done 
 | 
|  |    102 | 
 | 
|  |    103 | 
 | 
| 13062 |    104 | lemma semilat_opt [intro, simp]:
 | 
| 13006 |    105 |   "\<And>L. err_semilat L \<Longrightarrow> err_semilat (Opt.esl L)"
 | 
| 10496 |    106 | proof (unfold Opt.esl_def Err.sl_def, simp add: split_tupled_all)
 | 
|  |    107 |   
 | 
|  |    108 |   fix A r f
 | 
|  |    109 |   assume s: "semilat (err A, Err.le r, lift2 f)"
 | 
|  |    110 |  
 | 
|  |    111 |   let ?A0 = "err A"
 | 
|  |    112 |   let ?r0 = "Err.le r"
 | 
|  |    113 |   let ?f0 = "lift2 f"
 | 
|  |    114 | 
 | 
|  |    115 |   from s
 | 
|  |    116 |   obtain
 | 
|  |    117 |     ord: "order ?r0" and
 | 
|  |    118 |     clo: "closed ?A0 ?f0" and
 | 
|  |    119 |     ub1: "\<forall>x\<in>?A0. \<forall>y\<in>?A0. x <=_?r0 x +_?f0 y" and
 | 
|  |    120 |     ub2: "\<forall>x\<in>?A0. \<forall>y\<in>?A0. y <=_?r0 x +_?f0 y" and
 | 
|  |    121 |     lub: "\<forall>x\<in>?A0. \<forall>y\<in>?A0. \<forall>z\<in>?A0. x <=_?r0 z \<and> y <=_?r0 z \<longrightarrow> x +_?f0 y <=_?r0 z"
 | 
|  |    122 |     by (unfold semilat_def) simp
 | 
|  |    123 | 
 | 
|  |    124 |   let ?A = "err (opt A)" 
 | 
|  |    125 |   let ?r = "Err.le (Opt.le r)"
 | 
|  |    126 |   let ?f = "lift2 (Opt.sup f)"
 | 
|  |    127 | 
 | 
|  |    128 |   from ord
 | 
|  |    129 |   have "order ?r"
 | 
|  |    130 |     by simp
 | 
|  |    131 | 
 | 
|  |    132 |   moreover
 | 
|  |    133 | 
 | 
|  |    134 |   have "closed ?A ?f"
 | 
|  |    135 |   proof (unfold closed_def, intro strip)
 | 
|  |    136 |     fix x y    
 | 
|  |    137 |     assume x: "x : ?A" 
 | 
|  |    138 |     assume y: "y : ?A" 
 | 
|  |    139 | 
 | 
| 11085 |    140 |     { fix a b
 | 
| 10496 |    141 |       assume ab: "x = OK a" "y = OK b"
 | 
|  |    142 |       
 | 
|  |    143 |       with x 
 | 
| 13006 |    144 |       have a: "\<And>c. a = Some c \<Longrightarrow> c : A"
 | 
| 10496 |    145 |         by (clarsimp simp add: opt_def)
 | 
|  |    146 | 
 | 
|  |    147 |       from ab y
 | 
| 13006 |    148 |       have b: "\<And>d. b = Some d \<Longrightarrow> d : A"
 | 
| 10496 |    149 |         by (clarsimp simp add: opt_def)
 | 
|  |    150 |       
 | 
|  |    151 |       { fix c d assume "a = Some c" "b = Some d"
 | 
|  |    152 |         with ab x y
 | 
|  |    153 |         have "c:A & d:A"
 | 
|  |    154 |           by (simp add: err_def opt_def Bex_def)
 | 
|  |    155 |         with clo
 | 
|  |    156 |         have "f c d : err A"
 | 
|  |    157 |           by (simp add: closed_def plussub_def err_def lift2_def)
 | 
|  |    158 |         moreover
 | 
|  |    159 |         fix z assume "f c d = OK z"
 | 
|  |    160 |         ultimately
 | 
|  |    161 |         have "z : A" by simp
 | 
|  |    162 |       } note f_closed = this    
 | 
|  |    163 | 
 | 
|  |    164 |       have "sup f a b : ?A"
 | 
|  |    165 |       proof (cases a)
 | 
|  |    166 |         case None
 | 
|  |    167 |         thus ?thesis
 | 
|  |    168 |           by (simp add: sup_def opt_def) (cases b, simp, simp add: b Bex_def)
 | 
|  |    169 |       next
 | 
|  |    170 |         case Some
 | 
|  |    171 |         thus ?thesis
 | 
|  |    172 |           by (auto simp add: sup_def opt_def Bex_def a b f_closed split: err.split option.split)
 | 
|  |    173 |       qed
 | 
|  |    174 |     }
 | 
|  |    175 | 
 | 
|  |    176 |     thus "x +_?f y : ?A"
 | 
|  |    177 |       by (simp add: plussub_def lift2_def split: err.split)
 | 
|  |    178 |   qed
 | 
|  |    179 |     
 | 
|  |    180 |   moreover
 | 
|  |    181 | 
 | 
| 11085 |    182 |   { fix a b c 
 | 
|  |    183 |     assume "a \<in> opt A" "b \<in> opt A" "a +_(sup f) b = OK c" 
 | 
|  |    184 |     moreover
 | 
|  |    185 |     from ord have "order r" by simp
 | 
|  |    186 |     moreover
 | 
|  |    187 |     { fix x y z
 | 
|  |    188 |       assume "x \<in> A" "y \<in> A" 
 | 
|  |    189 |       hence "OK x \<in> err A \<and> OK y \<in> err A" by simp
 | 
|  |    190 |       with ub1 ub2
 | 
|  |    191 |       have "(OK x) <=_(Err.le r) (OK x) +_(lift2 f) (OK y) \<and>
 | 
|  |    192 |             (OK y) <=_(Err.le r) (OK x) +_(lift2 f) (OK y)"
 | 
|  |    193 |         by blast
 | 
|  |    194 |       moreover
 | 
|  |    195 |       assume "x +_f y = OK z"
 | 
|  |    196 |       ultimately
 | 
|  |    197 |       have "x <=_r z \<and> y <=_r z"
 | 
|  |    198 |         by (auto simp add: plussub_def lift2_def Err.le_def lesub_def)
 | 
|  |    199 |     }
 | 
|  |    200 |     ultimately
 | 
|  |    201 |     have "a <=_(le r) c \<and> b <=_(le r) c"
 | 
|  |    202 |       by (auto simp add: sup_def le_def lesub_def plussub_def 
 | 
|  |    203 |                dest: order_refl split: option.splits err.splits)
 | 
|  |    204 |   }
 | 
|  |    205 |      
 | 
|  |    206 |   hence "(\<forall>x\<in>?A. \<forall>y\<in>?A. x <=_?r x +_?f y) \<and> (\<forall>x\<in>?A. \<forall>y\<in>?A. y <=_?r x +_?f y)"
 | 
|  |    207 |     by (auto simp add: lesub_def plussub_def Err.le_def lift2_def split: err.split)
 | 
| 10496 |    208 | 
 | 
|  |    209 |   moreover
 | 
|  |    210 | 
 | 
|  |    211 |   have "\<forall>x\<in>?A. \<forall>y\<in>?A. \<forall>z\<in>?A. x <=_?r z \<and> y <=_?r z \<longrightarrow> x +_?f y <=_?r z"
 | 
|  |    212 |   proof (intro strip, elim conjE)
 | 
|  |    213 |     fix x y z
 | 
|  |    214 |     assume xyz: "x : ?A" "y : ?A" "z : ?A"
 | 
|  |    215 |     assume xz: "x <=_?r z"
 | 
|  |    216 |     assume yz: "y <=_?r z"
 | 
|  |    217 | 
 | 
|  |    218 |     { fix a b c
 | 
|  |    219 |       assume ok: "x = OK a" "y = OK b" "z = OK c"
 | 
|  |    220 | 
 | 
|  |    221 |       { fix d e g
 | 
|  |    222 |         assume some: "a = Some d" "b = Some e" "c = Some g"
 | 
|  |    223 |         
 | 
|  |    224 |         with ok xyz
 | 
|  |    225 |         obtain "OK d:err A" "OK e:err A" "OK g:err A"
 | 
|  |    226 |           by simp
 | 
|  |    227 |         with lub
 | 
| 13006 |    228 |         have "\<lbrakk> (OK d) <=_(Err.le r) (OK g); (OK e) <=_(Err.le r) (OK g) \<rbrakk>
 | 
|  |    229 |           \<Longrightarrow> (OK d) +_(lift2 f) (OK e) <=_(Err.le r) (OK g)"
 | 
| 10496 |    230 |           by blast
 | 
| 13006 |    231 |         hence "\<lbrakk> d <=_r g; e <=_r g \<rbrakk> \<Longrightarrow> \<exists>y. d +_f e = OK y \<and> y <=_r g"
 | 
| 10496 |    232 |           by simp
 | 
|  |    233 | 
 | 
|  |    234 |         with ok some xyz xz yz
 | 
|  |    235 |         have "x +_?f y <=_?r z"
 | 
|  |    236 |           by (auto simp add: sup_def le_def lesub_def lift2_def plussub_def Err.le_def)
 | 
|  |    237 |       } note this [intro!]
 | 
|  |    238 | 
 | 
|  |    239 |       from ok xyz xz yz
 | 
|  |    240 |       have "x +_?f y <=_?r z"
 | 
|  |    241 |         by - (cases a, simp, cases b, simp, cases c, simp, blast)
 | 
|  |    242 |     }
 | 
|  |    243 |     
 | 
|  |    244 |     with xyz xz yz
 | 
|  |    245 |     show "x +_?f y <=_?r z"
 | 
|  |    246 |       by - (cases x, simp, cases y, simp, cases z, simp+)
 | 
|  |    247 |   qed
 | 
|  |    248 | 
 | 
|  |    249 |   ultimately
 | 
|  |    250 | 
 | 
|  |    251 |   show "semilat (?A,?r,?f)"
 | 
|  |    252 |     by (unfold semilat_def) simp
 | 
|  |    253 | qed 
 | 
|  |    254 | 
 | 
|  |    255 | lemma top_le_opt_Some [iff]: 
 | 
|  |    256 |   "top (le r) (Some T) = top r T"
 | 
|  |    257 | apply (unfold top_def)
 | 
|  |    258 | apply (rule iffI)
 | 
|  |    259 |  apply blast
 | 
|  |    260 | apply (rule allI)
 | 
|  |    261 | apply (case_tac "x")
 | 
|  |    262 | apply simp+
 | 
|  |    263 | done 
 | 
|  |    264 | 
 | 
|  |    265 | lemma Top_le_conv:
 | 
| 13006 |    266 |   "\<lbrakk> order r; top r T \<rbrakk> \<Longrightarrow> (T <=_r x) = (x = T)"
 | 
| 10496 |    267 | apply (unfold top_def)
 | 
|  |    268 | apply (blast intro: order_antisym)
 | 
|  |    269 | done 
 | 
|  |    270 | 
 | 
|  |    271 | 
 | 
|  |    272 | lemma acc_le_optI [intro!]:
 | 
| 13006 |    273 |   "acc r \<Longrightarrow> acc(le r)"
 | 
| 10496 |    274 | apply (unfold acc_def lesub_def le_def lesssub_def)
 | 
|  |    275 | apply (simp add: wf_eq_minimal split: option.split)
 | 
|  |    276 | apply clarify
 | 
|  |    277 | apply (case_tac "? a. Some a : Q")
 | 
|  |    278 |  apply (erule_tac x = "{a . Some a : Q}" in allE)
 | 
|  |    279 |  apply blast
 | 
|  |    280 | apply (case_tac "x")
 | 
|  |    281 |  apply blast
 | 
|  |    282 | apply blast
 | 
|  |    283 | done 
 | 
|  |    284 | 
 | 
|  |    285 | lemma option_map_in_optionI:
 | 
| 13006 |    286 |   "\<lbrakk> ox : opt S; !x:S. ox = Some x \<longrightarrow> f x : S \<rbrakk> 
 | 
|  |    287 |   \<Longrightarrow> option_map f ox : opt S";
 | 
| 10496 |    288 | apply (unfold option_map_def)
 | 
|  |    289 | apply (simp split: option.split)
 | 
|  |    290 | apply blast
 | 
|  |    291 | done 
 | 
|  |    292 | 
 | 
|  |    293 | end
 |