author | bulwahn |
Fri, 18 Mar 2011 18:19:42 +0100 | |
changeset 42031 | 2de57cda5b24 |
parent 41505 | 6d19301074cf |
child 45204 | 5e4a1270c000 |
permissions | -rw-r--r-- |
10213 | 1 |
(* Title: HOL/Sum_Type.thy |
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
3 |
Copyright 1992 University of Cambridge |
|
4 |
*) |
|
5 |
||
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
6 |
header{*The Disjoint Sum of Two Types*} |
10213 | 7 |
|
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
8 |
theory Sum_Type |
33961 | 9 |
imports Typedef Inductive Fun |
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
10 |
begin |
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
11 |
|
33962 | 12 |
subsection {* Construction of the sum type and its basic abstract operations *} |
10213 | 13 |
|
33962 | 14 |
definition Inl_Rep :: "'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool \<Rightarrow> bool" where |
15 |
"Inl_Rep a x y p \<longleftrightarrow> x = a \<and> p" |
|
10213 | 16 |
|
33962 | 17 |
definition Inr_Rep :: "'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool \<Rightarrow> bool" where |
18 |
"Inr_Rep b x y p \<longleftrightarrow> y = b \<and> \<not> p" |
|
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
19 |
|
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37388
diff
changeset
|
20 |
typedef ('a, 'b) sum (infixr "+" 10) = "{f. (\<exists>a. f = Inl_Rep (a::'a)) \<or> (\<exists>b. f = Inr_Rep (b::'b))}" |
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
21 |
by auto |
10213 | 22 |
|
37388 | 23 |
lemma Inl_RepI: "Inl_Rep a \<in> sum" |
24 |
by (auto simp add: sum_def) |
|
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
25 |
|
37388 | 26 |
lemma Inr_RepI: "Inr_Rep b \<in> sum" |
27 |
by (auto simp add: sum_def) |
|
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
28 |
|
37388 | 29 |
lemma inj_on_Abs_sum: "A \<subseteq> sum \<Longrightarrow> inj_on Abs_sum A" |
30 |
by (rule inj_on_inverseI, rule Abs_sum_inverse) auto |
|
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
31 |
|
33962 | 32 |
lemma Inl_Rep_inject: "inj_on Inl_Rep A" |
33 |
proof (rule inj_onI) |
|
34 |
show "\<And>a c. Inl_Rep a = Inl_Rep c \<Longrightarrow> a = c" |
|
39302
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents:
39198
diff
changeset
|
35 |
by (auto simp add: Inl_Rep_def fun_eq_iff) |
33962 | 36 |
qed |
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
37 |
|
33962 | 38 |
lemma Inr_Rep_inject: "inj_on Inr_Rep A" |
39 |
proof (rule inj_onI) |
|
40 |
show "\<And>b d. Inr_Rep b = Inr_Rep d \<Longrightarrow> b = d" |
|
39302
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents:
39198
diff
changeset
|
41 |
by (auto simp add: Inr_Rep_def fun_eq_iff) |
33962 | 42 |
qed |
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
43 |
|
33962 | 44 |
lemma Inl_Rep_not_Inr_Rep: "Inl_Rep a \<noteq> Inr_Rep b" |
39302
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents:
39198
diff
changeset
|
45 |
by (auto simp add: Inl_Rep_def Inr_Rep_def fun_eq_iff) |
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
46 |
|
33962 | 47 |
definition Inl :: "'a \<Rightarrow> 'a + 'b" where |
37388 | 48 |
"Inl = Abs_sum \<circ> Inl_Rep" |
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
49 |
|
33962 | 50 |
definition Inr :: "'b \<Rightarrow> 'a + 'b" where |
37388 | 51 |
"Inr = Abs_sum \<circ> Inr_Rep" |
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
52 |
|
29025
8c8859c0d734
move lemmas from Numeral_Type.thy to other theories
huffman
parents:
28524
diff
changeset
|
53 |
lemma inj_Inl [simp]: "inj_on Inl A" |
37388 | 54 |
by (auto simp add: Inl_def intro!: comp_inj_on Inl_Rep_inject inj_on_Abs_sum Inl_RepI) |
29025
8c8859c0d734
move lemmas from Numeral_Type.thy to other theories
huffman
parents:
28524
diff
changeset
|
55 |
|
33962 | 56 |
lemma Inl_inject: "Inl x = Inl y \<Longrightarrow> x = y" |
57 |
using inj_Inl by (rule injD) |
|
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
58 |
|
29025
8c8859c0d734
move lemmas from Numeral_Type.thy to other theories
huffman
parents:
28524
diff
changeset
|
59 |
lemma inj_Inr [simp]: "inj_on Inr A" |
37388 | 60 |
by (auto simp add: Inr_def intro!: comp_inj_on Inr_Rep_inject inj_on_Abs_sum Inr_RepI) |
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
61 |
|
33962 | 62 |
lemma Inr_inject: "Inr x = Inr y \<Longrightarrow> x = y" |
63 |
using inj_Inr by (rule injD) |
|
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
64 |
|
33962 | 65 |
lemma Inl_not_Inr: "Inl a \<noteq> Inr b" |
66 |
proof - |
|
37388 | 67 |
from Inl_RepI [of a] Inr_RepI [of b] have "{Inl_Rep a, Inr_Rep b} \<subseteq> sum" by auto |
68 |
with inj_on_Abs_sum have "inj_on Abs_sum {Inl_Rep a, Inr_Rep b}" . |
|
69 |
with Inl_Rep_not_Inr_Rep [of a b] inj_on_contraD have "Abs_sum (Inl_Rep a) \<noteq> Abs_sum (Inr_Rep b)" by auto |
|
33962 | 70 |
then show ?thesis by (simp add: Inl_def Inr_def) |
71 |
qed |
|
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
72 |
|
33962 | 73 |
lemma Inr_not_Inl: "Inr b \<noteq> Inl a" |
74 |
using Inl_not_Inr by (rule not_sym) |
|
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
75 |
|
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
76 |
lemma sumE: |
33962 | 77 |
assumes "\<And>x::'a. s = Inl x \<Longrightarrow> P" |
78 |
and "\<And>y::'b. s = Inr y \<Longrightarrow> P" |
|
79 |
shows P |
|
37388 | 80 |
proof (rule Abs_sum_cases [of s]) |
33962 | 81 |
fix f |
37388 | 82 |
assume "s = Abs_sum f" and "f \<in> sum" |
83 |
with assms show P by (auto simp add: sum_def Inl_def Inr_def) |
|
33962 | 84 |
qed |
33961 | 85 |
|
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37388
diff
changeset
|
86 |
rep_datatype Inl Inr |
33961 | 87 |
proof - |
88 |
fix P |
|
89 |
fix s :: "'a + 'b" |
|
90 |
assume x: "\<And>x\<Colon>'a. P (Inl x)" and y: "\<And>y\<Colon>'b. P (Inr y)" |
|
91 |
then show "P s" by (auto intro: sumE [of s]) |
|
33962 | 92 |
qed (auto dest: Inl_inject Inr_inject simp add: Inl_not_Inr) |
93 |
||
40610 | 94 |
primrec sum_map :: "('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> 'a + 'b \<Rightarrow> 'c + 'd" where |
95 |
"sum_map f1 f2 (Inl a) = Inl (f1 a)" |
|
96 |
| "sum_map f1 f2 (Inr a) = Inr (f2 a)" |
|
97 |
||
41505
6d19301074cf
"enriched_type" replaces less specific "type_lifting"
haftmann
parents:
41372
diff
changeset
|
98 |
enriched_type sum_map: sum_map proof - |
41372 | 99 |
fix f g h i |
100 |
show "sum_map f g \<circ> sum_map h i = sum_map (f \<circ> h) (g \<circ> i)" |
|
101 |
proof |
|
102 |
fix s |
|
103 |
show "(sum_map f g \<circ> sum_map h i) s = sum_map (f \<circ> h) (g \<circ> i) s" |
|
104 |
by (cases s) simp_all |
|
105 |
qed |
|
40610 | 106 |
next |
107 |
fix s |
|
41372 | 108 |
show "sum_map id id = id" |
109 |
proof |
|
110 |
fix s |
|
111 |
show "sum_map id id s = id s" |
|
112 |
by (cases s) simp_all |
|
113 |
qed |
|
40610 | 114 |
qed |
115 |
||
33961 | 116 |
|
33962 | 117 |
subsection {* Projections *} |
118 |
||
119 |
lemma sum_case_KK [simp]: "sum_case (\<lambda>x. a) (\<lambda>x. a) = (\<lambda>x. a)" |
|
33961 | 120 |
by (rule ext) (simp split: sum.split) |
121 |
||
33962 | 122 |
lemma surjective_sum: "sum_case (\<lambda>x::'a. f (Inl x)) (\<lambda>y::'b. f (Inr y)) = f" |
123 |
proof |
|
124 |
fix s :: "'a + 'b" |
|
125 |
show "(case s of Inl (x\<Colon>'a) \<Rightarrow> f (Inl x) | Inr (y\<Colon>'b) \<Rightarrow> f (Inr y)) = f s" |
|
126 |
by (cases s) simp_all |
|
127 |
qed |
|
33961 | 128 |
|
33962 | 129 |
lemma sum_case_inject: |
130 |
assumes a: "sum_case f1 f2 = sum_case g1 g2" |
|
131 |
assumes r: "f1 = g1 \<Longrightarrow> f2 = g2 \<Longrightarrow> P" |
|
132 |
shows P |
|
133 |
proof (rule r) |
|
134 |
show "f1 = g1" proof |
|
135 |
fix x :: 'a |
|
136 |
from a have "sum_case f1 f2 (Inl x) = sum_case g1 g2 (Inl x)" by simp |
|
137 |
then show "f1 x = g1 x" by simp |
|
138 |
qed |
|
139 |
show "f2 = g2" proof |
|
140 |
fix y :: 'b |
|
141 |
from a have "sum_case f1 f2 (Inr y) = sum_case g1 g2 (Inr y)" by simp |
|
142 |
then show "f2 y = g2 y" by simp |
|
143 |
qed |
|
144 |
qed |
|
145 |
||
146 |
lemma sum_case_weak_cong: |
|
147 |
"s = t \<Longrightarrow> sum_case f g s = sum_case f g t" |
|
33961 | 148 |
-- {* Prevents simplification of @{text f} and @{text g}: much faster. *} |
149 |
by simp |
|
150 |
||
33962 | 151 |
primrec Projl :: "'a + 'b \<Rightarrow> 'a" where |
152 |
Projl_Inl: "Projl (Inl x) = x" |
|
153 |
||
154 |
primrec Projr :: "'a + 'b \<Rightarrow> 'b" where |
|
155 |
Projr_Inr: "Projr (Inr x) = x" |
|
156 |
||
157 |
primrec Suml :: "('a \<Rightarrow> 'c) \<Rightarrow> 'a + 'b \<Rightarrow> 'c" where |
|
158 |
"Suml f (Inl x) = f x" |
|
159 |
||
160 |
primrec Sumr :: "('b \<Rightarrow> 'c) \<Rightarrow> 'a + 'b \<Rightarrow> 'c" where |
|
161 |
"Sumr f (Inr x) = f x" |
|
162 |
||
163 |
lemma Suml_inject: |
|
164 |
assumes "Suml f = Suml g" shows "f = g" |
|
165 |
proof |
|
166 |
fix x :: 'a |
|
167 |
let ?s = "Inl x \<Colon> 'a + 'b" |
|
168 |
from assms have "Suml f ?s = Suml g ?s" by simp |
|
169 |
then show "f x = g x" by simp |
|
33961 | 170 |
qed |
171 |
||
33962 | 172 |
lemma Sumr_inject: |
173 |
assumes "Sumr f = Sumr g" shows "f = g" |
|
174 |
proof |
|
175 |
fix x :: 'b |
|
176 |
let ?s = "Inr x \<Colon> 'a + 'b" |
|
177 |
from assms have "Sumr f ?s = Sumr g ?s" by simp |
|
178 |
then show "f x = g x" by simp |
|
179 |
qed |
|
33961 | 180 |
|
33995 | 181 |
|
33962 | 182 |
subsection {* The Disjoint Sum of Sets *} |
33961 | 183 |
|
33962 | 184 |
definition Plus :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a + 'b) set" (infixr "<+>" 65) where |
185 |
"A <+> B = Inl ` A \<union> Inr ` B" |
|
186 |
||
40271 | 187 |
hide_const (open) Plus --"Valuable identifier" |
188 |
||
33962 | 189 |
lemma InlI [intro!]: "a \<in> A \<Longrightarrow> Inl a \<in> A <+> B" |
190 |
by (simp add: Plus_def) |
|
33961 | 191 |
|
33962 | 192 |
lemma InrI [intro!]: "b \<in> B \<Longrightarrow> Inr b \<in> A <+> B" |
193 |
by (simp add: Plus_def) |
|
33961 | 194 |
|
33962 | 195 |
text {* Exhaustion rule for sums, a degenerate form of induction *} |
196 |
||
197 |
lemma PlusE [elim!]: |
|
198 |
"u \<in> A <+> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> u = Inl x \<Longrightarrow> P) \<Longrightarrow> (\<And>y. y \<in> B \<Longrightarrow> u = Inr y \<Longrightarrow> P) \<Longrightarrow> P" |
|
199 |
by (auto simp add: Plus_def) |
|
33961 | 200 |
|
33962 | 201 |
lemma Plus_eq_empty_conv [simp]: "A <+> B = {} \<longleftrightarrow> A = {} \<and> B = {}" |
202 |
by auto |
|
33961 | 203 |
|
33962 | 204 |
lemma UNIV_Plus_UNIV [simp]: "UNIV <+> UNIV = UNIV" |
39302
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents:
39198
diff
changeset
|
205 |
proof (rule set_eqI) |
33962 | 206 |
fix u :: "'a + 'b" |
207 |
show "u \<in> UNIV <+> UNIV \<longleftrightarrow> u \<in> UNIV" by (cases u) auto |
|
208 |
qed |
|
33961 | 209 |
|
36176
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
wenzelm
parents:
33995
diff
changeset
|
210 |
hide_const (open) Suml Sumr Projl Projr |
33961 | 211 |
|
10213 | 212 |
end |