author | haftmann |
Tue, 26 Mar 2013 21:53:56 +0100 | |
changeset 51546 | 2e26df807dc7 |
parent 51540 | eea5c4ca4a0e |
child 51593 | d40aec502416 |
permissions | -rw-r--r-- |
21249 | 1 |
(* Title: HOL/Lattices.thy |
2 |
Author: Tobias Nipkow |
|
3 |
*) |
|
4 |
||
22454 | 5 |
header {* Abstract lattices *} |
21249 | 6 |
|
7 |
theory Lattices |
|
35121 | 8 |
imports Orderings Groups |
21249 | 9 |
begin |
10 |
||
35301
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
11 |
subsection {* Abstract semilattice *} |
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
12 |
|
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
13 |
text {* |
51487 | 14 |
These locales provide a basic structure for interpretation into |
35301
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
15 |
bigger structures; extensions require careful thinking, otherwise |
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
16 |
undesired effects may occur due to interpretation. |
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
17 |
*} |
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
18 |
|
51487 | 19 |
no_notation times (infixl "*" 70) |
20 |
no_notation Groups.one ("1") |
|
21 |
||
35301
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
22 |
locale semilattice = abel_semigroup + |
51487 | 23 |
assumes idem [simp]: "a * a = a" |
35301
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
24 |
begin |
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
25 |
|
51487 | 26 |
lemma left_idem [simp]: "a * (a * b) = a * b" |
50615 | 27 |
by (simp add: assoc [symmetric]) |
28 |
||
51487 | 29 |
lemma right_idem [simp]: "(a * b) * b = a * b" |
50615 | 30 |
by (simp add: assoc) |
35301
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
31 |
|
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
32 |
end |
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
33 |
|
51487 | 34 |
locale semilattice_neutr = semilattice + comm_monoid |
35301
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
35 |
|
51487 | 36 |
locale semilattice_order = semilattice + |
37 |
fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<preceq>" 50) |
|
38 |
and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<prec>" 50) |
|
39 |
assumes order_iff: "a \<preceq> b \<longleftrightarrow> a = a * b" |
|
40 |
and semilattice_strict_iff_order: "a \<prec> b \<longleftrightarrow> a \<preceq> b \<and> a \<noteq> b" |
|
41 |
begin |
|
42 |
||
43 |
lemma orderI: |
|
44 |
"a = a * b \<Longrightarrow> a \<preceq> b" |
|
45 |
by (simp add: order_iff) |
|
46 |
||
47 |
lemma orderE: |
|
48 |
assumes "a \<preceq> b" |
|
49 |
obtains "a = a * b" |
|
50 |
using assms by (unfold order_iff) |
|
51 |
||
52 |
end |
|
35301
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
53 |
|
51487 | 54 |
sublocale semilattice_order < ordering less_eq less |
55 |
proof |
|
56 |
fix a b |
|
57 |
show "a \<prec> b \<longleftrightarrow> a \<preceq> b \<and> a \<noteq> b" |
|
58 |
by (fact semilattice_strict_iff_order) |
|
59 |
next |
|
60 |
fix a |
|
61 |
show "a \<preceq> a" |
|
62 |
by (simp add: order_iff) |
|
63 |
next |
|
64 |
fix a b |
|
65 |
assume "a \<preceq> b" "b \<preceq> a" |
|
66 |
then have "a = a * b" "a * b = b" |
|
67 |
by (simp_all add: order_iff commute) |
|
68 |
then show "a = b" by simp |
|
69 |
next |
|
70 |
fix a b c |
|
71 |
assume "a \<preceq> b" "b \<preceq> c" |
|
72 |
then have "a = a * b" "b = b * c" |
|
73 |
by (simp_all add: order_iff commute) |
|
74 |
then have "a = a * (b * c)" |
|
75 |
by simp |
|
76 |
then have "a = (a * b) * c" |
|
77 |
by (simp add: assoc) |
|
78 |
with `a = a * b` [symmetric] have "a = a * c" by simp |
|
79 |
then show "a \<preceq> c" by (rule orderI) |
|
80 |
qed |
|
35301
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
81 |
|
51487 | 82 |
context semilattice_order |
35301
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
83 |
begin |
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
84 |
|
51487 | 85 |
lemma cobounded1 [simp]: |
86 |
"a * b \<preceq> a" |
|
87 |
by (simp add: order_iff commute) |
|
88 |
||
89 |
lemma cobounded2 [simp]: |
|
90 |
"a * b \<preceq> b" |
|
91 |
by (simp add: order_iff) |
|
92 |
||
93 |
lemma boundedI: |
|
94 |
assumes "a \<preceq> b" and "a \<preceq> c" |
|
95 |
shows "a \<preceq> b * c" |
|
96 |
proof (rule orderI) |
|
97 |
from assms obtain "a * b = a" and "a * c = a" by (auto elim!: orderE) |
|
98 |
then show "a = a * (b * c)" by (simp add: assoc [symmetric]) |
|
99 |
qed |
|
100 |
||
101 |
lemma boundedE: |
|
102 |
assumes "a \<preceq> b * c" |
|
103 |
obtains "a \<preceq> b" and "a \<preceq> c" |
|
104 |
using assms by (blast intro: trans cobounded1 cobounded2) |
|
105 |
||
106 |
lemma bounded_iff: |
|
107 |
"a \<preceq> b * c \<longleftrightarrow> a \<preceq> b \<and> a \<preceq> c" |
|
108 |
by (blast intro: boundedI elim: boundedE) |
|
109 |
||
110 |
lemma strict_boundedE: |
|
111 |
assumes "a \<prec> b * c" |
|
112 |
obtains "a \<prec> b" and "a \<prec> c" |
|
113 |
using assms by (auto simp add: commute strict_iff_order bounded_iff elim: orderE intro!: that)+ |
|
114 |
||
115 |
lemma coboundedI1: |
|
116 |
"a \<preceq> c \<Longrightarrow> a * b \<preceq> c" |
|
117 |
by (rule trans) auto |
|
118 |
||
119 |
lemma coboundedI2: |
|
120 |
"b \<preceq> c \<Longrightarrow> a * b \<preceq> c" |
|
121 |
by (rule trans) auto |
|
122 |
||
123 |
lemma mono: "a \<preceq> c \<Longrightarrow> b \<preceq> d \<Longrightarrow> a * b \<preceq> c * d" |
|
124 |
by (blast intro: boundedI coboundedI1 coboundedI2) |
|
125 |
||
126 |
lemma absorb1: "a \<preceq> b \<Longrightarrow> a * b = a" |
|
127 |
by (rule antisym) (auto simp add: refl bounded_iff) |
|
128 |
||
129 |
lemma absorb2: "b \<preceq> a \<Longrightarrow> a * b = b" |
|
130 |
by (rule antisym) (auto simp add: refl bounded_iff) |
|
35301
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
131 |
|
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
132 |
end |
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
133 |
|
51487 | 134 |
locale semilattice_neutr_order = semilattice_neutr + semilattice_order |
135 |
||
136 |
sublocale semilattice_neutr_order < ordering_top less_eq less 1 |
|
137 |
by default (simp add: order_iff) |
|
138 |
||
139 |
notation times (infixl "*" 70) |
|
140 |
notation Groups.one ("1") |
|
141 |
||
35301
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
142 |
|
46691 | 143 |
subsection {* Syntactic infimum and supremum operations *} |
41082 | 144 |
|
44845 | 145 |
class inf = |
146 |
fixes inf :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<sqinter>" 70) |
|
25206 | 147 |
|
44845 | 148 |
class sup = |
149 |
fixes sup :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<squnion>" 65) |
|
150 |
||
46691 | 151 |
|
152 |
subsection {* Concrete lattices *} |
|
153 |
||
154 |
notation |
|
155 |
less_eq (infix "\<sqsubseteq>" 50) and |
|
156 |
less (infix "\<sqsubset>" 50) |
|
157 |
||
44845 | 158 |
class semilattice_inf = order + inf + |
22737 | 159 |
assumes inf_le1 [simp]: "x \<sqinter> y \<sqsubseteq> x" |
160 |
and inf_le2 [simp]: "x \<sqinter> y \<sqsubseteq> y" |
|
21733 | 161 |
and inf_greatest: "x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<sqinter> z" |
21249 | 162 |
|
44845 | 163 |
class semilattice_sup = order + sup + |
22737 | 164 |
assumes sup_ge1 [simp]: "x \<sqsubseteq> x \<squnion> y" |
165 |
and sup_ge2 [simp]: "y \<sqsubseteq> x \<squnion> y" |
|
21733 | 166 |
and sup_least: "y \<sqsubseteq> x \<Longrightarrow> z \<sqsubseteq> x \<Longrightarrow> y \<squnion> z \<sqsubseteq> x" |
26014 | 167 |
begin |
168 |
||
169 |
text {* Dual lattice *} |
|
170 |
||
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
171 |
lemma dual_semilattice: |
44845 | 172 |
"class.semilattice_inf sup greater_eq greater" |
36635
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
haftmann
parents:
36352
diff
changeset
|
173 |
by (rule class.semilattice_inf.intro, rule dual_order) |
27682 | 174 |
(unfold_locales, simp_all add: sup_least) |
26014 | 175 |
|
176 |
end |
|
21249 | 177 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34973
diff
changeset
|
178 |
class lattice = semilattice_inf + semilattice_sup |
21249 | 179 |
|
25382 | 180 |
|
28562 | 181 |
subsubsection {* Intro and elim rules*} |
21733 | 182 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34973
diff
changeset
|
183 |
context semilattice_inf |
21733 | 184 |
begin |
21249 | 185 |
|
32064 | 186 |
lemma le_infI1: |
187 |
"a \<sqsubseteq> x \<Longrightarrow> a \<sqinter> b \<sqsubseteq> x" |
|
188 |
by (rule order_trans) auto |
|
21249 | 189 |
|
32064 | 190 |
lemma le_infI2: |
191 |
"b \<sqsubseteq> x \<Longrightarrow> a \<sqinter> b \<sqsubseteq> x" |
|
192 |
by (rule order_trans) auto |
|
21733 | 193 |
|
32064 | 194 |
lemma le_infI: "x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<sqinter> b" |
36008 | 195 |
by (rule inf_greatest) (* FIXME: duplicate lemma *) |
21249 | 196 |
|
32064 | 197 |
lemma le_infE: "x \<sqsubseteq> a \<sqinter> b \<Longrightarrow> (x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> P) \<Longrightarrow> P" |
36008 | 198 |
by (blast intro: order_trans inf_le1 inf_le2) |
21249 | 199 |
|
21734 | 200 |
lemma le_inf_iff [simp]: |
32064 | 201 |
"x \<sqsubseteq> y \<sqinter> z \<longleftrightarrow> x \<sqsubseteq> y \<and> x \<sqsubseteq> z" |
202 |
by (blast intro: le_infI elim: le_infE) |
|
21733 | 203 |
|
32064 | 204 |
lemma le_iff_inf: |
205 |
"x \<sqsubseteq> y \<longleftrightarrow> x \<sqinter> y = x" |
|
206 |
by (auto intro: le_infI1 antisym dest: eq_iff [THEN iffD1]) |
|
21249 | 207 |
|
43753 | 208 |
lemma inf_mono: "a \<sqsubseteq> c \<Longrightarrow> b \<sqsubseteq> d \<Longrightarrow> a \<sqinter> b \<sqsubseteq> c \<sqinter> d" |
36008 | 209 |
by (fast intro: inf_greatest le_infI1 le_infI2) |
210 |
||
25206 | 211 |
lemma mono_inf: |
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34973
diff
changeset
|
212 |
fixes f :: "'a \<Rightarrow> 'b\<Colon>semilattice_inf" |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
213 |
shows "mono f \<Longrightarrow> f (A \<sqinter> B) \<sqsubseteq> f A \<sqinter> f B" |
25206 | 214 |
by (auto simp add: mono_def intro: Lattices.inf_greatest) |
21733 | 215 |
|
25206 | 216 |
end |
21733 | 217 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34973
diff
changeset
|
218 |
context semilattice_sup |
21733 | 219 |
begin |
21249 | 220 |
|
32064 | 221 |
lemma le_supI1: |
222 |
"x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> a \<squnion> b" |
|
25062 | 223 |
by (rule order_trans) auto |
21249 | 224 |
|
32064 | 225 |
lemma le_supI2: |
226 |
"x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<squnion> b" |
|
25062 | 227 |
by (rule order_trans) auto |
21733 | 228 |
|
32064 | 229 |
lemma le_supI: |
230 |
"a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> a \<squnion> b \<sqsubseteq> x" |
|
36008 | 231 |
by (rule sup_least) (* FIXME: duplicate lemma *) |
21249 | 232 |
|
32064 | 233 |
lemma le_supE: |
234 |
"a \<squnion> b \<sqsubseteq> x \<Longrightarrow> (a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> P) \<Longrightarrow> P" |
|
36008 | 235 |
by (blast intro: order_trans sup_ge1 sup_ge2) |
22422
ee19cdb07528
stepping towards uniform lattice theory development in HOL
haftmann
parents:
22384
diff
changeset
|
236 |
|
32064 | 237 |
lemma le_sup_iff [simp]: |
238 |
"x \<squnion> y \<sqsubseteq> z \<longleftrightarrow> x \<sqsubseteq> z \<and> y \<sqsubseteq> z" |
|
239 |
by (blast intro: le_supI elim: le_supE) |
|
21733 | 240 |
|
32064 | 241 |
lemma le_iff_sup: |
242 |
"x \<sqsubseteq> y \<longleftrightarrow> x \<squnion> y = y" |
|
243 |
by (auto intro: le_supI2 antisym dest: eq_iff [THEN iffD1]) |
|
21734 | 244 |
|
43753 | 245 |
lemma sup_mono: "a \<sqsubseteq> c \<Longrightarrow> b \<sqsubseteq> d \<Longrightarrow> a \<squnion> b \<sqsubseteq> c \<squnion> d" |
36008 | 246 |
by (fast intro: sup_least le_supI1 le_supI2) |
247 |
||
25206 | 248 |
lemma mono_sup: |
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34973
diff
changeset
|
249 |
fixes f :: "'a \<Rightarrow> 'b\<Colon>semilattice_sup" |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
250 |
shows "mono f \<Longrightarrow> f A \<squnion> f B \<sqsubseteq> f (A \<squnion> B)" |
25206 | 251 |
by (auto simp add: mono_def intro: Lattices.sup_least) |
21733 | 252 |
|
25206 | 253 |
end |
23878 | 254 |
|
21733 | 255 |
|
32064 | 256 |
subsubsection {* Equational laws *} |
21249 | 257 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34973
diff
changeset
|
258 |
sublocale semilattice_inf < inf!: semilattice inf |
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
259 |
proof |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
260 |
fix a b c |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
261 |
show "(a \<sqinter> b) \<sqinter> c = a \<sqinter> (b \<sqinter> c)" |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
262 |
by (rule antisym) (auto intro: le_infI1 le_infI2) |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
263 |
show "a \<sqinter> b = b \<sqinter> a" |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
264 |
by (rule antisym) auto |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
265 |
show "a \<sqinter> a = a" |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
266 |
by (rule antisym) auto |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
267 |
qed |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
268 |
|
51487 | 269 |
sublocale semilattice_sup < sup!: semilattice sup |
270 |
proof |
|
271 |
fix a b c |
|
272 |
show "(a \<squnion> b) \<squnion> c = a \<squnion> (b \<squnion> c)" |
|
273 |
by (rule antisym) (auto intro: le_supI1 le_supI2) |
|
274 |
show "a \<squnion> b = b \<squnion> a" |
|
275 |
by (rule antisym) auto |
|
276 |
show "a \<squnion> a = a" |
|
277 |
by (rule antisym) auto |
|
278 |
qed |
|
279 |
||
280 |
sublocale semilattice_inf < inf!: semilattice_order inf less_eq less |
|
281 |
by default (auto simp add: le_iff_inf less_le) |
|
282 |
||
283 |
sublocale semilattice_sup < sup!: semilattice_order sup greater_eq greater |
|
284 |
by default (auto simp add: le_iff_sup sup.commute less_le) |
|
285 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34973
diff
changeset
|
286 |
context semilattice_inf |
21733 | 287 |
begin |
288 |
||
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
289 |
lemma inf_assoc: "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)" |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
290 |
by (fact inf.assoc) |
21733 | 291 |
|
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
292 |
lemma inf_commute: "(x \<sqinter> y) = (y \<sqinter> x)" |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
293 |
by (fact inf.commute) |
21733 | 294 |
|
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
295 |
lemma inf_left_commute: "x \<sqinter> (y \<sqinter> z) = y \<sqinter> (x \<sqinter> z)" |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
296 |
by (fact inf.left_commute) |
21733 | 297 |
|
44921 | 298 |
lemma inf_idem: "x \<sqinter> x = x" |
299 |
by (fact inf.idem) (* already simp *) |
|
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
300 |
|
50615 | 301 |
lemma inf_left_idem: "x \<sqinter> (x \<sqinter> y) = x \<sqinter> y" |
302 |
by (fact inf.left_idem) (* already simp *) |
|
303 |
||
304 |
lemma inf_right_idem: "(x \<sqinter> y) \<sqinter> y = x \<sqinter> y" |
|
305 |
by (fact inf.right_idem) (* already simp *) |
|
21733 | 306 |
|
32642
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
haftmann
parents:
32568
diff
changeset
|
307 |
lemma inf_absorb1: "x \<sqsubseteq> y \<Longrightarrow> x \<sqinter> y = x" |
32064 | 308 |
by (rule antisym) auto |
21733 | 309 |
|
32642
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
haftmann
parents:
32568
diff
changeset
|
310 |
lemma inf_absorb2: "y \<sqsubseteq> x \<Longrightarrow> x \<sqinter> y = y" |
32064 | 311 |
by (rule antisym) auto |
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
312 |
|
32064 | 313 |
lemmas inf_aci = inf_commute inf_assoc inf_left_commute inf_left_idem |
21733 | 314 |
|
315 |
end |
|
316 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34973
diff
changeset
|
317 |
context semilattice_sup |
21733 | 318 |
begin |
21249 | 319 |
|
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
320 |
lemma sup_assoc: "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)" |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
321 |
by (fact sup.assoc) |
21733 | 322 |
|
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
323 |
lemma sup_commute: "(x \<squnion> y) = (y \<squnion> x)" |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
324 |
by (fact sup.commute) |
21733 | 325 |
|
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
326 |
lemma sup_left_commute: "x \<squnion> (y \<squnion> z) = y \<squnion> (x \<squnion> z)" |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
327 |
by (fact sup.left_commute) |
21733 | 328 |
|
44921 | 329 |
lemma sup_idem: "x \<squnion> x = x" |
330 |
by (fact sup.idem) (* already simp *) |
|
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
331 |
|
44918 | 332 |
lemma sup_left_idem [simp]: "x \<squnion> (x \<squnion> y) = x \<squnion> y" |
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
333 |
by (fact sup.left_idem) |
21733 | 334 |
|
32642
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
haftmann
parents:
32568
diff
changeset
|
335 |
lemma sup_absorb1: "y \<sqsubseteq> x \<Longrightarrow> x \<squnion> y = x" |
32064 | 336 |
by (rule antisym) auto |
21733 | 337 |
|
32642
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
haftmann
parents:
32568
diff
changeset
|
338 |
lemma sup_absorb2: "x \<sqsubseteq> y \<Longrightarrow> x \<squnion> y = y" |
32064 | 339 |
by (rule antisym) auto |
21249 | 340 |
|
32064 | 341 |
lemmas sup_aci = sup_commute sup_assoc sup_left_commute sup_left_idem |
21733 | 342 |
|
343 |
end |
|
21249 | 344 |
|
21733 | 345 |
context lattice |
346 |
begin |
|
347 |
||
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
348 |
lemma dual_lattice: |
44845 | 349 |
"class.lattice sup (op \<ge>) (op >) inf" |
36635
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
haftmann
parents:
36352
diff
changeset
|
350 |
by (rule class.lattice.intro, rule dual_semilattice, rule class.semilattice_sup.intro, rule dual_order) |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
351 |
(unfold_locales, auto) |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
352 |
|
44918 | 353 |
lemma inf_sup_absorb [simp]: "x \<sqinter> (x \<squnion> y) = x" |
25102
db3e412c4cb1
antisymmetry not a default intro rule any longer
haftmann
parents:
25062
diff
changeset
|
354 |
by (blast intro: antisym inf_le1 inf_greatest sup_ge1) |
21733 | 355 |
|
44918 | 356 |
lemma sup_inf_absorb [simp]: "x \<squnion> (x \<sqinter> y) = x" |
25102
db3e412c4cb1
antisymmetry not a default intro rule any longer
haftmann
parents:
25062
diff
changeset
|
357 |
by (blast intro: antisym sup_ge1 sup_least inf_le1) |
21733 | 358 |
|
32064 | 359 |
lemmas inf_sup_aci = inf_aci sup_aci |
21734 | 360 |
|
22454 | 361 |
lemmas inf_sup_ord = inf_le1 inf_le2 sup_ge1 sup_ge2 |
362 |
||
21734 | 363 |
text{* Towards distributivity *} |
21249 | 364 |
|
21734 | 365 |
lemma distrib_sup_le: "x \<squnion> (y \<sqinter> z) \<sqsubseteq> (x \<squnion> y) \<sqinter> (x \<squnion> z)" |
32064 | 366 |
by (auto intro: le_infI1 le_infI2 le_supI1 le_supI2) |
21734 | 367 |
|
368 |
lemma distrib_inf_le: "(x \<sqinter> y) \<squnion> (x \<sqinter> z) \<sqsubseteq> x \<sqinter> (y \<squnion> z)" |
|
32064 | 369 |
by (auto intro: le_infI1 le_infI2 le_supI1 le_supI2) |
21734 | 370 |
|
371 |
text{* If you have one of them, you have them all. *} |
|
21249 | 372 |
|
21733 | 373 |
lemma distrib_imp1: |
21249 | 374 |
assumes D: "!!x y z. x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" |
375 |
shows "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" |
|
376 |
proof- |
|
44918 | 377 |
have "x \<squnion> (y \<sqinter> z) = (x \<squnion> (x \<sqinter> z)) \<squnion> (y \<sqinter> z)" by simp |
378 |
also have "\<dots> = x \<squnion> (z \<sqinter> (x \<squnion> y))" |
|
379 |
by (simp add: D inf_commute sup_assoc del: sup_inf_absorb) |
|
21249 | 380 |
also have "\<dots> = ((x \<squnion> y) \<sqinter> x) \<squnion> ((x \<squnion> y) \<sqinter> z)" |
44919 | 381 |
by(simp add: inf_commute) |
21249 | 382 |
also have "\<dots> = (x \<squnion> y) \<sqinter> (x \<squnion> z)" by(simp add:D) |
383 |
finally show ?thesis . |
|
384 |
qed |
|
385 |
||
21733 | 386 |
lemma distrib_imp2: |
21249 | 387 |
assumes D: "!!x y z. x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" |
388 |
shows "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" |
|
389 |
proof- |
|
44918 | 390 |
have "x \<sqinter> (y \<squnion> z) = (x \<sqinter> (x \<squnion> z)) \<sqinter> (y \<squnion> z)" by simp |
391 |
also have "\<dots> = x \<sqinter> (z \<squnion> (x \<sqinter> y))" |
|
392 |
by (simp add: D sup_commute inf_assoc del: inf_sup_absorb) |
|
21249 | 393 |
also have "\<dots> = ((x \<sqinter> y) \<squnion> x) \<sqinter> ((x \<sqinter> y) \<squnion> z)" |
44919 | 394 |
by(simp add: sup_commute) |
21249 | 395 |
also have "\<dots> = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" by(simp add:D) |
396 |
finally show ?thesis . |
|
397 |
qed |
|
398 |
||
21733 | 399 |
end |
21249 | 400 |
|
32568 | 401 |
subsubsection {* Strict order *} |
402 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34973
diff
changeset
|
403 |
context semilattice_inf |
32568 | 404 |
begin |
405 |
||
406 |
lemma less_infI1: |
|
407 |
"a \<sqsubset> x \<Longrightarrow> a \<sqinter> b \<sqsubset> x" |
|
32642
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
haftmann
parents:
32568
diff
changeset
|
408 |
by (auto simp add: less_le inf_absorb1 intro: le_infI1) |
32568 | 409 |
|
410 |
lemma less_infI2: |
|
411 |
"b \<sqsubset> x \<Longrightarrow> a \<sqinter> b \<sqsubset> x" |
|
32642
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
haftmann
parents:
32568
diff
changeset
|
412 |
by (auto simp add: less_le inf_absorb2 intro: le_infI2) |
32568 | 413 |
|
414 |
end |
|
415 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34973
diff
changeset
|
416 |
context semilattice_sup |
32568 | 417 |
begin |
418 |
||
419 |
lemma less_supI1: |
|
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
420 |
"x \<sqsubset> a \<Longrightarrow> x \<sqsubset> a \<squnion> b" |
44921 | 421 |
using dual_semilattice |
422 |
by (rule semilattice_inf.less_infI1) |
|
32568 | 423 |
|
424 |
lemma less_supI2: |
|
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
425 |
"x \<sqsubset> b \<Longrightarrow> x \<sqsubset> a \<squnion> b" |
44921 | 426 |
using dual_semilattice |
427 |
by (rule semilattice_inf.less_infI2) |
|
32568 | 428 |
|
429 |
end |
|
430 |
||
21249 | 431 |
|
24164 | 432 |
subsection {* Distributive lattices *} |
21249 | 433 |
|
22454 | 434 |
class distrib_lattice = lattice + |
21249 | 435 |
assumes sup_inf_distrib1: "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" |
436 |
||
21733 | 437 |
context distrib_lattice |
438 |
begin |
|
439 |
||
440 |
lemma sup_inf_distrib2: |
|
44921 | 441 |
"(y \<sqinter> z) \<squnion> x = (y \<squnion> x) \<sqinter> (z \<squnion> x)" |
442 |
by (simp add: sup_commute sup_inf_distrib1) |
|
21249 | 443 |
|
21733 | 444 |
lemma inf_sup_distrib1: |
44921 | 445 |
"x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" |
446 |
by (rule distrib_imp2 [OF sup_inf_distrib1]) |
|
21249 | 447 |
|
21733 | 448 |
lemma inf_sup_distrib2: |
44921 | 449 |
"(y \<squnion> z) \<sqinter> x = (y \<sqinter> x) \<squnion> (z \<sqinter> x)" |
450 |
by (simp add: inf_commute inf_sup_distrib1) |
|
21249 | 451 |
|
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
452 |
lemma dual_distrib_lattice: |
44845 | 453 |
"class.distrib_lattice sup (op \<ge>) (op >) inf" |
36635
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
haftmann
parents:
36352
diff
changeset
|
454 |
by (rule class.distrib_lattice.intro, rule dual_lattice) |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
455 |
(unfold_locales, fact inf_sup_distrib1) |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
456 |
|
36008 | 457 |
lemmas sup_inf_distrib = |
458 |
sup_inf_distrib1 sup_inf_distrib2 |
|
459 |
||
460 |
lemmas inf_sup_distrib = |
|
461 |
inf_sup_distrib1 inf_sup_distrib2 |
|
462 |
||
21733 | 463 |
lemmas distrib = |
21249 | 464 |
sup_inf_distrib1 sup_inf_distrib2 inf_sup_distrib1 inf_sup_distrib2 |
465 |
||
21733 | 466 |
end |
467 |
||
21249 | 468 |
|
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
469 |
subsection {* Bounded lattices and boolean algebras *} |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
470 |
|
51487 | 471 |
class bounded_semilattice_inf_top = semilattice_inf + top |
472 |
||
473 |
sublocale bounded_semilattice_inf_top < inf_top!: semilattice_neutr inf top |
|
51546
2e26df807dc7
more uniform style for interpretation and sublocale declarations
haftmann
parents:
51540
diff
changeset
|
474 |
+ inf_top!: semilattice_neutr_order inf top less_eq less |
51487 | 475 |
proof |
476 |
fix x |
|
477 |
show "x \<sqinter> \<top> = x" |
|
478 |
by (rule inf_absorb1) simp |
|
479 |
qed |
|
480 |
||
481 |
class bounded_semilattice_sup_bot = semilattice_sup + bot |
|
482 |
||
483 |
sublocale bounded_semilattice_sup_bot < sup_bot!: semilattice_neutr sup bot |
|
51546
2e26df807dc7
more uniform style for interpretation and sublocale declarations
haftmann
parents:
51540
diff
changeset
|
484 |
+ sup_bot!: semilattice_neutr_order sup bot greater_eq greater |
51487 | 485 |
proof |
486 |
fix x |
|
487 |
show "x \<squnion> \<bottom> = x" |
|
488 |
by (rule sup_absorb1) simp |
|
489 |
qed |
|
490 |
||
36352
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
491 |
class bounded_lattice_bot = lattice + bot |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
492 |
begin |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
493 |
|
51487 | 494 |
subclass bounded_semilattice_sup_bot .. |
495 |
||
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
496 |
lemma inf_bot_left [simp]: |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
497 |
"\<bottom> \<sqinter> x = \<bottom>" |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
498 |
by (rule inf_absorb1) simp |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
499 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
500 |
lemma inf_bot_right [simp]: |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
501 |
"x \<sqinter> \<bottom> = \<bottom>" |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
502 |
by (rule inf_absorb2) simp |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
503 |
|
51487 | 504 |
lemma sup_bot_left: |
36352
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
505 |
"\<bottom> \<squnion> x = x" |
51487 | 506 |
by (fact sup_bot.left_neutral) |
36352
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
507 |
|
51487 | 508 |
lemma sup_bot_right: |
36352
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
509 |
"x \<squnion> \<bottom> = x" |
51487 | 510 |
by (fact sup_bot.right_neutral) |
36352
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
511 |
|
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
512 |
lemma sup_eq_bot_iff [simp]: |
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
513 |
"x \<squnion> y = \<bottom> \<longleftrightarrow> x = \<bottom> \<and> y = \<bottom>" |
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
514 |
by (simp add: eq_iff) |
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
515 |
|
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
516 |
end |
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
517 |
|
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
518 |
class bounded_lattice_top = lattice + top |
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
519 |
begin |
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
520 |
|
51487 | 521 |
subclass bounded_semilattice_inf_top .. |
522 |
||
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
523 |
lemma sup_top_left [simp]: |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
524 |
"\<top> \<squnion> x = \<top>" |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
525 |
by (rule sup_absorb1) simp |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
526 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
527 |
lemma sup_top_right [simp]: |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
528 |
"x \<squnion> \<top> = \<top>" |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
529 |
by (rule sup_absorb2) simp |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
530 |
|
51487 | 531 |
lemma inf_top_left: |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
532 |
"\<top> \<sqinter> x = x" |
51487 | 533 |
by (fact inf_top.left_neutral) |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
534 |
|
51487 | 535 |
lemma inf_top_right: |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
536 |
"x \<sqinter> \<top> = x" |
51487 | 537 |
by (fact inf_top.right_neutral) |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
538 |
|
36008 | 539 |
lemma inf_eq_top_iff [simp]: |
540 |
"x \<sqinter> y = \<top> \<longleftrightarrow> x = \<top> \<and> y = \<top>" |
|
541 |
by (simp add: eq_iff) |
|
32568 | 542 |
|
36352
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
543 |
end |
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
544 |
|
51487 | 545 |
class bounded_lattice = lattice + bot + top |
36352
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
546 |
begin |
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
547 |
|
51487 | 548 |
subclass bounded_lattice_bot .. |
549 |
subclass bounded_lattice_top .. |
|
550 |
||
36352
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
551 |
lemma dual_bounded_lattice: |
44845 | 552 |
"class.bounded_lattice sup greater_eq greater inf \<top> \<bottom>" |
36352
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
553 |
by unfold_locales (auto simp add: less_le_not_le) |
32568 | 554 |
|
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
555 |
end |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
556 |
|
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
557 |
class boolean_algebra = distrib_lattice + bounded_lattice + minus + uminus + |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
558 |
assumes inf_compl_bot: "x \<sqinter> - x = \<bottom>" |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
559 |
and sup_compl_top: "x \<squnion> - x = \<top>" |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
560 |
assumes diff_eq: "x - y = x \<sqinter> - y" |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
561 |
begin |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
562 |
|
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
563 |
lemma dual_boolean_algebra: |
44845 | 564 |
"class.boolean_algebra (\<lambda>x y. x \<squnion> - y) uminus sup greater_eq greater inf \<top> \<bottom>" |
36635
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
haftmann
parents:
36352
diff
changeset
|
565 |
by (rule class.boolean_algebra.intro, rule dual_bounded_lattice, rule dual_distrib_lattice) |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
566 |
(unfold_locales, auto simp add: inf_compl_bot sup_compl_top diff_eq) |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
567 |
|
44918 | 568 |
lemma compl_inf_bot [simp]: |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
569 |
"- x \<sqinter> x = \<bottom>" |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
570 |
by (simp add: inf_commute inf_compl_bot) |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
571 |
|
44918 | 572 |
lemma compl_sup_top [simp]: |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
573 |
"- x \<squnion> x = \<top>" |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
574 |
by (simp add: sup_commute sup_compl_top) |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
575 |
|
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
576 |
lemma compl_unique: |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
577 |
assumes "x \<sqinter> y = \<bottom>" |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
578 |
and "x \<squnion> y = \<top>" |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
579 |
shows "- x = y" |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
580 |
proof - |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
581 |
have "(x \<sqinter> - x) \<squnion> (- x \<sqinter> y) = (x \<sqinter> y) \<squnion> (- x \<sqinter> y)" |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
582 |
using inf_compl_bot assms(1) by simp |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
583 |
then have "(- x \<sqinter> x) \<squnion> (- x \<sqinter> y) = (y \<sqinter> x) \<squnion> (y \<sqinter> - x)" |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
584 |
by (simp add: inf_commute) |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
585 |
then have "- x \<sqinter> (x \<squnion> y) = y \<sqinter> (x \<squnion> - x)" |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
586 |
by (simp add: inf_sup_distrib1) |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
587 |
then have "- x \<sqinter> \<top> = y \<sqinter> \<top>" |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
588 |
using sup_compl_top assms(2) by simp |
34209 | 589 |
then show "- x = y" by simp |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
590 |
qed |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
591 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
592 |
lemma double_compl [simp]: |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
593 |
"- (- x) = x" |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
594 |
using compl_inf_bot compl_sup_top by (rule compl_unique) |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
595 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
596 |
lemma compl_eq_compl_iff [simp]: |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
597 |
"- x = - y \<longleftrightarrow> x = y" |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
598 |
proof |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
599 |
assume "- x = - y" |
36008 | 600 |
then have "- (- x) = - (- y)" by (rule arg_cong) |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
601 |
then show "x = y" by simp |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
602 |
next |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
603 |
assume "x = y" |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
604 |
then show "- x = - y" by simp |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
605 |
qed |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
606 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
607 |
lemma compl_bot_eq [simp]: |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
608 |
"- \<bottom> = \<top>" |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
609 |
proof - |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
610 |
from sup_compl_top have "\<bottom> \<squnion> - \<bottom> = \<top>" . |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
611 |
then show ?thesis by simp |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
612 |
qed |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
613 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
614 |
lemma compl_top_eq [simp]: |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
615 |
"- \<top> = \<bottom>" |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
616 |
proof - |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
617 |
from inf_compl_bot have "\<top> \<sqinter> - \<top> = \<bottom>" . |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
618 |
then show ?thesis by simp |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
619 |
qed |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
620 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
621 |
lemma compl_inf [simp]: |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
622 |
"- (x \<sqinter> y) = - x \<squnion> - y" |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
623 |
proof (rule compl_unique) |
36008 | 624 |
have "(x \<sqinter> y) \<sqinter> (- x \<squnion> - y) = (y \<sqinter> (x \<sqinter> - x)) \<squnion> (x \<sqinter> (y \<sqinter> - y))" |
625 |
by (simp only: inf_sup_distrib inf_aci) |
|
626 |
then show "(x \<sqinter> y) \<sqinter> (- x \<squnion> - y) = \<bottom>" |
|
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
627 |
by (simp add: inf_compl_bot) |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
628 |
next |
36008 | 629 |
have "(x \<sqinter> y) \<squnion> (- x \<squnion> - y) = (- y \<squnion> (x \<squnion> - x)) \<sqinter> (- x \<squnion> (y \<squnion> - y))" |
630 |
by (simp only: sup_inf_distrib sup_aci) |
|
631 |
then show "(x \<sqinter> y) \<squnion> (- x \<squnion> - y) = \<top>" |
|
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
632 |
by (simp add: sup_compl_top) |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
633 |
qed |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
634 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
635 |
lemma compl_sup [simp]: |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
636 |
"- (x \<squnion> y) = - x \<sqinter> - y" |
44921 | 637 |
using dual_boolean_algebra |
638 |
by (rule boolean_algebra.compl_inf) |
|
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
639 |
|
36008 | 640 |
lemma compl_mono: |
641 |
"x \<sqsubseteq> y \<Longrightarrow> - y \<sqsubseteq> - x" |
|
642 |
proof - |
|
643 |
assume "x \<sqsubseteq> y" |
|
644 |
then have "x \<squnion> y = y" by (simp only: le_iff_sup) |
|
645 |
then have "- (x \<squnion> y) = - y" by simp |
|
646 |
then have "- x \<sqinter> - y = - y" by simp |
|
647 |
then have "- y \<sqinter> - x = - y" by (simp only: inf_commute) |
|
648 |
then show "- y \<sqsubseteq> - x" by (simp only: le_iff_inf) |
|
649 |
qed |
|
650 |
||
44918 | 651 |
lemma compl_le_compl_iff [simp]: |
43753 | 652 |
"- x \<sqsubseteq> - y \<longleftrightarrow> y \<sqsubseteq> x" |
43873 | 653 |
by (auto dest: compl_mono) |
654 |
||
655 |
lemma compl_le_swap1: |
|
656 |
assumes "y \<sqsubseteq> - x" shows "x \<sqsubseteq> -y" |
|
657 |
proof - |
|
658 |
from assms have "- (- x) \<sqsubseteq> - y" by (simp only: compl_le_compl_iff) |
|
659 |
then show ?thesis by simp |
|
660 |
qed |
|
661 |
||
662 |
lemma compl_le_swap2: |
|
663 |
assumes "- y \<sqsubseteq> x" shows "- x \<sqsubseteq> y" |
|
664 |
proof - |
|
665 |
from assms have "- x \<sqsubseteq> - (- y)" by (simp only: compl_le_compl_iff) |
|
666 |
then show ?thesis by simp |
|
667 |
qed |
|
668 |
||
669 |
lemma compl_less_compl_iff: (* TODO: declare [simp] ? *) |
|
670 |
"- x \<sqsubset> - y \<longleftrightarrow> y \<sqsubset> x" |
|
44919 | 671 |
by (auto simp add: less_le) |
43873 | 672 |
|
673 |
lemma compl_less_swap1: |
|
674 |
assumes "y \<sqsubset> - x" shows "x \<sqsubset> - y" |
|
675 |
proof - |
|
676 |
from assms have "- (- x) \<sqsubset> - y" by (simp only: compl_less_compl_iff) |
|
677 |
then show ?thesis by simp |
|
678 |
qed |
|
679 |
||
680 |
lemma compl_less_swap2: |
|
681 |
assumes "- y \<sqsubset> x" shows "- x \<sqsubset> y" |
|
682 |
proof - |
|
683 |
from assms have "- x \<sqsubset> - (- y)" by (simp only: compl_less_compl_iff) |
|
684 |
then show ?thesis by simp |
|
685 |
qed |
|
36008 | 686 |
|
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
687 |
end |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
688 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
689 |
|
51540
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
haftmann
parents:
51489
diff
changeset
|
690 |
subsection {* @{text "min/max"} as special case of lattice *} |
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
haftmann
parents:
51489
diff
changeset
|
691 |
|
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
haftmann
parents:
51489
diff
changeset
|
692 |
sublocale linorder < min!: semilattice_order min less_eq less |
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
haftmann
parents:
51489
diff
changeset
|
693 |
+ max!: semilattice_order max greater_eq greater |
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
haftmann
parents:
51489
diff
changeset
|
694 |
by default (auto simp add: min_def max_def) |
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
haftmann
parents:
51489
diff
changeset
|
695 |
|
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
haftmann
parents:
51489
diff
changeset
|
696 |
lemma inf_min: "inf = (min \<Colon> 'a\<Colon>{semilattice_inf, linorder} \<Rightarrow> 'a \<Rightarrow> 'a)" |
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
haftmann
parents:
51489
diff
changeset
|
697 |
by (auto intro: antisym simp add: min_def fun_eq_iff) |
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
haftmann
parents:
51489
diff
changeset
|
698 |
|
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
haftmann
parents:
51489
diff
changeset
|
699 |
lemma sup_max: "sup = (max \<Colon> 'a\<Colon>{semilattice_sup, linorder} \<Rightarrow> 'a \<Rightarrow> 'a)" |
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
haftmann
parents:
51489
diff
changeset
|
700 |
by (auto intro: antisym simp add: max_def fun_eq_iff) |
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
haftmann
parents:
51489
diff
changeset
|
701 |
|
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
haftmann
parents:
51489
diff
changeset
|
702 |
|
22454 | 703 |
subsection {* Uniqueness of inf and sup *} |
704 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34973
diff
changeset
|
705 |
lemma (in semilattice_inf) inf_unique: |
22454 | 706 |
fixes f (infixl "\<triangle>" 70) |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
707 |
assumes le1: "\<And>x y. x \<triangle> y \<sqsubseteq> x" and le2: "\<And>x y. x \<triangle> y \<sqsubseteq> y" |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
708 |
and greatest: "\<And>x y z. x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<triangle> z" |
22737 | 709 |
shows "x \<sqinter> y = x \<triangle> y" |
22454 | 710 |
proof (rule antisym) |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
711 |
show "x \<triangle> y \<sqsubseteq> x \<sqinter> y" by (rule le_infI) (rule le1, rule le2) |
22454 | 712 |
next |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
713 |
have leI: "\<And>x y z. x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<triangle> z" by (blast intro: greatest) |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
714 |
show "x \<sqinter> y \<sqsubseteq> x \<triangle> y" by (rule leI) simp_all |
22454 | 715 |
qed |
716 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34973
diff
changeset
|
717 |
lemma (in semilattice_sup) sup_unique: |
22454 | 718 |
fixes f (infixl "\<nabla>" 70) |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
719 |
assumes ge1 [simp]: "\<And>x y. x \<sqsubseteq> x \<nabla> y" and ge2: "\<And>x y. y \<sqsubseteq> x \<nabla> y" |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
720 |
and least: "\<And>x y z. y \<sqsubseteq> x \<Longrightarrow> z \<sqsubseteq> x \<Longrightarrow> y \<nabla> z \<sqsubseteq> x" |
22737 | 721 |
shows "x \<squnion> y = x \<nabla> y" |
22454 | 722 |
proof (rule antisym) |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
723 |
show "x \<squnion> y \<sqsubseteq> x \<nabla> y" by (rule le_supI) (rule ge1, rule ge2) |
22454 | 724 |
next |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
725 |
have leI: "\<And>x y z. x \<sqsubseteq> z \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<nabla> y \<sqsubseteq> z" by (blast intro: least) |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
726 |
show "x \<nabla> y \<sqsubseteq> x \<squnion> y" by (rule leI) simp_all |
22454 | 727 |
qed |
36008 | 728 |
|
22454 | 729 |
|
46631
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
730 |
subsection {* Lattice on @{typ bool} *} |
22454 | 731 |
|
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
732 |
instantiation bool :: boolean_algebra |
25510 | 733 |
begin |
734 |
||
735 |
definition |
|
41080 | 736 |
bool_Compl_def [simp]: "uminus = Not" |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
737 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
738 |
definition |
41080 | 739 |
bool_diff_def [simp]: "A - B \<longleftrightarrow> A \<and> \<not> B" |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
740 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
741 |
definition |
41080 | 742 |
[simp]: "P \<sqinter> Q \<longleftrightarrow> P \<and> Q" |
25510 | 743 |
|
744 |
definition |
|
41080 | 745 |
[simp]: "P \<squnion> Q \<longleftrightarrow> P \<or> Q" |
25510 | 746 |
|
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
747 |
instance proof |
41080 | 748 |
qed auto |
22454 | 749 |
|
25510 | 750 |
end |
751 |
||
32781 | 752 |
lemma sup_boolI1: |
753 |
"P \<Longrightarrow> P \<squnion> Q" |
|
41080 | 754 |
by simp |
32781 | 755 |
|
756 |
lemma sup_boolI2: |
|
757 |
"Q \<Longrightarrow> P \<squnion> Q" |
|
41080 | 758 |
by simp |
32781 | 759 |
|
760 |
lemma sup_boolE: |
|
761 |
"P \<squnion> Q \<Longrightarrow> (P \<Longrightarrow> R) \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" |
|
41080 | 762 |
by auto |
32781 | 763 |
|
23878 | 764 |
|
46631
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
765 |
subsection {* Lattice on @{typ "_ \<Rightarrow> _"} *} |
23878 | 766 |
|
51387 | 767 |
instantiation "fun" :: (type, semilattice_sup) semilattice_sup |
25510 | 768 |
begin |
769 |
||
770 |
definition |
|
41080 | 771 |
"f \<squnion> g = (\<lambda>x. f x \<squnion> g x)" |
772 |
||
49769 | 773 |
lemma sup_apply [simp, code]: |
41080 | 774 |
"(f \<squnion> g) x = f x \<squnion> g x" |
775 |
by (simp add: sup_fun_def) |
|
25510 | 776 |
|
32780 | 777 |
instance proof |
46884 | 778 |
qed (simp_all add: le_fun_def) |
23878 | 779 |
|
25510 | 780 |
end |
23878 | 781 |
|
51387 | 782 |
instantiation "fun" :: (type, semilattice_inf) semilattice_inf |
783 |
begin |
|
784 |
||
785 |
definition |
|
786 |
"f \<sqinter> g = (\<lambda>x. f x \<sqinter> g x)" |
|
787 |
||
788 |
lemma inf_apply [simp, code]: |
|
789 |
"(f \<sqinter> g) x = f x \<sqinter> g x" |
|
790 |
by (simp add: inf_fun_def) |
|
791 |
||
792 |
instance proof |
|
793 |
qed (simp_all add: le_fun_def) |
|
794 |
||
795 |
end |
|
796 |
||
797 |
instance "fun" :: (type, lattice) lattice .. |
|
798 |
||
41080 | 799 |
instance "fun" :: (type, distrib_lattice) distrib_lattice proof |
46884 | 800 |
qed (rule ext, simp add: sup_inf_distrib1) |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
801 |
|
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
802 |
instance "fun" :: (type, bounded_lattice) bounded_lattice .. |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
803 |
|
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
804 |
instantiation "fun" :: (type, uminus) uminus |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
805 |
begin |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
806 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
807 |
definition |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
808 |
fun_Compl_def: "- A = (\<lambda>x. - A x)" |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
809 |
|
49769 | 810 |
lemma uminus_apply [simp, code]: |
41080 | 811 |
"(- A) x = - (A x)" |
812 |
by (simp add: fun_Compl_def) |
|
813 |
||
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
814 |
instance .. |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
815 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
816 |
end |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
817 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
818 |
instantiation "fun" :: (type, minus) minus |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
819 |
begin |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
820 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
821 |
definition |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
822 |
fun_diff_def: "A - B = (\<lambda>x. A x - B x)" |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
823 |
|
49769 | 824 |
lemma minus_apply [simp, code]: |
41080 | 825 |
"(A - B) x = A x - B x" |
826 |
by (simp add: fun_diff_def) |
|
827 |
||
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
828 |
instance .. |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
829 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
830 |
end |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
831 |
|
41080 | 832 |
instance "fun" :: (type, boolean_algebra) boolean_algebra proof |
46884 | 833 |
qed (rule ext, simp_all add: inf_compl_bot sup_compl_top diff_eq)+ |
26794 | 834 |
|
46631
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
835 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
836 |
subsection {* Lattice on unary and binary predicates *} |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
837 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
838 |
lemma inf1I: "A x \<Longrightarrow> B x \<Longrightarrow> (A \<sqinter> B) x" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
839 |
by (simp add: inf_fun_def) |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
840 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
841 |
lemma inf2I: "A x y \<Longrightarrow> B x y \<Longrightarrow> (A \<sqinter> B) x y" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
842 |
by (simp add: inf_fun_def) |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
843 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
844 |
lemma inf1E: "(A \<sqinter> B) x \<Longrightarrow> (A x \<Longrightarrow> B x \<Longrightarrow> P) \<Longrightarrow> P" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
845 |
by (simp add: inf_fun_def) |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
846 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
847 |
lemma inf2E: "(A \<sqinter> B) x y \<Longrightarrow> (A x y \<Longrightarrow> B x y \<Longrightarrow> P) \<Longrightarrow> P" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
848 |
by (simp add: inf_fun_def) |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
849 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
850 |
lemma inf1D1: "(A \<sqinter> B) x \<Longrightarrow> A x" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
851 |
by (simp add: inf_fun_def) |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
852 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
853 |
lemma inf2D1: "(A \<sqinter> B) x y \<Longrightarrow> A x y" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
854 |
by (simp add: inf_fun_def) |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
855 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
856 |
lemma inf1D2: "(A \<sqinter> B) x \<Longrightarrow> B x" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
857 |
by (simp add: inf_fun_def) |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
858 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
859 |
lemma inf2D2: "(A \<sqinter> B) x y \<Longrightarrow> B x y" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
860 |
by (simp add: inf_fun_def) |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
861 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
862 |
lemma sup1I1: "A x \<Longrightarrow> (A \<squnion> B) x" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
863 |
by (simp add: sup_fun_def) |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
864 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
865 |
lemma sup2I1: "A x y \<Longrightarrow> (A \<squnion> B) x y" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
866 |
by (simp add: sup_fun_def) |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
867 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
868 |
lemma sup1I2: "B x \<Longrightarrow> (A \<squnion> B) x" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
869 |
by (simp add: sup_fun_def) |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
870 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
871 |
lemma sup2I2: "B x y \<Longrightarrow> (A \<squnion> B) x y" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
872 |
by (simp add: sup_fun_def) |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
873 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
874 |
lemma sup1E: "(A \<squnion> B) x \<Longrightarrow> (A x \<Longrightarrow> P) \<Longrightarrow> (B x \<Longrightarrow> P) \<Longrightarrow> P" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
875 |
by (simp add: sup_fun_def) iprover |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
876 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
877 |
lemma sup2E: "(A \<squnion> B) x y \<Longrightarrow> (A x y \<Longrightarrow> P) \<Longrightarrow> (B x y \<Longrightarrow> P) \<Longrightarrow> P" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
878 |
by (simp add: sup_fun_def) iprover |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
879 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
880 |
text {* |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
881 |
\medskip Classical introduction rule: no commitment to @{text A} vs |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
882 |
@{text B}. |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
883 |
*} |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
884 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
885 |
lemma sup1CI: "(\<not> B x \<Longrightarrow> A x) \<Longrightarrow> (A \<squnion> B) x" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
886 |
by (auto simp add: sup_fun_def) |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
887 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
888 |
lemma sup2CI: "(\<not> B x y \<Longrightarrow> A x y) \<Longrightarrow> (A \<squnion> B) x y" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
889 |
by (auto simp add: sup_fun_def) |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
890 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
891 |
|
25062 | 892 |
no_notation |
46691 | 893 |
less_eq (infix "\<sqsubseteq>" 50) and |
894 |
less (infix "\<sqsubset>" 50) |
|
25062 | 895 |
|
21249 | 896 |
end |
46631
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
897 |