| 
48765
 | 
     1  | 
theory Collecting_Examples
  | 
| 
51566
 | 
     2  | 
imports Collecting Vars
  | 
| 
48765
 | 
     3  | 
begin
  | 
| 
 | 
     4  | 
  | 
| 
51566
 | 
     5  | 
subsection "Pretty printing state sets"
  | 
| 
 | 
     6  | 
  | 
| 
48765
 | 
     7  | 
text{* Tweak code generation to work with sets of non-equality types: *}
 | 
| 
 | 
     8  | 
declare insert_code[code del] union_coset_filter[code del]
  | 
| 
 | 
     9  | 
lemma insert_code [code]:  "insert x (set xs) = set (x#xs)"
  | 
| 
 | 
    10  | 
by simp
  | 
| 
 | 
    11  | 
  | 
| 
51566
 | 
    12  | 
text{* Compensate for the fact that sets may now have duplicates: *}
 | 
| 
 | 
    13  | 
definition compact :: "'a set \<Rightarrow> 'a set" where
  | 
| 
 | 
    14  | 
"compact X = X"
  | 
| 
 | 
    15  | 
  | 
| 
 | 
    16  | 
lemma [code]: "compact(set xs) = set(remdups xs)"
  | 
| 
 | 
    17  | 
by(simp add: compact_def)
  | 
| 
 | 
    18  | 
  | 
| 
51698
 | 
    19  | 
definition "vars_acom = compact o vars o strip"
  | 
| 
51566
 | 
    20  | 
  | 
| 
 | 
    21  | 
text{* In order to display commands annotated with state sets, states must be
 | 
| 
 | 
    22  | 
translated into a printable format as sets of variable-state pairs, for the
  | 
| 
 | 
    23  | 
variables in the command: *}
  | 
| 
51040
 | 
    24  | 
  | 
| 
 | 
    25  | 
definition show_acom ::
  | 
| 
51566
 | 
    26  | 
  "state set acom \<Rightarrow> (vname*val)set set acom" where
  | 
| 
 | 
    27  | 
"show_acom C = map_acom (\<lambda>S. (\<lambda>s. (\<lambda>x. (x, s x)) ` (vars_acom C)) ` S) C"
  | 
| 
51040
 | 
    28  | 
  | 
| 
 | 
    29  | 
  | 
| 
51566
 | 
    30  | 
subsection "Examples"
  | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
definition "c0 = WHILE Less (V ''x'') (N 3)
  | 
| 
48765
 | 
    33  | 
                DO ''x'' ::= Plus (V ''x'') (N 2)"
  | 
| 
51566
 | 
    34  | 
definition C0 :: "state set acom" where "C0 = anno {} c0"
 | 
| 
48765
 | 
    35  | 
  | 
| 
 | 
    36  | 
text{* Collecting semantics: *}
 | 
| 
50821
 | 
    37  | 
  | 
| 
51566
 | 
    38  | 
value "show_acom (((step {<>}) ^^ 1) C0)"
 | 
| 
 | 
    39  | 
value "show_acom (((step {<>}) ^^ 2) C0)"
 | 
| 
 | 
    40  | 
value "show_acom (((step {<>}) ^^ 3) C0)"
 | 
| 
 | 
    41  | 
value "show_acom (((step {<>}) ^^ 4) C0)"
 | 
| 
 | 
    42  | 
value "show_acom (((step {<>}) ^^ 5) C0)"
 | 
| 
 | 
    43  | 
value "show_acom (((step {<>}) ^^ 6) C0)"
 | 
| 
 | 
    44  | 
value "show_acom (((step {<>}) ^^ 7) C0)"
 | 
| 
 | 
    45  | 
value "show_acom (((step {<>}) ^^ 8) C0)"
 | 
| 
48765
 | 
    46  | 
  | 
| 
 | 
    47  | 
text{* Small-step semantics: *}
 | 
| 
51566
 | 
    48  | 
value "show_acom (((step {}) ^^ 0) (step {<>} C0))"
 | 
| 
 | 
    49  | 
value "show_acom (((step {}) ^^ 1) (step {<>} C0))"
 | 
| 
 | 
    50  | 
value "show_acom (((step {}) ^^ 2) (step {<>} C0))"
 | 
| 
 | 
    51  | 
value "show_acom (((step {}) ^^ 3) (step {<>} C0))"
 | 
| 
 | 
    52  | 
value "show_acom (((step {}) ^^ 4) (step {<>} C0))"
 | 
| 
 | 
    53  | 
value "show_acom (((step {}) ^^ 5) (step {<>} C0))"
 | 
| 
 | 
    54  | 
value "show_acom (((step {}) ^^ 6) (step {<>} C0))"
 | 
| 
 | 
    55  | 
value "show_acom (((step {}) ^^ 7) (step {<>} C0))"
 | 
| 
 | 
    56  | 
value "show_acom (((step {}) ^^ 8) (step {<>} C0))"
 | 
| 
48765
 | 
    57  | 
  | 
| 
 | 
    58  | 
end
  |