| 
14199
 | 
     1  | 
(*  Title:      HOL/Auth/SET/EventSET
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Authors:     Giampaolo Bella, Fabio Massacci, Lawrence C Paulson
  | 
| 
 | 
     4  | 
*)
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
header{*Theory of Events for SET*}
 | 
| 
 | 
     7  | 
  | 
| 
16417
 | 
     8  | 
theory EventSET imports MessageSET begin
  | 
| 
14199
 | 
     9  | 
  | 
| 
 | 
    10  | 
text{*The Root Certification Authority*}
 | 
| 
 | 
    11  | 
syntax        RCA :: agent
  | 
| 
 | 
    12  | 
translations "RCA" == "CA 0"
  | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
  | 
| 
 | 
    15  | 
text{*Message events*}
 | 
| 
 | 
    16  | 
datatype
  | 
| 
 | 
    17  | 
  event = Says  agent agent msg
  | 
| 
 | 
    18  | 
	| Gets  agent	    msg
  | 
| 
 | 
    19  | 
        | Notes agent       msg
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
  | 
| 
 | 
    22  | 
text{*compromised agents: keys known, Notes visible*}
 | 
| 
 | 
    23  | 
consts bad :: "agent set"
  | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
text{*Spy has access to his own key for spoof messages, but RCA is secure*}
 | 
| 
 | 
    26  | 
specification (bad)
  | 
| 
 | 
    27  | 
  Spy_in_bad     [iff]: "Spy \<in> bad"
  | 
| 
 | 
    28  | 
  RCA_not_bad [iff]: "RCA \<notin> bad"
  | 
| 
 | 
    29  | 
    by (rule exI [of _ "{Spy}"], simp)
 | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
subsection{*Agents' Knowledge*}
 | 
| 
 | 
    33  | 
  | 
| 
 | 
    34  | 
consts  (*Initial states of agents -- parameter of the construction*)
  | 
| 
 | 
    35  | 
  initState :: "agent => msg set"
  | 
| 
 | 
    36  | 
  knows  :: "[agent, event list] => msg set"
  | 
| 
 | 
    37  | 
  | 
| 
 | 
    38  | 
(* Message reception does not extend spy's knowledge because of
  | 
| 
 | 
    39  | 
   reception invariant enforced by Reception rule in protocol definition*)
  | 
| 
 | 
    40  | 
primrec
  | 
| 
 | 
    41  | 
  | 
| 
 | 
    42  | 
knows_Nil:
  | 
| 
 | 
    43  | 
  "knows A []       = initState A"
  | 
| 
 | 
    44  | 
knows_Cons:
  | 
| 
 | 
    45  | 
    "knows A (ev # evs) =
  | 
| 
 | 
    46  | 
       (if A = Spy then
  | 
| 
 | 
    47  | 
	(case ev of
  | 
| 
 | 
    48  | 
	   Says A' B X => insert X (knows Spy evs)
  | 
| 
 | 
    49  | 
	 | Gets A' X => knows Spy evs
  | 
| 
 | 
    50  | 
	 | Notes A' X  =>
  | 
| 
 | 
    51  | 
	     if A' \<in> bad then insert X (knows Spy evs) else knows Spy evs)
  | 
| 
 | 
    52  | 
	else
  | 
| 
 | 
    53  | 
	(case ev of
  | 
| 
 | 
    54  | 
	   Says A' B X =>
  | 
| 
 | 
    55  | 
	     if A'=A then insert X (knows A evs) else knows A evs
  | 
| 
 | 
    56  | 
	 | Gets A' X    =>
  | 
| 
 | 
    57  | 
	     if A'=A then insert X (knows A evs) else knows A evs
  | 
| 
 | 
    58  | 
	 | Notes A' X    =>
  | 
| 
 | 
    59  | 
	     if A'=A then insert X (knows A evs) else knows A evs))"
  | 
| 
 | 
    60  | 
  | 
| 
 | 
    61  | 
  | 
| 
 | 
    62  | 
subsection{*Used Messages*}
 | 
| 
 | 
    63  | 
  | 
| 
 | 
    64  | 
consts
  | 
| 
 | 
    65  | 
  (*Set of items that might be visible to somebody:
  | 
| 
 | 
    66  | 
    complement of the set of fresh items*)
  | 
| 
 | 
    67  | 
  used :: "event list => msg set"
  | 
| 
 | 
    68  | 
  | 
| 
 | 
    69  | 
(* As above, message reception does extend used items *)
  | 
| 
 | 
    70  | 
primrec
  | 
| 
 | 
    71  | 
  used_Nil:  "used []         = (UN B. parts (initState B))"
  | 
| 
 | 
    72  | 
  used_Cons: "used (ev # evs) =
  | 
| 
 | 
    73  | 
	         (case ev of
  | 
| 
 | 
    74  | 
		    Says A B X => parts {X} Un (used evs)
 | 
| 
 | 
    75  | 
         	  | Gets A X   => used evs
  | 
| 
 | 
    76  | 
		  | Notes A X  => parts {X} Un (used evs))"
 | 
| 
 | 
    77  | 
  | 
| 
 | 
    78  | 
  | 
| 
 | 
    79  | 
  | 
| 
 | 
    80  | 
(* Inserted by default but later removed.  This declaration lets the file
  | 
| 
 | 
    81  | 
be re-loaded. Addsimps [knows_Cons, used_Nil, *)
  | 
| 
 | 
    82  | 
  | 
| 
 | 
    83  | 
(** Simplifying   parts (insert X (knows Spy evs))
  | 
| 
 | 
    84  | 
      = parts {X} Un parts (knows Spy evs) -- since general case loops*)
 | 
| 
 | 
    85  | 
  | 
| 
 | 
    86  | 
lemmas parts_insert_knows_A = parts_insert [of _ "knows A evs", standard]
  | 
| 
 | 
    87  | 
  | 
| 
 | 
    88  | 
lemma knows_Spy_Says [simp]:
  | 
| 
 | 
    89  | 
     "knows Spy (Says A B X # evs) = insert X (knows Spy evs)"
  | 
| 
 | 
    90  | 
by auto
  | 
| 
 | 
    91  | 
  | 
| 
 | 
    92  | 
text{*Letting the Spy see "bad" agents' notes avoids redundant case-splits
 | 
| 
 | 
    93  | 
      on whether @{term "A=Spy"} and whether @{term "A\<in>bad"}*}
 | 
| 
 | 
    94  | 
lemma knows_Spy_Notes [simp]:
  | 
| 
 | 
    95  | 
     "knows Spy (Notes A X # evs) =
  | 
| 
 | 
    96  | 
          (if A:bad then insert X (knows Spy evs) else knows Spy evs)"
  | 
| 
 | 
    97  | 
apply auto
  | 
| 
 | 
    98  | 
done
  | 
| 
 | 
    99  | 
  | 
| 
 | 
   100  | 
lemma knows_Spy_Gets [simp]: "knows Spy (Gets A X # evs) = knows Spy evs"
  | 
| 
 | 
   101  | 
by auto
  | 
| 
 | 
   102  | 
  | 
| 
 | 
   103  | 
lemma initState_subset_knows: "initState A <= knows A evs"
  | 
| 
 | 
   104  | 
apply (induct_tac "evs")
  | 
| 
 | 
   105  | 
apply (auto split: event.split) 
  | 
| 
 | 
   106  | 
done
  | 
| 
 | 
   107  | 
  | 
| 
 | 
   108  | 
lemma knows_Spy_subset_knows_Spy_Says:
  | 
| 
 | 
   109  | 
     "knows Spy evs <= knows Spy (Says A B X # evs)"
  | 
| 
 | 
   110  | 
by auto
  | 
| 
 | 
   111  | 
  | 
| 
 | 
   112  | 
lemma knows_Spy_subset_knows_Spy_Notes:
  | 
| 
 | 
   113  | 
     "knows Spy evs <= knows Spy (Notes A X # evs)"
  | 
| 
 | 
   114  | 
by auto
  | 
| 
 | 
   115  | 
  | 
| 
 | 
   116  | 
lemma knows_Spy_subset_knows_Spy_Gets:
  | 
| 
 | 
   117  | 
     "knows Spy evs <= knows Spy (Gets A X # evs)"
  | 
| 
 | 
   118  | 
by auto
  | 
| 
 | 
   119  | 
  | 
| 
 | 
   120  | 
(*Spy sees what is sent on the traffic*)
  | 
| 
 | 
   121  | 
lemma Says_imp_knows_Spy [rule_format]:
  | 
| 
 | 
   122  | 
     "Says A B X \<in> set evs --> X \<in> knows Spy evs"
  | 
| 
 | 
   123  | 
apply (induct_tac "evs")
  | 
| 
 | 
   124  | 
apply (auto split: event.split) 
  | 
| 
 | 
   125  | 
done
  | 
| 
 | 
   126  | 
  | 
| 
 | 
   127  | 
(*Use with addSEs to derive contradictions from old Says events containing
  | 
| 
 | 
   128  | 
  items known to be fresh*)
  | 
| 
 | 
   129  | 
lemmas knows_Spy_partsEs =
  | 
| 
 | 
   130  | 
     Says_imp_knows_Spy [THEN parts.Inj, THEN revcut_rl, standard] 
  | 
| 
 | 
   131  | 
     parts.Body [THEN revcut_rl, standard]
  | 
| 
 | 
   132  | 
  | 
| 
 | 
   133  | 
  | 
| 
 | 
   134  | 
subsection{*The Function @{term used}*}
 | 
| 
 | 
   135  | 
  | 
| 
 | 
   136  | 
lemma parts_knows_Spy_subset_used: "parts (knows Spy evs) <= used evs"
  | 
| 
 | 
   137  | 
apply (induct_tac "evs")
  | 
| 
 | 
   138  | 
apply (auto simp add: parts_insert_knows_A split: event.split) 
  | 
| 
 | 
   139  | 
done
  | 
| 
 | 
   140  | 
  | 
| 
 | 
   141  | 
lemmas usedI = parts_knows_Spy_subset_used [THEN subsetD, intro]
  | 
| 
 | 
   142  | 
  | 
| 
 | 
   143  | 
lemma initState_subset_used: "parts (initState B) <= used evs"
  | 
| 
 | 
   144  | 
apply (induct_tac "evs")
  | 
| 
 | 
   145  | 
apply (auto split: event.split) 
  | 
| 
 | 
   146  | 
done
  | 
| 
 | 
   147  | 
  | 
| 
 | 
   148  | 
lemmas initState_into_used = initState_subset_used [THEN subsetD]
  | 
| 
 | 
   149  | 
  | 
| 
 | 
   150  | 
lemma used_Says [simp]: "used (Says A B X # evs) = parts{X} Un used evs"
 | 
| 
 | 
   151  | 
by auto
  | 
| 
 | 
   152  | 
  | 
| 
 | 
   153  | 
lemma used_Notes [simp]: "used (Notes A X # evs) = parts{X} Un used evs"
 | 
| 
 | 
   154  | 
by auto
  | 
| 
 | 
   155  | 
  | 
| 
 | 
   156  | 
lemma used_Gets [simp]: "used (Gets A X # evs) = used evs"
  | 
| 
 | 
   157  | 
by auto
  | 
| 
 | 
   158  | 
  | 
| 
 | 
   159  | 
  | 
| 
 | 
   160  | 
lemma Notes_imp_parts_subset_used [rule_format]:
  | 
| 
 | 
   161  | 
     "Notes A X \<in> set evs --> parts {X} <= used evs"
 | 
| 
 | 
   162  | 
apply (induct_tac "evs")
  | 
| 
 | 
   163  | 
apply (induct_tac [2] "a", auto)
  | 
| 
 | 
   164  | 
done
  | 
| 
 | 
   165  | 
  | 
| 
 | 
   166  | 
text{*NOTE REMOVAL--laws above are cleaner, as they don't involve "case"*}
 | 
| 
 | 
   167  | 
declare knows_Cons [simp del]
  | 
| 
 | 
   168  | 
        used_Nil [simp del] used_Cons [simp del]
  | 
| 
 | 
   169  | 
  | 
| 
 | 
   170  | 
  | 
| 
 | 
   171  | 
text{*For proving theorems of the form @{term "X \<notin> analz (knows Spy evs) --> P"}
 | 
| 
 | 
   172  | 
  New events added by induction to "evs" are discarded.  Provided 
  | 
| 
 | 
   173  | 
  this information isn't needed, the proof will be much shorter, since
  | 
| 
 | 
   174  | 
  it will omit complicated reasoning about @{term analz}.*}
 | 
| 
 | 
   175  | 
  | 
| 
 | 
   176  | 
lemmas analz_mono_contra =
  | 
| 
 | 
   177  | 
       knows_Spy_subset_knows_Spy_Says [THEN analz_mono, THEN contra_subsetD]
  | 
| 
 | 
   178  | 
       knows_Spy_subset_knows_Spy_Notes [THEN analz_mono, THEN contra_subsetD]
  | 
| 
 | 
   179  | 
       knows_Spy_subset_knows_Spy_Gets [THEN analz_mono, THEN contra_subsetD]
  | 
| 
27225
 | 
   180  | 
  | 
| 
 | 
   181  | 
lemmas analz_impI = impI [where P = "Y \<notin> analz (knows Spy evs)", standard]
  | 
| 
 | 
   182  | 
  | 
| 
14199
 | 
   183  | 
ML
  | 
| 
 | 
   184  | 
{*
 | 
| 
 | 
   185  | 
val analz_mono_contra_tac = 
  | 
| 
27225
 | 
   186  | 
  rtac @{thm analz_impI} THEN' 
 | 
| 
 | 
   187  | 
  REPEAT1 o (dresolve_tac @{thms analz_mono_contra})
 | 
| 
 | 
   188  | 
  THEN' mp_tac
  | 
| 
14199
 | 
   189  | 
*}
  | 
| 
 | 
   190  | 
  | 
| 
 | 
   191  | 
method_setup analz_mono_contra = {*
 | 
| 
21588
 | 
   192  | 
    Method.no_args (Method.SIMPLE_METHOD (REPEAT_FIRST analz_mono_contra_tac)) *}
  | 
| 
14199
 | 
   193  | 
    "for proving theorems of the form X \<notin> analz (knows Spy evs) --> P"
  | 
| 
 | 
   194  | 
  | 
| 
 | 
   195  | 
end
  |