| author | lcp | 
| Mon, 15 Aug 1994 19:01:51 +0200 | |
| changeset 530 | 2eb142800801 | 
| parent 14 | 1c0926788772 | 
| child 536 | 5fbfa997f1b0 | 
| permissions | -rw-r--r-- | 
| 0 | 1  | 
(* Title: ZF/domrange  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
4  | 
Copyright 1991 University of Cambridge  | 
|
5  | 
||
6  | 
Converse, domain, range of a relation or function  | 
|
7  | 
*)  | 
|
8  | 
||
9  | 
(*** converse ***)  | 
|
10  | 
||
11  | 
val converseI = prove_goalw ZF.thy [converse_def]  | 
|
12  | 
"!!a b r. <a,b>:r ==> <b,a>:converse(r)"  | 
|
13  | 
(fn _ => [ (fast_tac pair_cs 1) ]);  | 
|
14  | 
||
15  | 
val converseD = prove_goalw ZF.thy [converse_def]  | 
|
16  | 
"!!a b r. <a,b> : converse(r) ==> <b,a> : r"  | 
|
17  | 
(fn _ => [ (fast_tac pair_cs 1) ]);  | 
|
18  | 
||
19  | 
val converseE = prove_goalw ZF.thy [converse_def]  | 
|
20  | 
"[| yx : converse(r); \  | 
|
21  | 
\ !!x y. [| yx=<y,x>; <x,y>:r |] ==> P \  | 
|
22  | 
\ |] ==> P"  | 
|
23  | 
(fn [major,minor]=>  | 
|
24  | 
[ (rtac (major RS ReplaceE) 1),  | 
|
25  | 
(REPEAT (eresolve_tac [exE, conjE, minor] 1)),  | 
|
26  | 
(hyp_subst_tac 1),  | 
|
27  | 
(assume_tac 1) ]);  | 
|
28  | 
||
29  | 
val converse_cs = pair_cs addSIs [converseI]  | 
|
30  | 
addSEs [converseD,converseE];  | 
|
31  | 
||
32  | 
val converse_of_converse = prove_goal ZF.thy  | 
|
33  | 
"!!A B r. r<=Sigma(A,B) ==> converse(converse(r)) = r"  | 
|
34  | 
(fn _ => [ (fast_tac (converse_cs addSIs [equalityI]) 1) ]);  | 
|
35  | 
||
36  | 
val converse_type = prove_goal ZF.thy "!!A B r. r<=A*B ==> converse(r)<=B*A"  | 
|
37  | 
(fn _ => [ (fast_tac converse_cs 1) ]);  | 
|
38  | 
||
39  | 
val converse_of_prod = prove_goal ZF.thy "converse(A*B) = B*A"  | 
|
40  | 
(fn _ => [ (fast_tac (converse_cs addSIs [equalityI]) 1) ]);  | 
|
41  | 
||
42  | 
val converse_empty = prove_goal ZF.thy "converse(0) = 0"  | 
|
43  | 
(fn _ => [ (fast_tac (converse_cs addSIs [equalityI]) 1) ]);  | 
|
44  | 
||
45  | 
(*** domain ***)  | 
|
46  | 
||
47  | 
val domain_iff = prove_goalw ZF.thy [domain_def]  | 
|
48  | 
"a: domain(r) <-> (EX y. <a,y>: r)"  | 
|
49  | 
(fn _=> [ (fast_tac pair_cs 1) ]);  | 
|
50  | 
||
51  | 
val domainI = prove_goal ZF.thy "!!a b r. <a,b>: r ==> a: domain(r)"  | 
|
52  | 
(fn _ => [ (etac (exI RS (domain_iff RS iffD2)) 1) ]);  | 
|
53  | 
||
54  | 
val domainE = prove_goal ZF.thy  | 
|
55  | 
"[| a : domain(r); !!y. <a,y>: r ==> P |] ==> P"  | 
|
56  | 
(fn prems=>  | 
|
57  | 
[ (rtac (domain_iff RS iffD1 RS exE) 1),  | 
|
58  | 
(REPEAT (ares_tac prems 1)) ]);  | 
|
59  | 
||
60  | 
val domain_of_prod = prove_goal ZF.thy "!!A B. b:B ==> domain(A*B) = A"  | 
|
61  | 
(fn _ =>  | 
|
62  | 
[ (REPEAT (eresolve_tac [domainE,SigmaE2] 1  | 
|
63  | 
ORELSE ares_tac [domainI,equalityI,subsetI,SigmaI] 1)) ]);  | 
|
64  | 
||
65  | 
val domain_empty = prove_goal ZF.thy "domain(0) = 0"  | 
|
66  | 
(fn _ =>  | 
|
67  | 
[ (REPEAT (eresolve_tac [domainE,emptyE] 1  | 
|
68  | 
ORELSE ares_tac [equalityI,subsetI] 1)) ]);  | 
|
69  | 
||
70  | 
val domain_subset = prove_goal ZF.thy "domain(Sigma(A,B)) <= A"  | 
|
71  | 
(fn _ =>  | 
|
72  | 
[ (rtac subsetI 1),  | 
|
73  | 
(etac domainE 1),  | 
|
74  | 
(etac SigmaD1 1) ]);  | 
|
75  | 
||
76  | 
||
77  | 
(*** range ***)  | 
|
78  | 
||
79  | 
val rangeI = prove_goalw ZF.thy [range_def] "!!a b r.<a,b>: r ==> b : range(r)"  | 
|
80  | 
(fn _ => [ (etac (converseI RS domainI) 1) ]);  | 
|
81  | 
||
82  | 
val rangeE = prove_goalw ZF.thy [range_def]  | 
|
83  | 
"[| b : range(r); !!x. <x,b>: r ==> P |] ==> P"  | 
|
84  | 
(fn major::prems=>  | 
|
85  | 
[ (rtac (major RS domainE) 1),  | 
|
86  | 
(resolve_tac prems 1),  | 
|
87  | 
(etac converseD 1) ]);  | 
|
88  | 
||
89  | 
val range_of_prod = prove_goalw ZF.thy [range_def]  | 
|
90  | 
"!!a A B. a:A ==> range(A*B) = B"  | 
|
91  | 
(fn _ =>  | 
|
92  | 
[ (rtac (converse_of_prod RS ssubst) 1),  | 
|
93  | 
(etac domain_of_prod 1) ]);  | 
|
94  | 
||
95  | 
val range_empty = prove_goalw ZF.thy [range_def] "range(0) = 0"  | 
|
96  | 
(fn _ =>  | 
|
97  | 
[ (rtac (converse_empty RS ssubst) 1),  | 
|
98  | 
(rtac domain_empty 1) ]);  | 
|
99  | 
||
100  | 
val range_subset = prove_goalw ZF.thy [range_def] "range(A*B) <= B"  | 
|
101  | 
(fn _ =>  | 
|
102  | 
[ (rtac (converse_of_prod RS ssubst) 1),  | 
|
103  | 
(rtac domain_subset 1) ]);  | 
|
104  | 
||
105  | 
||
106  | 
(*** field ***)  | 
|
107  | 
||
108  | 
val fieldI1 = prove_goalw ZF.thy [field_def] "<a,b>: r ==> a : field(r)"  | 
|
109  | 
(fn [prem]=>  | 
|
110  | 
[ (rtac (prem RS domainI RS UnI1) 1) ]);  | 
|
111  | 
||
112  | 
val fieldI2 = prove_goalw ZF.thy [field_def] "<a,b>: r ==> b : field(r)"  | 
|
113  | 
(fn [prem]=>  | 
|
114  | 
[ (rtac (prem RS rangeI RS UnI2) 1) ]);  | 
|
115  | 
||
116  | 
val fieldCI = prove_goalw ZF.thy [field_def]  | 
|
117  | 
"(~ <c,a>:r ==> <a,b>: r) ==> a : field(r)"  | 
|
118  | 
(fn [prem]=>  | 
|
119  | 
[ (rtac (prem RS domainI RS UnCI) 1),  | 
|
120  | 
(swap_res_tac [rangeI] 1),  | 
|
121  | 
(etac notnotD 1) ]);  | 
|
122  | 
||
123  | 
val fieldE = prove_goalw ZF.thy [field_def]  | 
|
124  | 
"[| a : field(r); \  | 
|
125  | 
\ !!x. <a,x>: r ==> P; \  | 
|
126  | 
\ !!x. <x,a>: r ==> P |] ==> P"  | 
|
127  | 
(fn major::prems=>  | 
|
128  | 
[ (rtac (major RS UnE) 1),  | 
|
129  | 
(REPEAT (eresolve_tac (prems@[domainE,rangeE]) 1)) ]);  | 
|
130  | 
||
131  | 
val field_of_prod = prove_goal ZF.thy "field(A*A) = A"  | 
|
132  | 
(fn _ =>  | 
|
133  | 
[ (fast_tac (pair_cs addIs [fieldCI,equalityI] addSEs [fieldE]) 1) ]);  | 
|
134  | 
||
135  | 
val field_subset = prove_goal ZF.thy "field(A*B) <= A Un B"  | 
|
136  | 
(fn _ => [ (fast_tac (pair_cs addIs [fieldCI] addSEs [fieldE]) 1) ]);  | 
|
137  | 
||
138  | 
val domain_subset_field = prove_goalw ZF.thy [field_def]  | 
|
139  | 
"domain(r) <= field(r)"  | 
|
140  | 
(fn _ => [ (rtac Un_upper1 1) ]);  | 
|
141  | 
||
142  | 
val range_subset_field = prove_goalw ZF.thy [field_def]  | 
|
143  | 
"range(r) <= field(r)"  | 
|
144  | 
(fn _ => [ (rtac Un_upper2 1) ]);  | 
|
145  | 
||
146  | 
val domain_times_range = prove_goal ZF.thy  | 
|
147  | 
"!!A B r. r <= Sigma(A,B) ==> r <= domain(r)*range(r)"  | 
|
148  | 
(fn _ => [ (fast_tac (pair_cs addIs [domainI,rangeI]) 1) ]);  | 
|
149  | 
||
150  | 
val field_times_field = prove_goal ZF.thy  | 
|
151  | 
"!!A B r. r <= Sigma(A,B) ==> r <= field(r)*field(r)"  | 
|
152  | 
(fn _ => [ (fast_tac (pair_cs addIs [fieldI1,fieldI2]) 1) ]);  | 
|
153  | 
||
154  | 
||
155  | 
(*** Image of a set under a function/relation ***)  | 
|
156  | 
||
157  | 
val image_iff = prove_goalw ZF.thy [image_def]  | 
|
158  | 
"b : r``A <-> (EX x:A. <x,b>:r)"  | 
|
159  | 
(fn _ => [ fast_tac (pair_cs addIs [rangeI]) 1 ]);  | 
|
160  | 
||
161  | 
val image_singleton_iff = prove_goal ZF.thy  | 
|
162  | 
    "b : r``{a} <-> <a,b>:r"
 | 
|
163  | 
(fn _ => [ rtac (image_iff RS iff_trans) 1,  | 
|
164  | 
fast_tac pair_cs 1 ]);  | 
|
165  | 
||
166  | 
val imageI = prove_goalw ZF.thy [image_def]  | 
|
167  | 
"!!a b r. [| <a,b>: r; a:A |] ==> b : r``A"  | 
|
168  | 
(fn _ => [ (REPEAT (ares_tac [CollectI,rangeI,bexI] 1)) ]);  | 
|
169  | 
||
170  | 
val imageE = prove_goalw ZF.thy [image_def]  | 
|
171  | 
"[| b: r``A; !!x.[| <x,b>: r; x:A |] ==> P |] ==> P"  | 
|
172  | 
(fn major::prems=>  | 
|
173  | 
[ (rtac (major RS CollectE) 1),  | 
|
174  | 
(REPEAT (etac bexE 1 ORELSE ares_tac prems 1)) ]);  | 
|
175  | 
||
176  | 
val image_subset = prove_goal ZF.thy  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
0 
diff
changeset
 | 
177  | 
"!!A B r. r <= A*B ==> r``C <= B"  | 
| 0 | 178  | 
(fn _ =>  | 
179  | 
[ (rtac subsetI 1),  | 
|
180  | 
(REPEAT (eresolve_tac [asm_rl, imageE, subsetD RS SigmaD2] 1)) ]);  | 
|
181  | 
||
182  | 
||
183  | 
(*** Inverse image of a set under a function/relation ***)  | 
|
184  | 
||
185  | 
val vimage_iff = prove_goalw ZF.thy [vimage_def,image_def,converse_def]  | 
|
186  | 
"a : r-``B <-> (EX y:B. <a,y>:r)"  | 
|
187  | 
(fn _ => [ fast_tac (pair_cs addIs [rangeI]) 1 ]);  | 
|
188  | 
||
189  | 
val vimage_singleton_iff = prove_goal ZF.thy  | 
|
190  | 
    "a : r-``{b} <-> <a,b>:r"
 | 
|
191  | 
(fn _ => [ rtac (vimage_iff RS iff_trans) 1,  | 
|
192  | 
fast_tac pair_cs 1 ]);  | 
|
193  | 
||
194  | 
val vimageI = prove_goalw ZF.thy [vimage_def]  | 
|
195  | 
"!!A B r. [| <a,b>: r; b:B |] ==> a : r-``B"  | 
|
196  | 
(fn _ => [ (REPEAT (ares_tac [converseI RS imageI] 1)) ]);  | 
|
197  | 
||
198  | 
val vimageE = prove_goalw ZF.thy [vimage_def]  | 
|
199  | 
"[| a: r-``B; !!x.[| <a,x>: r; x:B |] ==> P |] ==> P"  | 
|
200  | 
(fn major::prems=>  | 
|
201  | 
[ (rtac (major RS imageE) 1),  | 
|
202  | 
(REPEAT (etac converseD 1 ORELSE ares_tac prems 1)) ]);  | 
|
203  | 
||
204  | 
val vimage_subset = prove_goalw ZF.thy [vimage_def]  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
0 
diff
changeset
 | 
205  | 
"!!A B r. r <= A*B ==> r-``C <= A"  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
0 
diff
changeset
 | 
206  | 
(fn _ => [ (etac (converse_type RS image_subset) 1) ]);  | 
| 0 | 207  | 
|
208  | 
||
209  | 
(** Theorem-proving for ZF set theory **)  | 
|
210  | 
||
211  | 
val ZF_cs = pair_cs  | 
|
212  | 
addSIs [converseI]  | 
|
213  | 
addIs [imageI, vimageI, domainI, rangeI, fieldCI]  | 
|
214  | 
addSEs [imageE, vimageE, domainE, rangeE, fieldE, converseD, converseE];  | 
|
215  | 
||
216  | 
val eq_cs = ZF_cs addSIs [equalityI];  | 
|
217  | 
||
218  | 
(** The Union of a set of relations is a relation -- Lemma for fun_Union **)  | 
|
219  | 
goal ZF.thy "!!S. (ALL x:S. EX A B. x <= A*B) ==> \  | 
|
220  | 
\ Union(S) <= domain(Union(S)) * range(Union(S))";  | 
|
221  | 
by (fast_tac ZF_cs 1);  | 
|
222  | 
val rel_Union = result();  | 
|
223  | 
||
224  | 
(** The Union of 2 relations is a relation (Lemma for fun_Un) **)  | 
|
225  | 
val rel_Un = prove_goal ZF.thy  | 
|
226  | 
"!!r s. [| r <= A*B; s <= C*D |] ==> (r Un s) <= (A Un C) * (B Un D)"  | 
|
227  | 
(fn _ => [ (fast_tac ZF_cs 1) ]);  | 
|
228  | 
||
229  |