| 
0
 | 
     1  | 
(*  Title: 	ZF/mono
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1993  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Monotonicity of various operations (for lattice properties see subset.ML)
  | 
| 
 | 
     7  | 
*)
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
(** Replacement, in its various formulations **)
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
(*Not easy to express monotonicity in P, since any "bigger" predicate
  | 
| 
 | 
    12  | 
  would have to be single-valued*)
  | 
| 
 | 
    13  | 
goal ZF.thy "!!A B. A<=B ==> Replace(A,P) <= Replace(B,P)";
  | 
| 
485
 | 
    14  | 
by (fast_tac (ZF_cs addSEs [ReplaceE]) 1);
  | 
| 
0
 | 
    15  | 
val Replace_mono = result();
  | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
goal ZF.thy "!!A B. A<=B ==> {f(x). x:A} <= {f(x). x:B}";
 | 
| 
 | 
    18  | 
by (fast_tac ZF_cs 1);
  | 
| 
 | 
    19  | 
val RepFun_mono = result();
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
goal ZF.thy "!!A B. A<=B ==> Pow(A) <= Pow(B)";
  | 
| 
 | 
    22  | 
by (fast_tac ZF_cs 1);
  | 
| 
 | 
    23  | 
val Pow_mono = result();
  | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
goal ZF.thy "!!A B. A<=B ==> Union(A) <= Union(B)";
  | 
| 
 | 
    26  | 
by (fast_tac ZF_cs 1);
  | 
| 
 | 
    27  | 
val Union_mono = result();
  | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
val prems = goal ZF.thy
  | 
| 
 | 
    30  | 
    "[| A<=C;  !!x. x:A ==> B(x)<=D(x) \
  | 
| 
 | 
    31  | 
\    |] ==> (UN x:A. B(x)) <= (UN x:C. D(x))";
  | 
| 
 | 
    32  | 
by (fast_tac (ZF_cs addIs (prems RL [subsetD])) 1);
  | 
| 
 | 
    33  | 
val UN_mono = result();
  | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
(*Intersection is ANTI-monotonic.  There are TWO premises! *)
  | 
| 
 | 
    36  | 
goal ZF.thy "!!A B. [| A<=B;  a:A |] ==> Inter(B) <= Inter(A)";
  | 
| 
 | 
    37  | 
by (fast_tac ZF_cs 1);
  | 
| 
 | 
    38  | 
val Inter_anti_mono = result();
  | 
| 
 | 
    39  | 
  | 
| 
 | 
    40  | 
goal ZF.thy "!!C D. C<=D ==> cons(a,C) <= cons(a,D)";
  | 
| 
 | 
    41  | 
by (fast_tac ZF_cs 1);
  | 
| 
 | 
    42  | 
val cons_mono = result();
  | 
| 
 | 
    43  | 
  | 
| 
 | 
    44  | 
goal ZF.thy "!!A B C D. [| A<=C;  B<=D |] ==> A Un B <= C Un D";
  | 
| 
 | 
    45  | 
by (fast_tac ZF_cs 1);
  | 
| 
 | 
    46  | 
val Un_mono = result();
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
goal ZF.thy "!!A B C D. [| A<=C;  B<=D |] ==> A Int B <= C Int D";
  | 
| 
 | 
    49  | 
by (fast_tac ZF_cs 1);
  | 
| 
 | 
    50  | 
val Int_mono = result();
  | 
| 
 | 
    51  | 
  | 
| 
 | 
    52  | 
goal ZF.thy "!!A B C D. [| A<=C;  D<=B |] ==> A-B <= C-D";
  | 
| 
 | 
    53  | 
by (fast_tac ZF_cs 1);
  | 
| 
 | 
    54  | 
val Diff_mono = result();
  | 
| 
 | 
    55  | 
  | 
| 
 | 
    56  | 
(** Standard products, sums and function spaces **)
  | 
| 
 | 
    57  | 
  | 
| 
 | 
    58  | 
goal ZF.thy "!!A B C D. [| A<=C;  ALL x:A. B(x) <= D(x) |] ==> \
  | 
| 
 | 
    59  | 
\                       Sigma(A,B) <= Sigma(C,D)";
  | 
| 
 | 
    60  | 
by (fast_tac ZF_cs 1);
  | 
| 
 | 
    61  | 
val Sigma_mono_lemma = result();
  | 
| 
 | 
    62  | 
val Sigma_mono = ballI RSN (2,Sigma_mono_lemma);
  | 
| 
 | 
    63  | 
  | 
| 
 | 
    64  | 
goalw Sum.thy sum_defs "!!A B C D. [| A<=C;  B<=D |] ==> A+B <= C+D";
  | 
| 
 | 
    65  | 
by (REPEAT (ares_tac [subset_refl,Un_mono,Sigma_mono] 1));
  | 
| 
 | 
    66  | 
val sum_mono = result();
  | 
| 
 | 
    67  | 
  | 
| 
 | 
    68  | 
(*Note that B->A and C->A are typically disjoint!*)
  | 
| 
 | 
    69  | 
goal ZF.thy "!!A B C. B<=C ==> A->B <= A->C";
  | 
| 
 | 
    70  | 
by (fast_tac (ZF_cs addIs [lam_type] addEs [Pi_lamE]) 1);
  | 
| 
 | 
    71  | 
val Pi_mono = result();
  | 
| 
 | 
    72  | 
  | 
| 
 | 
    73  | 
goalw ZF.thy [lam_def] "!!A B. A<=B ==> Lambda(A,c) <= Lambda(B,c)";
  | 
| 
 | 
    74  | 
by (etac RepFun_mono 1);
  | 
| 
 | 
    75  | 
val lam_mono = result();
  | 
| 
 | 
    76  | 
  | 
| 
 | 
    77  | 
(** Quine-inspired ordered pairs, products, injections and sums **)
  | 
| 
 | 
    78  | 
  | 
| 
 | 
    79  | 
goalw QPair.thy [QPair_def] "!!a b c d. [| a<=c;  b<=d |] ==> <a;b> <= <c;d>";
  | 
| 
 | 
    80  | 
by (REPEAT (ares_tac [sum_mono] 1));
  | 
| 
 | 
    81  | 
val QPair_mono = result();
  | 
| 
 | 
    82  | 
  | 
| 
 | 
    83  | 
goal QPair.thy "!!A B C D. [| A<=C;  ALL x:A. B(x) <= D(x) |] ==>  \
  | 
| 
 | 
    84  | 
\                          QSigma(A,B) <= QSigma(C,D)";
  | 
| 
 | 
    85  | 
by (fast_tac (ZF_cs addIs [QSigmaI] addSEs [QSigmaE]) 1);
  | 
| 
 | 
    86  | 
val QSigma_mono_lemma = result();
  | 
| 
 | 
    87  | 
val QSigma_mono = ballI RSN (2,QSigma_mono_lemma);
  | 
| 
 | 
    88  | 
  | 
| 
 | 
    89  | 
goalw QPair.thy [QInl_def] "!!a b. a<=b ==> QInl(a) <= QInl(b)";
  | 
| 
 | 
    90  | 
by (REPEAT (ares_tac [subset_refl RS QPair_mono] 1));
  | 
| 
 | 
    91  | 
val QInl_mono = result();
  | 
| 
 | 
    92  | 
  | 
| 
 | 
    93  | 
goalw QPair.thy [QInr_def] "!!a b. a<=b ==> QInr(a) <= QInr(b)";
  | 
| 
 | 
    94  | 
by (REPEAT (ares_tac [subset_refl RS QPair_mono] 1));
  | 
| 
 | 
    95  | 
val QInr_mono = result();
  | 
| 
 | 
    96  | 
  | 
| 
 | 
    97  | 
goal QPair.thy "!!A B C D. [| A<=C;  B<=D |] ==> A <+> B <= C <+> D";
  | 
| 
 | 
    98  | 
by (fast_tac qsum_cs 1);
  | 
| 
 | 
    99  | 
val qsum_mono = result();
  | 
| 
 | 
   100  | 
  | 
| 
 | 
   101  | 
  | 
| 
 | 
   102  | 
(** Converse, domain, range, field **)
  | 
| 
 | 
   103  | 
  | 
| 
 | 
   104  | 
goal ZF.thy "!!r s. r<=s ==> converse(r) <= converse(s)";
  | 
| 
 | 
   105  | 
by (fast_tac ZF_cs 1);
  | 
| 
 | 
   106  | 
val converse_mono = result();
  | 
| 
 | 
   107  | 
  | 
| 
 | 
   108  | 
goal ZF.thy "!!r s. r<=s ==> domain(r)<=domain(s)";
  | 
| 
 | 
   109  | 
by (fast_tac ZF_cs 1);
  | 
| 
 | 
   110  | 
val domain_mono = result();
  | 
| 
 | 
   111  | 
  | 
| 
 | 
   112  | 
val [prem] = goal ZF.thy "r <= Sigma(A,B) ==> domain(r) <= A";
  | 
| 
 | 
   113  | 
by (rtac (domain_subset RS (prem RS domain_mono RS subset_trans)) 1);
  | 
| 
 | 
   114  | 
val domain_rel_subset = result();
  | 
| 
 | 
   115  | 
  | 
| 
 | 
   116  | 
goal ZF.thy "!!r s. r<=s ==> range(r)<=range(s)";
  | 
| 
 | 
   117  | 
by (fast_tac ZF_cs 1);
  | 
| 
 | 
   118  | 
val range_mono = result();
  | 
| 
 | 
   119  | 
  | 
| 
 | 
   120  | 
val [prem] = goal ZF.thy "r <= A*B ==> range(r) <= B";
  | 
| 
 | 
   121  | 
by (rtac (range_subset RS (prem RS range_mono RS subset_trans)) 1);
  | 
| 
 | 
   122  | 
val range_rel_subset = result();
  | 
| 
 | 
   123  | 
  | 
| 
 | 
   124  | 
goal ZF.thy "!!r s. r<=s ==> field(r)<=field(s)";
  | 
| 
 | 
   125  | 
by (fast_tac ZF_cs 1);
  | 
| 
 | 
   126  | 
val field_mono = result();
  | 
| 
 | 
   127  | 
  | 
| 
 | 
   128  | 
goal ZF.thy "!!r A. r <= A*A ==> field(r) <= A";
  | 
| 
 | 
   129  | 
by (etac (field_mono RS subset_trans) 1);
  | 
| 
 | 
   130  | 
by (fast_tac ZF_cs 1);
  | 
| 
 | 
   131  | 
val field_rel_subset = result();
  | 
| 
 | 
   132  | 
  | 
| 
 | 
   133  | 
  | 
| 
 | 
   134  | 
(** Images **)
  | 
| 
 | 
   135  | 
  | 
| 
 | 
   136  | 
val [prem1,prem2] = goal ZF.thy
  | 
| 
 | 
   137  | 
    "[| !! x y. <x,y>:r ==> <x,y>:s;  A<=B |] ==> r``A <= s``B";
  | 
| 
 | 
   138  | 
by (fast_tac (ZF_cs addIs [prem1, prem2 RS subsetD]) 1);
  | 
| 
 | 
   139  | 
val image_pair_mono = result();
  | 
| 
 | 
   140  | 
  | 
| 
 | 
   141  | 
val [prem1,prem2] = goal ZF.thy
  | 
| 
 | 
   142  | 
    "[| !! x y. <x,y>:r ==> <x,y>:s;  A<=B |] ==> r-``A <= s-``B";
  | 
| 
 | 
   143  | 
by (fast_tac (ZF_cs addIs [prem1, prem2 RS subsetD]) 1);
  | 
| 
 | 
   144  | 
val vimage_pair_mono = result();
  | 
| 
 | 
   145  | 
  | 
| 
 | 
   146  | 
goal ZF.thy "!!r s. [| r<=s;  A<=B |] ==> r``A <= s``B";
  | 
| 
 | 
   147  | 
by (fast_tac ZF_cs 1);
  | 
| 
 | 
   148  | 
val image_mono = result();
  | 
| 
 | 
   149  | 
  | 
| 
 | 
   150  | 
goal ZF.thy "!!r s. [| r<=s;  A<=B |] ==> r-``A <= s-``B";
  | 
| 
 | 
   151  | 
by (fast_tac ZF_cs 1);
  | 
| 
 | 
   152  | 
val vimage_mono = result();
  | 
| 
 | 
   153  | 
  | 
| 
 | 
   154  | 
val [sub,PQimp] = goal ZF.thy
  | 
| 
 | 
   155  | 
    "[| A<=B;  !!x. x:A ==> P(x) --> Q(x) |] ==> Collect(A,P) <= Collect(B,Q)";
  | 
| 
 | 
   156  | 
by (fast_tac (ZF_cs addIs [sub RS subsetD, PQimp RS mp]) 1);
  | 
| 
 | 
   157  | 
val Collect_mono = result();
  | 
| 
 | 
   158  | 
  | 
| 
 | 
   159  | 
(** Monotonicity of implications -- some could go to FOL **)
  | 
| 
 | 
   160  | 
  | 
| 
 | 
   161  | 
goal ZF.thy "!!A B x. A<=B ==> x:A --> x:B";
  | 
| 
 | 
   162  | 
by (rtac impI 1);
  | 
| 
 | 
   163  | 
by (etac subsetD 1);
  | 
| 
 | 
   164  | 
by (assume_tac 1);
  | 
| 
 | 
   165  | 
val in_mono = result();
  | 
| 
 | 
   166  | 
  | 
| 
 | 
   167  | 
goal IFOL.thy "!!P1 P2 Q1 Q2. [| P1-->Q1; P2-->Q2 |] ==> (P1&P2) --> (Q1&Q2)";
  | 
| 
 | 
   168  | 
by (Int.fast_tac 1);
  | 
| 
 | 
   169  | 
val conj_mono = result();
  | 
| 
 | 
   170  | 
  | 
| 
 | 
   171  | 
goal IFOL.thy "!!P1 P2 Q1 Q2. [| P1-->Q1; P2-->Q2 |] ==> (P1|P2) --> (Q1|Q2)";
  | 
| 
 | 
   172  | 
by (Int.fast_tac 1);
  | 
| 
 | 
   173  | 
val disj_mono = result();
  | 
| 
 | 
   174  | 
  | 
| 
 | 
   175  | 
goal IFOL.thy "!!P1 P2 Q1 Q2.[| Q1-->P1; P2-->Q2 |] ==> (P1-->P2)-->(Q1-->Q2)";
  | 
| 
 | 
   176  | 
by (Int.fast_tac 1);
  | 
| 
 | 
   177  | 
val imp_mono = result();
  | 
| 
 | 
   178  | 
  | 
| 
 | 
   179  | 
goal IFOL.thy "P-->P";
  | 
| 
 | 
   180  | 
by (rtac impI 1);
  | 
| 
 | 
   181  | 
by (assume_tac 1);
  | 
| 
 | 
   182  | 
val imp_refl = result();
  | 
| 
 | 
   183  | 
  | 
| 
 | 
   184  | 
val [PQimp] = goal IFOL.thy
  | 
| 
 | 
   185  | 
    "[| !!x. P(x) --> Q(x) |] ==> (EX x.P(x)) --> (EX x.Q(x))";
  | 
| 
 | 
   186  | 
by (fast_tac (FOL_cs addIs [PQimp RS mp]) 1);
  | 
| 
 | 
   187  | 
val ex_mono = result();
  | 
| 
 | 
   188  | 
  | 
| 
 | 
   189  | 
val [PQimp] = goal IFOL.thy
  | 
| 
 | 
   190  | 
    "[| !!x. P(x) --> Q(x) |] ==> (ALL x.P(x)) --> (ALL x.Q(x))";
  | 
| 
 | 
   191  | 
by (fast_tac (FOL_cs addIs [PQimp RS mp]) 1);
  | 
| 
 | 
   192  | 
val all_mono = result();
  | 
| 
516
 | 
   193  | 
  | 
| 
 | 
   194  | 
(*Used in intr_elim.ML and in individual datatype definitions*)
  | 
| 
 | 
   195  | 
val basic_monos = [subset_refl, imp_refl, disj_mono, conj_mono, 
  | 
| 
 | 
   196  | 
		   ex_mono, Collect_mono, Part_mono, in_mono];
  | 
| 
 | 
   197  | 
  |