author | berghofe |
Mon, 30 Sep 2002 16:47:03 +0200 | |
changeset 13611 | 2edf034c902a |
parent 13564 | 1500a2e48d44 |
child 13615 | 449a70d88b38 |
permissions | -rw-r--r-- |
13505 | 1 |
(* Title: ZF/Constructible/Wellorderings.thy |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 2002 University of Cambridge |
|
5 |
*) |
|
6 |
||
13223 | 7 |
header {*Relativized Wellorderings*} |
8 |
||
9 |
theory Wellorderings = Relative: |
|
10 |
||
11 |
text{*We define functions analogous to @{term ordermap} @{term ordertype} |
|
12 |
but without using recursion. Instead, there is a direct appeal |
|
13 |
to Replacement. This will be the basis for a version relativized |
|
14 |
to some class @{text M}. The main result is Theorem I 7.6 in Kunen, |
|
15 |
page 17.*} |
|
16 |
||
17 |
||
18 |
subsection{*Wellorderings*} |
|
19 |
||
20 |
constdefs |
|
21 |
irreflexive :: "[i=>o,i,i]=>o" |
|
13299 | 22 |
"irreflexive(M,A,r) == \<forall>x[M]. x\<in>A --> <x,x> \<notin> r" |
13223 | 23 |
|
24 |
transitive_rel :: "[i=>o,i,i]=>o" |
|
25 |
"transitive_rel(M,A,r) == |
|
13299 | 26 |
\<forall>x[M]. x\<in>A --> (\<forall>y[M]. y\<in>A --> (\<forall>z[M]. z\<in>A --> |
13223 | 27 |
<x,y>\<in>r --> <y,z>\<in>r --> <x,z>\<in>r))" |
28 |
||
29 |
linear_rel :: "[i=>o,i,i]=>o" |
|
30 |
"linear_rel(M,A,r) == |
|
13299 | 31 |
\<forall>x[M]. x\<in>A --> (\<forall>y[M]. y\<in>A --> <x,y>\<in>r | x=y | <y,x>\<in>r)" |
13223 | 32 |
|
33 |
wellfounded :: "[i=>o,i]=>o" |
|
34 |
--{*EVERY non-empty set has an @{text r}-minimal element*} |
|
35 |
"wellfounded(M,r) == |
|
13299 | 36 |
\<forall>x[M]. ~ empty(M,x) |
37 |
--> (\<exists>y[M]. y\<in>x & ~(\<exists>z[M]. z\<in>x & <z,y> \<in> r))" |
|
13223 | 38 |
wellfounded_on :: "[i=>o,i,i]=>o" |
39 |
--{*every non-empty SUBSET OF @{text A} has an @{text r}-minimal element*} |
|
40 |
"wellfounded_on(M,A,r) == |
|
13299 | 41 |
\<forall>x[M]. ~ empty(M,x) --> subset(M,x,A) |
42 |
--> (\<exists>y[M]. y\<in>x & ~(\<exists>z[M]. z\<in>x & <z,y> \<in> r))" |
|
13223 | 43 |
|
44 |
wellordered :: "[i=>o,i,i]=>o" |
|
13513 | 45 |
--{*linear and wellfounded on @{text A}*} |
13223 | 46 |
"wellordered(M,A,r) == |
47 |
transitive_rel(M,A,r) & linear_rel(M,A,r) & wellfounded_on(M,A,r)" |
|
48 |
||
49 |
||
50 |
subsubsection {*Trivial absoluteness proofs*} |
|
51 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
52 |
lemma (in M_basic) irreflexive_abs [simp]: |
13223 | 53 |
"M(A) ==> irreflexive(M,A,r) <-> irrefl(A,r)" |
54 |
by (simp add: irreflexive_def irrefl_def) |
|
55 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
56 |
lemma (in M_basic) transitive_rel_abs [simp]: |
13223 | 57 |
"M(A) ==> transitive_rel(M,A,r) <-> trans[A](r)" |
58 |
by (simp add: transitive_rel_def trans_on_def) |
|
59 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
60 |
lemma (in M_basic) linear_rel_abs [simp]: |
13223 | 61 |
"M(A) ==> linear_rel(M,A,r) <-> linear(A,r)" |
62 |
by (simp add: linear_rel_def linear_def) |
|
63 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
64 |
lemma (in M_basic) wellordered_is_trans_on: |
13223 | 65 |
"[| wellordered(M,A,r); M(A) |] ==> trans[A](r)" |
13505 | 66 |
by (auto simp add: wellordered_def) |
13223 | 67 |
|
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
68 |
lemma (in M_basic) wellordered_is_linear: |
13223 | 69 |
"[| wellordered(M,A,r); M(A) |] ==> linear(A,r)" |
13505 | 70 |
by (auto simp add: wellordered_def) |
13223 | 71 |
|
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
72 |
lemma (in M_basic) wellordered_is_wellfounded_on: |
13223 | 73 |
"[| wellordered(M,A,r); M(A) |] ==> wellfounded_on(M,A,r)" |
13505 | 74 |
by (auto simp add: wellordered_def) |
13223 | 75 |
|
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
76 |
lemma (in M_basic) wellfounded_imp_wellfounded_on: |
13223 | 77 |
"[| wellfounded(M,r); M(A) |] ==> wellfounded_on(M,A,r)" |
78 |
by (auto simp add: wellfounded_def wellfounded_on_def) |
|
79 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
80 |
lemma (in M_basic) wellfounded_on_subset_A: |
13269 | 81 |
"[| wellfounded_on(M,A,r); B<=A |] ==> wellfounded_on(M,B,r)" |
82 |
by (simp add: wellfounded_on_def, blast) |
|
83 |
||
13223 | 84 |
|
85 |
subsubsection {*Well-founded relations*} |
|
86 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
87 |
lemma (in M_basic) wellfounded_on_iff_wellfounded: |
13223 | 88 |
"wellfounded_on(M,A,r) <-> wellfounded(M, r \<inter> A*A)" |
89 |
apply (simp add: wellfounded_on_def wellfounded_def, safe) |
|
90 |
apply blast |
|
13299 | 91 |
apply (drule_tac x=x in rspec, assumption, blast) |
13223 | 92 |
done |
93 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
94 |
lemma (in M_basic) wellfounded_on_imp_wellfounded: |
13247 | 95 |
"[|wellfounded_on(M,A,r); r \<subseteq> A*A|] ==> wellfounded(M,r)" |
96 |
by (simp add: wellfounded_on_iff_wellfounded subset_Int_iff) |
|
97 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
98 |
lemma (in M_basic) wellfounded_on_field_imp_wellfounded: |
13269 | 99 |
"wellfounded_on(M, field(r), r) ==> wellfounded(M,r)" |
100 |
by (simp add: wellfounded_def wellfounded_on_iff_wellfounded, fast) |
|
101 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
102 |
lemma (in M_basic) wellfounded_iff_wellfounded_on_field: |
13269 | 103 |
"M(r) ==> wellfounded(M,r) <-> wellfounded_on(M, field(r), r)" |
104 |
by (blast intro: wellfounded_imp_wellfounded_on |
|
105 |
wellfounded_on_field_imp_wellfounded) |
|
106 |
||
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
107 |
(*Consider the least z in domain(r) such that P(z) does not hold...*) |
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
108 |
lemma (in M_basic) wellfounded_induct: |
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
109 |
"[| wellfounded(M,r); M(a); M(r); separation(M, \<lambda>x. ~P(x)); |
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
110 |
\<forall>x. M(x) & (\<forall>y. <y,x> \<in> r --> P(y)) --> P(x) |] |
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
111 |
==> P(a)"; |
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
112 |
apply (simp (no_asm_use) add: wellfounded_def) |
13299 | 113 |
apply (drule_tac x="{z \<in> domain(r). ~P(z)}" in rspec) |
114 |
apply (blast dest: transM)+ |
|
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
115 |
done |
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
116 |
|
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
117 |
lemma (in M_basic) wellfounded_on_induct: |
13223 | 118 |
"[| a\<in>A; wellfounded_on(M,A,r); M(A); |
119 |
separation(M, \<lambda>x. x\<in>A --> ~P(x)); |
|
120 |
\<forall>x\<in>A. M(x) & (\<forall>y\<in>A. <y,x> \<in> r --> P(y)) --> P(x) |] |
|
121 |
==> P(a)"; |
|
122 |
apply (simp (no_asm_use) add: wellfounded_on_def) |
|
13299 | 123 |
apply (drule_tac x="{z\<in>A. z\<in>A --> ~P(z)}" in rspec) |
124 |
apply (blast intro: transM)+ |
|
13223 | 125 |
done |
126 |
||
127 |
text{*The assumption @{term "r \<subseteq> A*A"} justifies strengthening the induction |
|
128 |
hypothesis by removing the restriction to @{term A}.*} |
|
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
129 |
lemma (in M_basic) wellfounded_on_induct2: |
13223 | 130 |
"[| a\<in>A; wellfounded_on(M,A,r); M(A); r \<subseteq> A*A; |
131 |
separation(M, \<lambda>x. x\<in>A --> ~P(x)); |
|
132 |
\<forall>x\<in>A. M(x) & (\<forall>y. <y,x> \<in> r --> P(y)) --> P(x) |] |
|
133 |
==> P(a)"; |
|
134 |
by (rule wellfounded_on_induct, assumption+, blast) |
|
135 |
||
136 |
||
137 |
subsubsection {*Kunen's lemma IV 3.14, page 123*} |
|
138 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
139 |
lemma (in M_basic) linear_imp_relativized: |
13223 | 140 |
"linear(A,r) ==> linear_rel(M,A,r)" |
141 |
by (simp add: linear_def linear_rel_def) |
|
142 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
143 |
lemma (in M_basic) trans_on_imp_relativized: |
13223 | 144 |
"trans[A](r) ==> transitive_rel(M,A,r)" |
145 |
by (unfold transitive_rel_def trans_on_def, blast) |
|
146 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
147 |
lemma (in M_basic) wf_on_imp_relativized: |
13223 | 148 |
"wf[A](r) ==> wellfounded_on(M,A,r)" |
149 |
apply (simp add: wellfounded_on_def wf_def wf_on_def, clarify) |
|
13339
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
13306
diff
changeset
|
150 |
apply (drule_tac x=x in spec, blast) |
13223 | 151 |
done |
152 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
153 |
lemma (in M_basic) wf_imp_relativized: |
13223 | 154 |
"wf(r) ==> wellfounded(M,r)" |
155 |
apply (simp add: wellfounded_def wf_def, clarify) |
|
13339
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
13306
diff
changeset
|
156 |
apply (drule_tac x=x in spec, blast) |
13223 | 157 |
done |
158 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
159 |
lemma (in M_basic) well_ord_imp_relativized: |
13223 | 160 |
"well_ord(A,r) ==> wellordered(M,A,r)" |
161 |
by (simp add: wellordered_def well_ord_def tot_ord_def part_ord_def |
|
162 |
linear_imp_relativized trans_on_imp_relativized wf_on_imp_relativized) |
|
163 |
||
164 |
||
165 |
subsection{* Relativized versions of order-isomorphisms and order types *} |
|
166 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
167 |
lemma (in M_basic) order_isomorphism_abs [simp]: |
13223 | 168 |
"[| M(A); M(B); M(f) |] |
169 |
==> order_isomorphism(M,A,r,B,s,f) <-> f \<in> ord_iso(A,r,B,s)" |
|
13352 | 170 |
by (simp add: apply_closed order_isomorphism_def ord_iso_def) |
13223 | 171 |
|
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
172 |
lemma (in M_basic) pred_set_abs [simp]: |
13223 | 173 |
"[| M(r); M(B) |] ==> pred_set(M,A,x,r,B) <-> B = Order.pred(A,x,r)" |
174 |
apply (simp add: pred_set_def Order.pred_def) |
|
175 |
apply (blast dest: transM) |
|
176 |
done |
|
177 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
178 |
lemma (in M_basic) pred_closed [intro,simp]: |
13223 | 179 |
"[| M(A); M(r); M(x) |] ==> M(Order.pred(A,x,r))" |
180 |
apply (simp add: Order.pred_def) |
|
13245 | 181 |
apply (insert pred_separation [of r x], simp) |
13223 | 182 |
done |
183 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
184 |
lemma (in M_basic) membership_abs [simp]: |
13223 | 185 |
"[| M(r); M(A) |] ==> membership(M,A,r) <-> r = Memrel(A)" |
186 |
apply (simp add: membership_def Memrel_def, safe) |
|
187 |
apply (rule equalityI) |
|
188 |
apply clarify |
|
189 |
apply (frule transM, assumption) |
|
190 |
apply blast |
|
191 |
apply clarify |
|
192 |
apply (subgoal_tac "M(<xb,ya>)", blast) |
|
193 |
apply (blast dest: transM) |
|
194 |
apply auto |
|
195 |
done |
|
196 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
197 |
lemma (in M_basic) M_Memrel_iff: |
13223 | 198 |
"M(A) ==> |
13298 | 199 |
Memrel(A) = {z \<in> A*A. \<exists>x[M]. \<exists>y[M]. z = \<langle>x,y\<rangle> & x \<in> y}" |
13223 | 200 |
apply (simp add: Memrel_def) |
201 |
apply (blast dest: transM) |
|
202 |
done |
|
203 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
204 |
lemma (in M_basic) Memrel_closed [intro,simp]: |
13223 | 205 |
"M(A) ==> M(Memrel(A))" |
206 |
apply (simp add: M_Memrel_iff) |
|
13245 | 207 |
apply (insert Memrel_separation, simp) |
13223 | 208 |
done |
209 |
||
210 |
||
211 |
subsection {* Main results of Kunen, Chapter 1 section 6 *} |
|
212 |
||
213 |
text{*Subset properties-- proved outside the locale*} |
|
214 |
||
215 |
lemma linear_rel_subset: |
|
216 |
"[| linear_rel(M,A,r); B<=A |] ==> linear_rel(M,B,r)" |
|
217 |
by (unfold linear_rel_def, blast) |
|
218 |
||
219 |
lemma transitive_rel_subset: |
|
220 |
"[| transitive_rel(M,A,r); B<=A |] ==> transitive_rel(M,B,r)" |
|
221 |
by (unfold transitive_rel_def, blast) |
|
222 |
||
223 |
lemma wellfounded_on_subset: |
|
224 |
"[| wellfounded_on(M,A,r); B<=A |] ==> wellfounded_on(M,B,r)" |
|
225 |
by (unfold wellfounded_on_def subset_def, blast) |
|
226 |
||
227 |
lemma wellordered_subset: |
|
228 |
"[| wellordered(M,A,r); B<=A |] ==> wellordered(M,B,r)" |
|
229 |
apply (unfold wellordered_def) |
|
230 |
apply (blast intro: linear_rel_subset transitive_rel_subset |
|
231 |
wellfounded_on_subset) |
|
232 |
done |
|
233 |
||
234 |
text{*Inductive argument for Kunen's Lemma 6.1, etc. |
|
235 |
Simple proof from Halmos, page 72*} |
|
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
236 |
lemma (in M_basic) wellordered_iso_subset_lemma: |
13223 | 237 |
"[| wellordered(M,A,r); f \<in> ord_iso(A,r, A',r); A'<= A; y \<in> A; |
238 |
M(A); M(f); M(r) |] ==> ~ <f`y, y> \<in> r" |
|
239 |
apply (unfold wellordered_def ord_iso_def) |
|
240 |
apply (elim conjE CollectE) |
|
241 |
apply (erule wellfounded_on_induct, assumption+) |
|
242 |
apply (insert well_ord_iso_separation [of A f r]) |
|
13352 | 243 |
apply (simp, clarify) |
13223 | 244 |
apply (drule_tac a = x in bij_is_fun [THEN apply_type], assumption, blast) |
245 |
done |
|
246 |
||
247 |
||
248 |
text{*Kunen's Lemma 6.1: there's no order-isomorphism to an initial segment |
|
249 |
of a well-ordering*} |
|
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
250 |
lemma (in M_basic) wellordered_iso_predD: |
13223 | 251 |
"[| wellordered(M,A,r); f \<in> ord_iso(A, r, Order.pred(A,x,r), r); |
252 |
M(A); M(f); M(r) |] ==> x \<notin> A" |
|
253 |
apply (rule notI) |
|
254 |
apply (frule wellordered_iso_subset_lemma, assumption) |
|
255 |
apply (auto elim: predE) |
|
256 |
(*Now we know ~ (f`x < x) *) |
|
257 |
apply (drule ord_iso_is_bij [THEN bij_is_fun, THEN apply_type], assumption) |
|
258 |
(*Now we also know f`x \<in> pred(A,x,r); contradiction! *) |
|
259 |
apply (simp add: Order.pred_def) |
|
260 |
done |
|
261 |
||
262 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
263 |
lemma (in M_basic) wellordered_iso_pred_eq_lemma: |
13223 | 264 |
"[| f \<in> \<langle>Order.pred(A,y,r), r\<rangle> \<cong> \<langle>Order.pred(A,x,r), r\<rangle>; |
265 |
wellordered(M,A,r); x\<in>A; y\<in>A; M(A); M(f); M(r) |] ==> <x,y> \<notin> r" |
|
266 |
apply (frule wellordered_is_trans_on, assumption) |
|
267 |
apply (rule notI) |
|
268 |
apply (drule_tac x2=y and x=x and r2=r in |
|
269 |
wellordered_subset [OF _ pred_subset, THEN wellordered_iso_predD]) |
|
270 |
apply (simp add: trans_pred_pred_eq) |
|
271 |
apply (blast intro: predI dest: transM)+ |
|
272 |
done |
|
273 |
||
274 |
||
275 |
text{*Simple consequence of Lemma 6.1*} |
|
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
276 |
lemma (in M_basic) wellordered_iso_pred_eq: |
13223 | 277 |
"[| wellordered(M,A,r); |
278 |
f \<in> ord_iso(Order.pred(A,a,r), r, Order.pred(A,c,r), r); |
|
279 |
M(A); M(f); M(r); a\<in>A; c\<in>A |] ==> a=c" |
|
280 |
apply (frule wellordered_is_trans_on, assumption) |
|
281 |
apply (frule wellordered_is_linear, assumption) |
|
282 |
apply (erule_tac x=a and y=c in linearE, auto) |
|
283 |
apply (drule ord_iso_sym) |
|
284 |
(*two symmetric cases*) |
|
285 |
apply (blast dest: wellordered_iso_pred_eq_lemma)+ |
|
286 |
done |
|
287 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
288 |
lemma (in M_basic) wellfounded_on_asym: |
13223 | 289 |
"[| wellfounded_on(M,A,r); <a,x>\<in>r; a\<in>A; x\<in>A; M(A) |] ==> <x,a>\<notin>r" |
290 |
apply (simp add: wellfounded_on_def) |
|
13299 | 291 |
apply (drule_tac x="{x,a}" in rspec) |
292 |
apply (blast dest: transM)+ |
|
13223 | 293 |
done |
294 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
295 |
lemma (in M_basic) wellordered_asym: |
13223 | 296 |
"[| wellordered(M,A,r); <a,x>\<in>r; a\<in>A; x\<in>A; M(A) |] ==> <x,a>\<notin>r" |
297 |
by (simp add: wellordered_def, blast dest: wellfounded_on_asym) |
|
298 |
||
299 |
||
300 |
text{*Surely a shorter proof using lemmas in @{text Order}? |
|
13295 | 301 |
Like @{text well_ord_iso_preserving}?*} |
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
302 |
lemma (in M_basic) ord_iso_pred_imp_lt: |
13223 | 303 |
"[| f \<in> ord_iso(Order.pred(A,x,r), r, i, Memrel(i)); |
304 |
g \<in> ord_iso(Order.pred(A,y,r), r, j, Memrel(j)); |
|
305 |
wellordered(M,A,r); x \<in> A; y \<in> A; M(A); M(r); M(f); M(g); M(j); |
|
306 |
Ord(i); Ord(j); \<langle>x,y\<rangle> \<in> r |] |
|
307 |
==> i < j" |
|
308 |
apply (frule wellordered_is_trans_on, assumption) |
|
309 |
apply (frule_tac y=y in transM, assumption) |
|
310 |
apply (rule_tac i=i and j=j in Ord_linear_lt, auto) |
|
311 |
txt{*case @{term "i=j"} yields a contradiction*} |
|
312 |
apply (rule_tac x1=x and A1="Order.pred(A,y,r)" in |
|
313 |
wellordered_iso_predD [THEN notE]) |
|
314 |
apply (blast intro: wellordered_subset [OF _ pred_subset]) |
|
315 |
apply (simp add: trans_pred_pred_eq) |
|
316 |
apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans) |
|
317 |
apply (simp_all add: pred_iff pred_closed converse_closed comp_closed) |
|
318 |
txt{*case @{term "j<i"} also yields a contradiction*} |
|
319 |
apply (frule restrict_ord_iso2, assumption+) |
|
320 |
apply (frule ord_iso_sym [THEN ord_iso_is_bij, THEN bij_is_fun]) |
|
321 |
apply (frule apply_type, blast intro: ltD) |
|
322 |
--{*thus @{term "converse(f)`j \<in> Order.pred(A,x,r)"}*} |
|
323 |
apply (simp add: pred_iff) |
|
324 |
apply (subgoal_tac |
|
13299 | 325 |
"\<exists>h[M]. h \<in> ord_iso(Order.pred(A,y,r), r, |
13223 | 326 |
Order.pred(A, converse(f)`j, r), r)") |
327 |
apply (clarify, frule wellordered_iso_pred_eq, assumption+) |
|
328 |
apply (blast dest: wellordered_asym) |
|
13299 | 329 |
apply (intro rexI) |
330 |
apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans)+ |
|
13223 | 331 |
done |
332 |
||
333 |
||
334 |
lemma ord_iso_converse1: |
|
335 |
"[| f: ord_iso(A,r,B,s); <b, f`a>: s; a:A; b:B |] |
|
336 |
==> <converse(f) ` b, a> : r" |
|
337 |
apply (frule ord_iso_converse, assumption+) |
|
338 |
apply (blast intro: ord_iso_is_bij [THEN bij_is_fun, THEN apply_funtype]) |
|
339 |
apply (simp add: left_inverse_bij [OF ord_iso_is_bij]) |
|
340 |
done |
|
341 |
||
342 |
||
343 |
subsection {* Order Types: A Direct Construction by Replacement*} |
|
344 |
||
345 |
text{*This follows Kunen's Theorem I 7.6, page 17.*} |
|
346 |
||
347 |
constdefs |
|
348 |
||
349 |
obase :: "[i=>o,i,i,i] => o" |
|
350 |
--{*the domain of @{text om}, eventually shown to equal @{text A}*} |
|
351 |
"obase(M,A,r,z) == |
|
13293 | 352 |
\<forall>a[M]. |
353 |
a \<in> z <-> |
|
13306 | 354 |
(a\<in>A & (\<exists>x[M]. \<exists>g[M]. \<exists>mx[M]. \<exists>par[M]. |
355 |
ordinal(M,x) & membership(M,x,mx) & pred_set(M,A,a,r,par) & |
|
356 |
order_isomorphism(M,par,r,x,mx,g)))" |
|
13223 | 357 |
|
358 |
||
359 |
omap :: "[i=>o,i,i,i] => o" |
|
360 |
--{*the function that maps wosets to order types*} |
|
361 |
"omap(M,A,r,f) == |
|
13293 | 362 |
\<forall>z[M]. |
363 |
z \<in> f <-> |
|
13299 | 364 |
(\<exists>a[M]. a\<in>A & |
13306 | 365 |
(\<exists>x[M]. \<exists>g[M]. \<exists>mx[M]. \<exists>par[M]. |
366 |
ordinal(M,x) & pair(M,a,x,z) & membership(M,x,mx) & |
|
367 |
pred_set(M,A,a,r,par) & order_isomorphism(M,par,r,x,mx,g)))" |
|
13223 | 368 |
|
369 |
||
370 |
otype :: "[i=>o,i,i,i] => o" --{*the order types themselves*} |
|
13299 | 371 |
"otype(M,A,r,i) == \<exists>f[M]. omap(M,A,r,f) & is_range(M,f,i)" |
13223 | 372 |
|
373 |
||
374 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
375 |
lemma (in M_basic) obase_iff: |
13223 | 376 |
"[| M(A); M(r); M(z) |] |
377 |
==> obase(M,A,r,z) <-> |
|
13306 | 378 |
z = {a\<in>A. \<exists>x[M]. \<exists>g[M]. Ord(x) & |
13223 | 379 |
g \<in> ord_iso(Order.pred(A,a,r),r,x,Memrel(x))}" |
380 |
apply (simp add: obase_def Memrel_closed pred_closed) |
|
381 |
apply (rule iffI) |
|
382 |
prefer 2 apply blast |
|
383 |
apply (rule equalityI) |
|
384 |
apply (clarify, frule transM, assumption, rotate_tac -1, simp) |
|
385 |
apply (clarify, frule transM, assumption, force) |
|
386 |
done |
|
387 |
||
388 |
text{*Can also be proved with the premise @{term "M(z)"} instead of |
|
389 |
@{term "M(f)"}, but that version is less useful.*} |
|
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
390 |
lemma (in M_basic) omap_iff: |
13223 | 391 |
"[| omap(M,A,r,f); M(A); M(r); M(f) |] |
392 |
==> z \<in> f <-> |
|
13306 | 393 |
(\<exists>a\<in>A. \<exists>x[M]. \<exists>g[M]. z = <a,x> & Ord(x) & |
394 |
g \<in> ord_iso(Order.pred(A,a,r),r,x,Memrel(x)))" |
|
13223 | 395 |
apply (rotate_tac 1) |
396 |
apply (simp add: omap_def Memrel_closed pred_closed) |
|
13293 | 397 |
apply (rule iffI) |
398 |
apply (drule_tac [2] x=z in rspec) |
|
399 |
apply (drule_tac x=z in rspec) |
|
400 |
apply (blast dest: transM)+ |
|
13223 | 401 |
done |
402 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
403 |
lemma (in M_basic) omap_unique: |
13223 | 404 |
"[| omap(M,A,r,f); omap(M,A,r,f'); M(A); M(r); M(f); M(f') |] ==> f' = f" |
405 |
apply (rule equality_iffI) |
|
406 |
apply (simp add: omap_iff) |
|
407 |
done |
|
408 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
409 |
lemma (in M_basic) omap_yields_Ord: |
13223 | 410 |
"[| omap(M,A,r,f); \<langle>a,x\<rangle> \<in> f; M(a); M(x) |] ==> Ord(x)" |
13611 | 411 |
by (simp add: omap_def) |
13223 | 412 |
|
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
413 |
lemma (in M_basic) otype_iff: |
13223 | 414 |
"[| otype(M,A,r,i); M(A); M(r); M(i) |] |
415 |
==> x \<in> i <-> |
|
13306 | 416 |
(M(x) & Ord(x) & |
417 |
(\<exists>a\<in>A. \<exists>g[M]. g \<in> ord_iso(Order.pred(A,a,r),r,x,Memrel(x))))" |
|
418 |
apply (auto simp add: omap_iff otype_def) |
|
419 |
apply (blast intro: transM) |
|
420 |
apply (rule rangeI) |
|
13223 | 421 |
apply (frule transM, assumption) |
422 |
apply (simp add: omap_iff, blast) |
|
423 |
done |
|
424 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
425 |
lemma (in M_basic) otype_eq_range: |
13306 | 426 |
"[| omap(M,A,r,f); otype(M,A,r,i); M(A); M(r); M(f); M(i) |] |
427 |
==> i = range(f)" |
|
13223 | 428 |
apply (auto simp add: otype_def omap_iff) |
429 |
apply (blast dest: omap_unique) |
|
430 |
done |
|
431 |
||
432 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
433 |
lemma (in M_basic) Ord_otype: |
13223 | 434 |
"[| otype(M,A,r,i); trans[A](r); M(A); M(r); M(i) |] ==> Ord(i)" |
435 |
apply (rotate_tac 1) |
|
436 |
apply (rule OrdI) |
|
437 |
prefer 2 |
|
438 |
apply (simp add: Ord_def otype_def omap_def) |
|
439 |
apply clarify |
|
440 |
apply (frule pair_components_in_M, assumption) |
|
441 |
apply blast |
|
442 |
apply (auto simp add: Transset_def otype_iff) |
|
13306 | 443 |
apply (blast intro: transM) |
444 |
apply (blast intro: Ord_in_Ord) |
|
13223 | 445 |
apply (rename_tac y a g) |
446 |
apply (frule ord_iso_sym [THEN ord_iso_is_bij, THEN bij_is_fun, |
|
447 |
THEN apply_funtype], assumption) |
|
448 |
apply (rule_tac x="converse(g)`y" in bexI) |
|
449 |
apply (frule_tac a="converse(g) ` y" in ord_iso_restrict_pred, assumption) |
|
450 |
apply (safe elim!: predE) |
|
13306 | 451 |
apply (blast intro: restrict_ord_iso ord_iso_sym ltI dest: transM) |
13223 | 452 |
done |
453 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
454 |
lemma (in M_basic) domain_omap: |
13223 | 455 |
"[| omap(M,A,r,f); obase(M,A,r,B); M(A); M(r); M(B); M(f) |] |
456 |
==> domain(f) = B" |
|
457 |
apply (rotate_tac 2) |
|
458 |
apply (simp add: domain_closed obase_iff) |
|
459 |
apply (rule equality_iffI) |
|
460 |
apply (simp add: domain_iff omap_iff, blast) |
|
461 |
done |
|
462 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
463 |
lemma (in M_basic) omap_subset: |
13223 | 464 |
"[| omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); |
465 |
M(A); M(r); M(f); M(B); M(i) |] ==> f \<subseteq> B * i" |
|
466 |
apply (rotate_tac 3, clarify) |
|
467 |
apply (simp add: omap_iff obase_iff) |
|
468 |
apply (force simp add: otype_iff) |
|
469 |
done |
|
470 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
471 |
lemma (in M_basic) omap_funtype: |
13223 | 472 |
"[| omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); |
473 |
M(A); M(r); M(f); M(B); M(i) |] ==> f \<in> B -> i" |
|
474 |
apply (rotate_tac 3) |
|
475 |
apply (simp add: domain_omap omap_subset Pi_iff function_def omap_iff) |
|
476 |
apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans) |
|
477 |
done |
|
478 |
||
479 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
480 |
lemma (in M_basic) wellordered_omap_bij: |
13223 | 481 |
"[| wellordered(M,A,r); omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); |
482 |
M(A); M(r); M(f); M(B); M(i) |] ==> f \<in> bij(B,i)" |
|
483 |
apply (insert omap_funtype [of A r f B i]) |
|
484 |
apply (auto simp add: bij_def inj_def) |
|
485 |
prefer 2 apply (blast intro: fun_is_surj dest: otype_eq_range) |
|
13339
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
13306
diff
changeset
|
486 |
apply (frule_tac a=w in apply_Pair, assumption) |
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
13306
diff
changeset
|
487 |
apply (frule_tac a=x in apply_Pair, assumption) |
13223 | 488 |
apply (simp add: omap_iff) |
489 |
apply (blast intro: wellordered_iso_pred_eq ord_iso_sym ord_iso_trans) |
|
490 |
done |
|
491 |
||
492 |
||
493 |
text{*This is not the final result: we must show @{term "oB(A,r) = A"}*} |
|
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
494 |
lemma (in M_basic) omap_ord_iso: |
13223 | 495 |
"[| wellordered(M,A,r); omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); |
496 |
M(A); M(r); M(f); M(B); M(i) |] ==> f \<in> ord_iso(B,r,i,Memrel(i))" |
|
497 |
apply (rule ord_isoI) |
|
498 |
apply (erule wellordered_omap_bij, assumption+) |
|
499 |
apply (insert omap_funtype [of A r f B i], simp) |
|
13339
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
13306
diff
changeset
|
500 |
apply (frule_tac a=x in apply_Pair, assumption) |
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
13306
diff
changeset
|
501 |
apply (frule_tac a=y in apply_Pair, assumption) |
13223 | 502 |
apply (auto simp add: omap_iff) |
503 |
txt{*direction 1: assuming @{term "\<langle>x,y\<rangle> \<in> r"}*} |
|
504 |
apply (blast intro: ltD ord_iso_pred_imp_lt) |
|
505 |
txt{*direction 2: proving @{term "\<langle>x,y\<rangle> \<in> r"} using linearity of @{term r}*} |
|
506 |
apply (rename_tac x y g ga) |
|
507 |
apply (frule wellordered_is_linear, assumption, |
|
508 |
erule_tac x=x and y=y in linearE, assumption+) |
|
509 |
txt{*the case @{term "x=y"} leads to immediate contradiction*} |
|
510 |
apply (blast elim: mem_irrefl) |
|
511 |
txt{*the case @{term "\<langle>y,x\<rangle> \<in> r"}: handle like the opposite direction*} |
|
512 |
apply (blast dest: ord_iso_pred_imp_lt ltD elim: mem_asym) |
|
513 |
done |
|
514 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
515 |
lemma (in M_basic) Ord_omap_image_pred: |
13223 | 516 |
"[| wellordered(M,A,r); omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); |
517 |
M(A); M(r); M(f); M(B); M(i); b \<in> A |] ==> Ord(f `` Order.pred(A,b,r))" |
|
518 |
apply (frule wellordered_is_trans_on, assumption) |
|
519 |
apply (rule OrdI) |
|
520 |
prefer 2 apply (simp add: image_iff omap_iff Ord_def, blast) |
|
521 |
txt{*Hard part is to show that the image is a transitive set.*} |
|
522 |
apply (rotate_tac 3) |
|
523 |
apply (simp add: Transset_def, clarify) |
|
524 |
apply (simp add: image_iff pred_iff apply_iff [OF omap_funtype [of A r f B i]]) |
|
525 |
apply (rename_tac c j, clarify) |
|
526 |
apply (frule omap_funtype [of A r f B, THEN apply_funtype], assumption+) |
|
527 |
apply (subgoal_tac "j : i") |
|
528 |
prefer 2 apply (blast intro: Ord_trans Ord_otype) |
|
529 |
apply (subgoal_tac "converse(f) ` j : B") |
|
530 |
prefer 2 |
|
531 |
apply (blast dest: wellordered_omap_bij [THEN bij_converse_bij, |
|
532 |
THEN bij_is_fun, THEN apply_funtype]) |
|
533 |
apply (rule_tac x="converse(f) ` j" in bexI) |
|
534 |
apply (simp add: right_inverse_bij [OF wellordered_omap_bij]) |
|
535 |
apply (intro predI conjI) |
|
536 |
apply (erule_tac b=c in trans_onD) |
|
537 |
apply (rule ord_iso_converse1 [OF omap_ord_iso [of A r f B i]]) |
|
538 |
apply (auto simp add: obase_iff) |
|
539 |
done |
|
540 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
541 |
lemma (in M_basic) restrict_omap_ord_iso: |
13223 | 542 |
"[| wellordered(M,A,r); omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); |
543 |
D \<subseteq> B; M(A); M(r); M(f); M(B); M(i) |] |
|
544 |
==> restrict(f,D) \<in> (\<langle>D,r\<rangle> \<cong> \<langle>f``D, Memrel(f``D)\<rangle>)" |
|
545 |
apply (frule ord_iso_restrict_image [OF omap_ord_iso [of A r f B i]], |
|
546 |
assumption+) |
|
547 |
apply (drule ord_iso_sym [THEN subset_ord_iso_Memrel]) |
|
548 |
apply (blast dest: subsetD [OF omap_subset]) |
|
549 |
apply (drule ord_iso_sym, simp) |
|
550 |
done |
|
551 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
552 |
lemma (in M_basic) obase_equals: |
13223 | 553 |
"[| wellordered(M,A,r); omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); |
554 |
M(A); M(r); M(f); M(B); M(i) |] ==> B = A" |
|
555 |
apply (rotate_tac 4) |
|
556 |
apply (rule equalityI, force simp add: obase_iff, clarify) |
|
557 |
apply (subst obase_iff [of A r B, THEN iffD1], assumption+, simp) |
|
558 |
apply (frule wellordered_is_wellfounded_on, assumption) |
|
559 |
apply (erule wellfounded_on_induct, assumption+) |
|
13306 | 560 |
apply (frule obase_equals_separation [of A r], assumption) |
561 |
apply (simp, clarify) |
|
13223 | 562 |
apply (rename_tac b) |
563 |
apply (subgoal_tac "Order.pred(A,b,r) <= B") |
|
13306 | 564 |
apply (blast intro!: restrict_omap_ord_iso Ord_omap_image_pred) |
565 |
apply (force simp add: pred_iff obase_iff) |
|
13223 | 566 |
done |
567 |
||
568 |
||
569 |
||
570 |
text{*Main result: @{term om} gives the order-isomorphism |
|
571 |
@{term "\<langle>A,r\<rangle> \<cong> \<langle>i, Memrel(i)\<rangle>"} *} |
|
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
572 |
theorem (in M_basic) omap_ord_iso_otype: |
13223 | 573 |
"[| wellordered(M,A,r); omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); |
574 |
M(A); M(r); M(f); M(B); M(i) |] ==> f \<in> ord_iso(A, r, i, Memrel(i))" |
|
575 |
apply (frule omap_ord_iso, assumption+) |
|
576 |
apply (frule obase_equals, assumption+, blast) |
|
13293 | 577 |
done |
13223 | 578 |
|
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
579 |
lemma (in M_basic) obase_exists: |
13293 | 580 |
"[| M(A); M(r) |] ==> \<exists>z[M]. obase(M,A,r,z)" |
13223 | 581 |
apply (simp add: obase_def) |
582 |
apply (insert obase_separation [of A r]) |
|
583 |
apply (simp add: separation_def) |
|
584 |
done |
|
585 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
586 |
lemma (in M_basic) omap_exists: |
13293 | 587 |
"[| M(A); M(r) |] ==> \<exists>z[M]. omap(M,A,r,z)" |
13223 | 588 |
apply (insert obase_exists [of A r]) |
589 |
apply (simp add: omap_def) |
|
590 |
apply (insert omap_replacement [of A r]) |
|
591 |
apply (simp add: strong_replacement_def, clarify) |
|
13299 | 592 |
apply (drule_tac x=x in rspec, clarify) |
13223 | 593 |
apply (simp add: Memrel_closed pred_closed obase_iff) |
594 |
apply (erule impE) |
|
595 |
apply (clarsimp simp add: univalent_def) |
|
596 |
apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans, clarify) |
|
13293 | 597 |
apply (rule_tac x=Y in rexI) |
598 |
apply (simp add: Memrel_closed pred_closed obase_iff, blast, assumption) |
|
13223 | 599 |
done |
600 |
||
13293 | 601 |
declare rall_simps [simp] rex_simps [simp] |
602 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
603 |
lemma (in M_basic) otype_exists: |
13299 | 604 |
"[| wellordered(M,A,r); M(A); M(r) |] ==> \<exists>i[M]. otype(M,A,r,i)" |
13293 | 605 |
apply (insert omap_exists [of A r]) |
606 |
apply (simp add: otype_def, safe) |
|
13299 | 607 |
apply (rule_tac x="range(x)" in rexI) |
608 |
apply blast+ |
|
13223 | 609 |
done |
610 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
611 |
theorem (in M_basic) omap_ord_iso_otype': |
13223 | 612 |
"[| wellordered(M,A,r); M(A); M(r) |] |
13299 | 613 |
==> \<exists>f[M]. (\<exists>i[M]. Ord(i) & f \<in> ord_iso(A, r, i, Memrel(i)))" |
13223 | 614 |
apply (insert obase_exists [of A r] omap_exists [of A r] otype_exists [of A r], simp, clarify) |
13299 | 615 |
apply (rename_tac i) |
13223 | 616 |
apply (subgoal_tac "Ord(i)", blast intro: omap_ord_iso_otype) |
617 |
apply (rule Ord_otype) |
|
618 |
apply (force simp add: otype_def range_closed) |
|
619 |
apply (simp_all add: wellordered_is_trans_on) |
|
620 |
done |
|
621 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
622 |
lemma (in M_basic) ordertype_exists: |
13223 | 623 |
"[| wellordered(M,A,r); M(A); M(r) |] |
13299 | 624 |
==> \<exists>f[M]. (\<exists>i[M]. Ord(i) & f \<in> ord_iso(A, r, i, Memrel(i)))" |
13223 | 625 |
apply (insert obase_exists [of A r] omap_exists [of A r] otype_exists [of A r], simp, clarify) |
13299 | 626 |
apply (rename_tac i) |
13428 | 627 |
apply (subgoal_tac "Ord(i)", blast intro: omap_ord_iso_otype') |
13223 | 628 |
apply (rule Ord_otype) |
629 |
apply (force simp add: otype_def range_closed) |
|
630 |
apply (simp_all add: wellordered_is_trans_on) |
|
631 |
done |
|
632 |
||
633 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
634 |
lemma (in M_basic) relativized_imp_well_ord: |
13223 | 635 |
"[| wellordered(M,A,r); M(A); M(r) |] ==> well_ord(A,r)" |
636 |
apply (insert ordertype_exists [of A r], simp) |
|
13505 | 637 |
apply (blast intro: well_ord_ord_iso well_ord_Memrel) |
13223 | 638 |
done |
639 |
||
640 |
subsection {*Kunen's theorem 5.4, poage 127*} |
|
641 |
||
642 |
text{*(a) The notion of Wellordering is absolute*} |
|
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
643 |
theorem (in M_basic) well_ord_abs [simp]: |
13223 | 644 |
"[| M(A); M(r) |] ==> wellordered(M,A,r) <-> well_ord(A,r)" |
645 |
by (blast intro: well_ord_imp_relativized relativized_imp_well_ord) |
|
646 |
||
647 |
||
648 |
text{*(b) Order types are absolute*} |
|
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13513
diff
changeset
|
649 |
lemma (in M_basic) |
13223 | 650 |
"[| wellordered(M,A,r); f \<in> ord_iso(A, r, i, Memrel(i)); |
651 |
M(A); M(r); M(f); M(i); Ord(i) |] ==> i = ordertype(A,r)" |
|
652 |
by (blast intro: Ord_ordertype relativized_imp_well_ord ordertype_ord_iso |
|
653 |
Ord_iso_implies_eq ord_iso_sym ord_iso_trans) |
|
654 |
||
655 |
end |