| author | haftmann | 
| Thu, 25 Jun 2009 15:42:36 +0200 | |
| changeset 31805 | 2f0adf64985b | 
| parent 31804 | 627d142fce19 | 
| child 31902 | 862ae16a799d | 
| permissions | -rw-r--r-- | 
| 923 | 1 | (* Title: HOL/HOL.thy | 
| 11750 | 2 | Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson | 
| 3 | *) | |
| 923 | 4 | |
| 11750 | 5 | header {* The basis of Higher-Order Logic *}
 | 
| 923 | 6 | |
| 15131 | 7 | theory HOL | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 8 | imports Pure "~~/src/Tools/Code_Generator" | 
| 23163 | 9 | uses | 
| 28952 
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
 haftmann parents: 
28856diff
changeset | 10 |   ("Tools/hologic.ML")
 | 
| 30980 | 11 | "~~/src/Tools/auto_solve.ML" | 
| 23171 | 12 | "~~/src/Tools/IsaPlanner/zipper.ML" | 
| 13 | "~~/src/Tools/IsaPlanner/isand.ML" | |
| 14 | "~~/src/Tools/IsaPlanner/rw_tools.ML" | |
| 15 | "~~/src/Tools/IsaPlanner/rw_inst.ML" | |
| 30165 
6ee87f67d9cd
moved generic intuitionistic prover to src/Tools/intuitionistic.ML;
 wenzelm parents: 
30160diff
changeset | 16 | "~~/src/Tools/intuitionistic.ML" | 
| 30160 
5f7b17941730
moved some generic tools to src/Tools/ -- src/Provers is essentially obsolete;
 wenzelm parents: 
30063diff
changeset | 17 | "~~/src/Tools/project_rule.ML" | 
| 23263 | 18 | "~~/src/Provers/hypsubst.ML" | 
| 19 | "~~/src/Provers/splitter.ML" | |
| 23163 | 20 | "~~/src/Provers/classical.ML" | 
| 21 | "~~/src/Provers/blast.ML" | |
| 22 | "~~/src/Provers/clasimp.ML" | |
| 30160 
5f7b17941730
moved some generic tools to src/Tools/ -- src/Provers is essentially obsolete;
 wenzelm parents: 
30063diff
changeset | 23 | "~~/src/Tools/coherent.ML" | 
| 
5f7b17941730
moved some generic tools to src/Tools/ -- src/Provers is essentially obsolete;
 wenzelm parents: 
30063diff
changeset | 24 | "~~/src/Tools/eqsubst.ML" | 
| 23163 | 25 | "~~/src/Provers/quantifier1.ML" | 
| 28952 
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
 haftmann parents: 
28856diff
changeset | 26 |   ("Tools/simpdata.ML")
 | 
| 25741 | 27 | "~~/src/Tools/random_word.ML" | 
| 26580 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 28 | "~~/src/Tools/atomize_elim.ML" | 
| 24901 
d3cbf79769b9
added first version of user-space type system for class target
 haftmann parents: 
24844diff
changeset | 29 | "~~/src/Tools/induct.ML" | 
| 27326 
d3beec370964
moved src/HOL/Tools/induct_tacs.ML to src/Tools/induct_tacs.ML;
 wenzelm parents: 
27212diff
changeset | 30 |   ("~~/src/Tools/induct_tacs.ML")
 | 
| 29505 | 31 |   ("Tools/recfun_codegen.ML")
 | 
| 15131 | 32 | begin | 
| 2260 | 33 | |
| 31299 | 34 | setup {* Intuitionistic.method_setup @{binding iprover} *}
 | 
| 30165 
6ee87f67d9cd
moved generic intuitionistic prover to src/Tools/intuitionistic.ML;
 wenzelm parents: 
30160diff
changeset | 35 | |
| 
6ee87f67d9cd
moved generic intuitionistic prover to src/Tools/intuitionistic.ML;
 wenzelm parents: 
30160diff
changeset | 36 | |
| 11750 | 37 | subsection {* Primitive logic *}
 | 
| 38 | ||
| 39 | subsubsection {* Core syntax *}
 | |
| 2260 | 40 | |
| 14854 | 41 | classes type | 
| 12338 
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
 wenzelm parents: 
12281diff
changeset | 42 | defaultsort type | 
| 25494 
b2484a7912ac
replaced typedecl interpretation by ObjectLogic.typedecl (based on base_sort);
 wenzelm parents: 
25460diff
changeset | 43 | setup {* ObjectLogic.add_base_sort @{sort type} *}
 | 
| 25460 
b80087af2274
interpretation of typedecls: instantiation to class type
 haftmann parents: 
25388diff
changeset | 44 | |
| 
b80087af2274
interpretation of typedecls: instantiation to class type
 haftmann parents: 
25388diff
changeset | 45 | arities | 
| 
b80087af2274
interpretation of typedecls: instantiation to class type
 haftmann parents: 
25388diff
changeset | 46 | "fun" :: (type, type) type | 
| 
b80087af2274
interpretation of typedecls: instantiation to class type
 haftmann parents: 
25388diff
changeset | 47 | itself :: (type) type | 
| 
b80087af2274
interpretation of typedecls: instantiation to class type
 haftmann parents: 
25388diff
changeset | 48 | |
| 12338 
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
 wenzelm parents: 
12281diff
changeset | 49 | global | 
| 923 | 50 | |
| 7357 | 51 | typedecl bool | 
| 923 | 52 | |
| 11750 | 53 | judgment | 
| 54 |   Trueprop      :: "bool => prop"                   ("(_)" 5)
 | |
| 923 | 55 | |
| 11750 | 56 | consts | 
| 7357 | 57 |   Not           :: "bool => bool"                   ("~ _" [40] 40)
 | 
| 58 | True :: bool | |
| 59 | False :: bool | |
| 923 | 60 | |
| 11432 
8a203ae6efe3
added "The" (definite description operator) (by Larry);
 wenzelm parents: 
10489diff
changeset | 61 |   The           :: "('a => bool) => 'a"
 | 
| 7357 | 62 |   All           :: "('a => bool) => bool"           (binder "ALL " 10)
 | 
| 63 |   Ex            :: "('a => bool) => bool"           (binder "EX " 10)
 | |
| 64 |   Ex1           :: "('a => bool) => bool"           (binder "EX! " 10)
 | |
| 65 | Let :: "['a, 'a => 'b] => 'b" | |
| 923 | 66 | |
| 22839 | 67 | "op =" :: "['a, 'a] => bool" (infixl "=" 50) | 
| 68 | "op &" :: "[bool, bool] => bool" (infixr "&" 35) | |
| 69 | "op |" :: "[bool, bool] => bool" (infixr "|" 30) | |
| 70 | "op -->" :: "[bool, bool] => bool" (infixr "-->" 25) | |
| 923 | 71 | |
| 10432 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 72 | local | 
| 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 73 | |
| 16587 | 74 | consts | 
| 75 |   If            :: "[bool, 'a, 'a] => 'a"           ("(if (_)/ then (_)/ else (_))" 10)
 | |
| 2260 | 76 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 77 | |
| 11750 | 78 | subsubsection {* Additional concrete syntax *}
 | 
| 2260 | 79 | |
| 21210 | 80 | notation (output) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 81 | "op =" (infix "=" 50) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 82 | |
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 83 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 84 | not_equal :: "['a, 'a] => bool" (infixl "~=" 50) where | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 85 | "x ~= y == ~ (x = y)" | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 86 | |
| 21210 | 87 | notation (output) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 88 | not_equal (infix "~=" 50) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 89 | |
| 21210 | 90 | notation (xsymbols) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 91 |   Not  ("\<not> _" [40] 40) and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 92 | "op &" (infixr "\<and>" 35) and | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 93 | "op |" (infixr "\<or>" 30) and | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 94 | "op -->" (infixr "\<longrightarrow>" 25) and | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 95 | not_equal (infix "\<noteq>" 50) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 96 | |
| 21210 | 97 | notation (HTML output) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 98 |   Not  ("\<not> _" [40] 40) and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 99 | "op &" (infixr "\<and>" 35) and | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 100 | "op |" (infixr "\<or>" 30) and | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 101 | not_equal (infix "\<noteq>" 50) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 102 | |
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 103 | abbreviation (iff) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 104 | iff :: "[bool, bool] => bool" (infixr "<->" 25) where | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 105 | "A <-> B == A = B" | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 106 | |
| 21210 | 107 | notation (xsymbols) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 108 | iff (infixr "\<longleftrightarrow>" 25) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 109 | |
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 110 | |
| 4868 | 111 | nonterminals | 
| 923 | 112 | letbinds letbind | 
| 113 | case_syn cases_syn | |
| 114 | ||
| 115 | syntax | |
| 11432 
8a203ae6efe3
added "The" (definite description operator) (by Larry);
 wenzelm parents: 
10489diff
changeset | 116 |   "_The"        :: "[pttrn, bool] => 'a"                 ("(3THE _./ _)" [0, 10] 10)
 | 
| 923 | 117 | |
| 7357 | 118 |   "_bind"       :: "[pttrn, 'a] => letbind"              ("(2_ =/ _)" 10)
 | 
| 119 |   ""            :: "letbind => letbinds"                 ("_")
 | |
| 120 |   "_binds"      :: "[letbind, letbinds] => letbinds"     ("_;/ _")
 | |
| 121 |   "_Let"        :: "[letbinds, 'a] => 'a"                ("(let (_)/ in (_))" 10)
 | |
| 923 | 122 | |
| 9060 
b0dd884b1848
rename @case to _case_syntax (improves on low-level errors);
 wenzelm parents: 
8959diff
changeset | 123 |   "_case_syntax":: "['a, cases_syn] => 'b"               ("(case _ of/ _)" 10)
 | 
| 
b0dd884b1848
rename @case to _case_syntax (improves on low-level errors);
 wenzelm parents: 
8959diff
changeset | 124 |   "_case1"      :: "['a, 'b] => case_syn"                ("(2_ =>/ _)" 10)
 | 
| 7357 | 125 |   ""            :: "case_syn => cases_syn"               ("_")
 | 
| 9060 
b0dd884b1848
rename @case to _case_syntax (improves on low-level errors);
 wenzelm parents: 
8959diff
changeset | 126 |   "_case2"      :: "[case_syn, cases_syn] => cases_syn"  ("_/ | _")
 | 
| 923 | 127 | |
| 128 | translations | |
| 13764 | 129 | "THE x. P" == "The (%x. P)" | 
| 923 | 130 | "_Let (_binds b bs) e" == "_Let b (_Let bs e)" | 
| 1114 | 131 | "let x = a in e" == "Let a (%x. e)" | 
| 923 | 132 | |
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13723diff
changeset | 133 | print_translation {*
 | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13723diff
changeset | 134 | (* To avoid eta-contraction of body: *) | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13723diff
changeset | 135 | [("The", fn [Abs abs] =>
 | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13723diff
changeset | 136 | let val (x,t) = atomic_abs_tr' abs | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13723diff
changeset | 137 | in Syntax.const "_The" $ x $ t end)] | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13723diff
changeset | 138 | *} | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13723diff
changeset | 139 | |
| 12114 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 wenzelm parents: 
12023diff
changeset | 140 | syntax (xsymbols) | 
| 11687 | 141 |   "_case1"      :: "['a, 'b] => case_syn"                ("(2_ \<Rightarrow>/ _)" 10)
 | 
| 21524 | 142 | |
| 143 | notation (xsymbols) | |
| 144 | All (binder "\<forall>" 10) and | |
| 145 | Ex (binder "\<exists>" 10) and | |
| 146 | Ex1 (binder "\<exists>!" 10) | |
| 2372 | 147 | |
| 21524 | 148 | notation (HTML output) | 
| 149 | All (binder "\<forall>" 10) and | |
| 150 | Ex (binder "\<exists>" 10) and | |
| 151 | Ex1 (binder "\<exists>!" 10) | |
| 6340 | 152 | |
| 21524 | 153 | notation (HOL) | 
| 154 | All (binder "! " 10) and | |
| 155 | Ex (binder "? " 10) and | |
| 156 | Ex1 (binder "?! " 10) | |
| 7238 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 wenzelm parents: 
7220diff
changeset | 157 | |
| 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 wenzelm parents: 
7220diff
changeset | 158 | |
| 11750 | 159 | subsubsection {* Axioms and basic definitions *}
 | 
| 2260 | 160 | |
| 7357 | 161 | axioms | 
| 15380 | 162 | refl: "t = (t::'a)" | 
| 28513 | 163 | subst: "s = t \<Longrightarrow> P s \<Longrightarrow> P t" | 
| 15380 | 164 | ext: "(!!x::'a. (f x ::'b) = g x) ==> (%x. f x) = (%x. g x)" | 
| 165 |     -- {*Extensionality is built into the meta-logic, and this rule expresses
 | |
| 166 | a related property. It is an eta-expanded version of the traditional | |
| 167 | rule, and similar to the ABS rule of HOL*} | |
| 6289 | 168 | |
| 11432 
8a203ae6efe3
added "The" (definite description operator) (by Larry);
 wenzelm parents: 
10489diff
changeset | 169 | the_eq_trivial: "(THE x. x = a) = (a::'a)" | 
| 923 | 170 | |
| 15380 | 171 | impI: "(P ==> Q) ==> P-->Q" | 
| 172 | mp: "[| P-->Q; P |] ==> Q" | |
| 173 | ||
| 174 | ||
| 923 | 175 | defs | 
| 7357 | 176 | True_def: "True == ((%x::bool. x) = (%x. x))" | 
| 177 | All_def: "All(P) == (P = (%x. True))" | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: 
11438diff
changeset | 178 | Ex_def: "Ex(P) == !Q. (!x. P x --> Q) --> Q" | 
| 7357 | 179 | False_def: "False == (!P. P)" | 
| 180 | not_def: "~ P == P-->False" | |
| 181 | and_def: "P & Q == !R. (P-->Q-->R) --> R" | |
| 182 | or_def: "P | Q == !R. (P-->R) --> (Q-->R) --> R" | |
| 183 | Ex1_def: "Ex1(P) == ? x. P(x) & (! y. P(y) --> y=x)" | |
| 923 | 184 | |
| 7357 | 185 | axioms | 
| 186 | iff: "(P-->Q) --> (Q-->P) --> (P=Q)" | |
| 187 | True_or_False: "(P=True) | (P=False)" | |
| 923 | 188 | |
| 189 | defs | |
| 24219 | 190 | Let_def: "Let s f == f(s)" | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: 
11438diff
changeset | 191 | if_def: "If P x y == THE z::'a. (P=True --> z=x) & (P=False --> z=y)" | 
| 5069 | 192 | |
| 14223 
0ee05eef881b
Added support for making constants final, that is, ensuring that no
 skalberg parents: 
14208diff
changeset | 193 | finalconsts | 
| 
0ee05eef881b
Added support for making constants final, that is, ensuring that no
 skalberg parents: 
14208diff
changeset | 194 | "op =" | 
| 
0ee05eef881b
Added support for making constants final, that is, ensuring that no
 skalberg parents: 
14208diff
changeset | 195 | "op -->" | 
| 
0ee05eef881b
Added support for making constants final, that is, ensuring that no
 skalberg parents: 
14208diff
changeset | 196 | The | 
| 22481 
79c2724c36b5
added class "default" and expansion axioms for undefined
 haftmann parents: 
22473diff
changeset | 197 | |
| 
79c2724c36b5
added class "default" and expansion axioms for undefined
 haftmann parents: 
22473diff
changeset | 198 | axiomatization | 
| 
79c2724c36b5
added class "default" and expansion axioms for undefined
 haftmann parents: 
22473diff
changeset | 199 | undefined :: 'a | 
| 
79c2724c36b5
added class "default" and expansion axioms for undefined
 haftmann parents: 
22473diff
changeset | 200 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 201 | |
| 22481 
79c2724c36b5
added class "default" and expansion axioms for undefined
 haftmann parents: 
22473diff
changeset | 202 | subsubsection {* Generic classes and algebraic operations *}
 | 
| 
79c2724c36b5
added class "default" and expansion axioms for undefined
 haftmann parents: 
22473diff
changeset | 203 | |
| 29608 | 204 | class default = | 
| 24901 
d3cbf79769b9
added first version of user-space type system for class target
 haftmann parents: 
24844diff
changeset | 205 | fixes default :: 'a | 
| 4868 | 206 | |
| 29608 | 207 | class zero = | 
| 25062 | 208 |   fixes zero :: 'a  ("0")
 | 
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
20698diff
changeset | 209 | |
| 29608 | 210 | class one = | 
| 25062 | 211 |   fixes one  :: 'a  ("1")
 | 
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
20698diff
changeset | 212 | |
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
20698diff
changeset | 213 | hide (open) const zero one | 
| 20590 
bf92900995f8
introduced syntactic classes; moved some setup to Pure/codegen, Pure/nbe or OperationalEquality.thy
 haftmann parents: 
20453diff
changeset | 214 | |
| 29608 | 215 | class plus = | 
| 25062 | 216 | fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) | 
| 11750 | 217 | |
| 29608 | 218 | class minus = | 
| 25762 | 219 | fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) | 
| 220 | ||
| 29608 | 221 | class uminus = | 
| 25062 | 222 |   fixes uminus :: "'a \<Rightarrow> 'a"  ("- _" [81] 80)
 | 
| 20590 
bf92900995f8
introduced syntactic classes; moved some setup to Pure/codegen, Pure/nbe or OperationalEquality.thy
 haftmann parents: 
20453diff
changeset | 223 | |
| 29608 | 224 | class times = | 
| 25062 | 225 | fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) | 
| 20590 
bf92900995f8
introduced syntactic classes; moved some setup to Pure/codegen, Pure/nbe or OperationalEquality.thy
 haftmann parents: 
20453diff
changeset | 226 | |
| 29608 | 227 | class inverse = | 
| 20590 
bf92900995f8
introduced syntactic classes; moved some setup to Pure/codegen, Pure/nbe or OperationalEquality.thy
 haftmann parents: 
20453diff
changeset | 228 | fixes inverse :: "'a \<Rightarrow> 'a" | 
| 25062 | 229 | and divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "'/" 70) | 
| 21524 | 230 | |
| 29608 | 231 | class abs = | 
| 23878 | 232 | fixes abs :: "'a \<Rightarrow> 'a" | 
| 25388 | 233 | begin | 
| 23878 | 234 | |
| 21524 | 235 | notation (xsymbols) | 
| 236 |   abs  ("\<bar>_\<bar>")
 | |
| 25388 | 237 | |
| 21524 | 238 | notation (HTML output) | 
| 239 |   abs  ("\<bar>_\<bar>")
 | |
| 11750 | 240 | |
| 25388 | 241 | end | 
| 242 | ||
| 29608 | 243 | class sgn = | 
| 25062 | 244 | fixes sgn :: "'a \<Rightarrow> 'a" | 
| 245 | ||
| 29608 | 246 | class ord = | 
| 24748 | 247 | fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 248 | and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | |
| 23878 | 249 | begin | 
| 250 | ||
| 251 | notation | |
| 252 |   less_eq  ("op <=") and
 | |
| 253 |   less_eq  ("(_/ <= _)" [51, 51] 50) and
 | |
| 254 |   less  ("op <") and
 | |
| 255 |   less  ("(_/ < _)"  [51, 51] 50)
 | |
| 256 | ||
| 257 | notation (xsymbols) | |
| 258 |   less_eq  ("op \<le>") and
 | |
| 259 |   less_eq  ("(_/ \<le> _)"  [51, 51] 50)
 | |
| 260 | ||
| 261 | notation (HTML output) | |
| 262 |   less_eq  ("op \<le>") and
 | |
| 263 |   less_eq  ("(_/ \<le> _)"  [51, 51] 50)
 | |
| 264 | ||
| 25388 | 265 | abbreviation (input) | 
| 266 | greater_eq (infix ">=" 50) where | |
| 267 | "x >= y \<equiv> y <= x" | |
| 268 | ||
| 24842 | 269 | notation (input) | 
| 23878 | 270 | greater_eq (infix "\<ge>" 50) | 
| 271 | ||
| 25388 | 272 | abbreviation (input) | 
| 273 | greater (infix ">" 50) where | |
| 274 | "x > y \<equiv> y < x" | |
| 275 | ||
| 276 | end | |
| 277 | ||
| 13456 
42601eb7553f
special syntax for index "1" (plain numeral hidden by "1" symbol in HOL);
 wenzelm parents: 
13438diff
changeset | 278 | syntax | 
| 
42601eb7553f
special syntax for index "1" (plain numeral hidden by "1" symbol in HOL);
 wenzelm parents: 
13438diff
changeset | 279 |   "_index1"  :: index    ("\<^sub>1")
 | 
| 
42601eb7553f
special syntax for index "1" (plain numeral hidden by "1" symbol in HOL);
 wenzelm parents: 
13438diff
changeset | 280 | translations | 
| 14690 | 281 | (index) "\<^sub>1" => (index) "\<^bsub>\<struct>\<^esub>" | 
| 13456 
42601eb7553f
special syntax for index "1" (plain numeral hidden by "1" symbol in HOL);
 wenzelm parents: 
13438diff
changeset | 282 | |
| 11750 | 283 | typed_print_translation {*
 | 
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
20698diff
changeset | 284 | let | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
20698diff
changeset | 285 | fun tr' c = (c, fn show_sorts => fn T => fn ts => | 
| 29968 | 286 | if (not o null) ts orelse T = dummyT orelse not (! show_types) andalso can Term.dest_Type T then raise Match | 
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
20698diff
changeset | 287 | else Syntax.const Syntax.constrainC $ Syntax.const c $ Syntax.term_of_typ show_sorts T); | 
| 22993 | 288 | in map tr' [@{const_syntax HOL.one}, @{const_syntax HOL.zero}] end;
 | 
| 11750 | 289 | *} -- {* show types that are presumably too general *}
 | 
| 290 | ||
| 291 | ||
| 20944 | 292 | subsection {* Fundamental rules *}
 | 
| 293 | ||
| 20973 | 294 | subsubsection {* Equality *}
 | 
| 20944 | 295 | |
| 18457 | 296 | lemma sym: "s = t ==> t = s" | 
| 297 | by (erule subst) (rule refl) | |
| 15411 | 298 | |
| 18457 | 299 | lemma ssubst: "t = s ==> P s ==> P t" | 
| 300 | by (drule sym) (erule subst) | |
| 15411 | 301 | |
| 302 | lemma trans: "[| r=s; s=t |] ==> r=t" | |
| 18457 | 303 | by (erule subst) | 
| 15411 | 304 | |
| 20944 | 305 | lemma meta_eq_to_obj_eq: | 
| 306 | assumes meq: "A == B" | |
| 307 | shows "A = B" | |
| 308 | by (unfold meq) (rule refl) | |
| 15411 | 309 | |
| 21502 | 310 | text {* Useful with @{text erule} for proving equalities from known equalities. *}
 | 
| 20944 | 311 | (* a = b | 
| 15411 | 312 | | | | 
| 313 | c = d *) | |
| 314 | lemma box_equals: "[| a=b; a=c; b=d |] ==> c=d" | |
| 315 | apply (rule trans) | |
| 316 | apply (rule trans) | |
| 317 | apply (rule sym) | |
| 318 | apply assumption+ | |
| 319 | done | |
| 320 | ||
| 15524 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 321 | text {* For calculational reasoning: *}
 | 
| 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 322 | |
| 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 323 | lemma forw_subst: "a = b ==> P b ==> P a" | 
| 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 324 | by (rule ssubst) | 
| 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 325 | |
| 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 326 | lemma back_subst: "P a ==> a = b ==> P b" | 
| 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 327 | by (rule subst) | 
| 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 328 | |
| 15411 | 329 | |
| 20944 | 330 | subsubsection {*Congruence rules for application*}
 | 
| 15411 | 331 | |
| 332 | (*similar to AP_THM in Gordon's HOL*) | |
| 333 | lemma fun_cong: "(f::'a=>'b) = g ==> f(x)=g(x)" | |
| 334 | apply (erule subst) | |
| 335 | apply (rule refl) | |
| 336 | done | |
| 337 | ||
| 338 | (*similar to AP_TERM in Gordon's HOL and FOL's subst_context*) | |
| 339 | lemma arg_cong: "x=y ==> f(x)=f(y)" | |
| 340 | apply (erule subst) | |
| 341 | apply (rule refl) | |
| 342 | done | |
| 343 | ||
| 15655 | 344 | lemma arg_cong2: "\<lbrakk> a = b; c = d \<rbrakk> \<Longrightarrow> f a c = f b d" | 
| 345 | apply (erule ssubst)+ | |
| 346 | apply (rule refl) | |
| 347 | done | |
| 348 | ||
| 15411 | 349 | lemma cong: "[| f = g; (x::'a) = y |] ==> f(x) = g(y)" | 
| 350 | apply (erule subst)+ | |
| 351 | apply (rule refl) | |
| 352 | done | |
| 353 | ||
| 354 | ||
| 20944 | 355 | subsubsection {*Equality of booleans -- iff*}
 | 
| 15411 | 356 | |
| 21504 | 357 | lemma iffI: assumes "P ==> Q" and "Q ==> P" shows "P=Q" | 
| 358 | by (iprover intro: iff [THEN mp, THEN mp] impI assms) | |
| 15411 | 359 | |
| 360 | lemma iffD2: "[| P=Q; Q |] ==> P" | |
| 18457 | 361 | by (erule ssubst) | 
| 15411 | 362 | |
| 363 | lemma rev_iffD2: "[| Q; P=Q |] ==> P" | |
| 18457 | 364 | by (erule iffD2) | 
| 15411 | 365 | |
| 21504 | 366 | lemma iffD1: "Q = P \<Longrightarrow> Q \<Longrightarrow> P" | 
| 367 | by (drule sym) (rule iffD2) | |
| 368 | ||
| 369 | lemma rev_iffD1: "Q \<Longrightarrow> Q = P \<Longrightarrow> P" | |
| 370 | by (drule sym) (rule rev_iffD2) | |
| 15411 | 371 | |
| 372 | lemma iffE: | |
| 373 | assumes major: "P=Q" | |
| 21504 | 374 | and minor: "[| P --> Q; Q --> P |] ==> R" | 
| 18457 | 375 | shows R | 
| 376 | by (iprover intro: minor impI major [THEN iffD2] major [THEN iffD1]) | |
| 15411 | 377 | |
| 378 | ||
| 20944 | 379 | subsubsection {*True*}
 | 
| 15411 | 380 | |
| 381 | lemma TrueI: "True" | |
| 21504 | 382 | unfolding True_def by (rule refl) | 
| 15411 | 383 | |
| 21504 | 384 | lemma eqTrueI: "P ==> P = True" | 
| 18457 | 385 | by (iprover intro: iffI TrueI) | 
| 15411 | 386 | |
| 21504 | 387 | lemma eqTrueE: "P = True ==> P" | 
| 388 | by (erule iffD2) (rule TrueI) | |
| 15411 | 389 | |
| 390 | ||
| 20944 | 391 | subsubsection {*Universal quantifier*}
 | 
| 15411 | 392 | |
| 21504 | 393 | lemma allI: assumes "!!x::'a. P(x)" shows "ALL x. P(x)" | 
| 394 | unfolding All_def by (iprover intro: ext eqTrueI assms) | |
| 15411 | 395 | |
| 396 | lemma spec: "ALL x::'a. P(x) ==> P(x)" | |
| 397 | apply (unfold All_def) | |
| 398 | apply (rule eqTrueE) | |
| 399 | apply (erule fun_cong) | |
| 400 | done | |
| 401 | ||
| 402 | lemma allE: | |
| 403 | assumes major: "ALL x. P(x)" | |
| 21504 | 404 | and minor: "P(x) ==> R" | 
| 405 | shows R | |
| 406 | by (iprover intro: minor major [THEN spec]) | |
| 15411 | 407 | |
| 408 | lemma all_dupE: | |
| 409 | assumes major: "ALL x. P(x)" | |
| 21504 | 410 | and minor: "[| P(x); ALL x. P(x) |] ==> R" | 
| 411 | shows R | |
| 412 | by (iprover intro: minor major major [THEN spec]) | |
| 15411 | 413 | |
| 414 | ||
| 21504 | 415 | subsubsection {* False *}
 | 
| 416 | ||
| 417 | text {*
 | |
| 418 |   Depends upon @{text spec}; it is impossible to do propositional
 | |
| 419 | logic before quantifiers! | |
| 420 | *} | |
| 15411 | 421 | |
| 422 | lemma FalseE: "False ==> P" | |
| 21504 | 423 | apply (unfold False_def) | 
| 424 | apply (erule spec) | |
| 425 | done | |
| 15411 | 426 | |
| 21504 | 427 | lemma False_neq_True: "False = True ==> P" | 
| 428 | by (erule eqTrueE [THEN FalseE]) | |
| 15411 | 429 | |
| 430 | ||
| 21504 | 431 | subsubsection {* Negation *}
 | 
| 15411 | 432 | |
| 433 | lemma notI: | |
| 21504 | 434 | assumes "P ==> False" | 
| 15411 | 435 | shows "~P" | 
| 21504 | 436 | apply (unfold not_def) | 
| 437 | apply (iprover intro: impI assms) | |
| 438 | done | |
| 15411 | 439 | |
| 440 | lemma False_not_True: "False ~= True" | |
| 21504 | 441 | apply (rule notI) | 
| 442 | apply (erule False_neq_True) | |
| 443 | done | |
| 15411 | 444 | |
| 445 | lemma True_not_False: "True ~= False" | |
| 21504 | 446 | apply (rule notI) | 
| 447 | apply (drule sym) | |
| 448 | apply (erule False_neq_True) | |
| 449 | done | |
| 15411 | 450 | |
| 451 | lemma notE: "[| ~P; P |] ==> R" | |
| 21504 | 452 | apply (unfold not_def) | 
| 453 | apply (erule mp [THEN FalseE]) | |
| 454 | apply assumption | |
| 455 | done | |
| 15411 | 456 | |
| 21504 | 457 | lemma notI2: "(P \<Longrightarrow> \<not> Pa) \<Longrightarrow> (P \<Longrightarrow> Pa) \<Longrightarrow> \<not> P" | 
| 458 | by (erule notE [THEN notI]) (erule meta_mp) | |
| 15411 | 459 | |
| 460 | ||
| 20944 | 461 | subsubsection {*Implication*}
 | 
| 15411 | 462 | |
| 463 | lemma impE: | |
| 464 | assumes "P-->Q" "P" "Q ==> R" | |
| 465 | shows "R" | |
| 23553 | 466 | by (iprover intro: assms mp) | 
| 15411 | 467 | |
| 468 | (* Reduces Q to P-->Q, allowing substitution in P. *) | |
| 469 | lemma rev_mp: "[| P; P --> Q |] ==> Q" | |
| 17589 | 470 | by (iprover intro: mp) | 
| 15411 | 471 | |
| 472 | lemma contrapos_nn: | |
| 473 | assumes major: "~Q" | |
| 474 | and minor: "P==>Q" | |
| 475 | shows "~P" | |
| 17589 | 476 | by (iprover intro: notI minor major [THEN notE]) | 
| 15411 | 477 | |
| 478 | (*not used at all, but we already have the other 3 combinations *) | |
| 479 | lemma contrapos_pn: | |
| 480 | assumes major: "Q" | |
| 481 | and minor: "P ==> ~Q" | |
| 482 | shows "~P" | |
| 17589 | 483 | by (iprover intro: notI minor major notE) | 
| 15411 | 484 | |
| 485 | lemma not_sym: "t ~= s ==> s ~= t" | |
| 21250 | 486 | by (erule contrapos_nn) (erule sym) | 
| 487 | ||
| 488 | lemma eq_neq_eq_imp_neq: "[| x = a ; a ~= b; b = y |] ==> x ~= y" | |
| 489 | by (erule subst, erule ssubst, assumption) | |
| 15411 | 490 | |
| 491 | (*still used in HOLCF*) | |
| 492 | lemma rev_contrapos: | |
| 493 | assumes pq: "P ==> Q" | |
| 494 | and nq: "~Q" | |
| 495 | shows "~P" | |
| 496 | apply (rule nq [THEN contrapos_nn]) | |
| 497 | apply (erule pq) | |
| 498 | done | |
| 499 | ||
| 20944 | 500 | subsubsection {*Existential quantifier*}
 | 
| 15411 | 501 | |
| 502 | lemma exI: "P x ==> EX x::'a. P x" | |
| 503 | apply (unfold Ex_def) | |
| 17589 | 504 | apply (iprover intro: allI allE impI mp) | 
| 15411 | 505 | done | 
| 506 | ||
| 507 | lemma exE: | |
| 508 | assumes major: "EX x::'a. P(x)" | |
| 509 | and minor: "!!x. P(x) ==> Q" | |
| 510 | shows "Q" | |
| 511 | apply (rule major [unfolded Ex_def, THEN spec, THEN mp]) | |
| 17589 | 512 | apply (iprover intro: impI [THEN allI] minor) | 
| 15411 | 513 | done | 
| 514 | ||
| 515 | ||
| 20944 | 516 | subsubsection {*Conjunction*}
 | 
| 15411 | 517 | |
| 518 | lemma conjI: "[| P; Q |] ==> P&Q" | |
| 519 | apply (unfold and_def) | |
| 17589 | 520 | apply (iprover intro: impI [THEN allI] mp) | 
| 15411 | 521 | done | 
| 522 | ||
| 523 | lemma conjunct1: "[| P & Q |] ==> P" | |
| 524 | apply (unfold and_def) | |
| 17589 | 525 | apply (iprover intro: impI dest: spec mp) | 
| 15411 | 526 | done | 
| 527 | ||
| 528 | lemma conjunct2: "[| P & Q |] ==> Q" | |
| 529 | apply (unfold and_def) | |
| 17589 | 530 | apply (iprover intro: impI dest: spec mp) | 
| 15411 | 531 | done | 
| 532 | ||
| 533 | lemma conjE: | |
| 534 | assumes major: "P&Q" | |
| 535 | and minor: "[| P; Q |] ==> R" | |
| 536 | shows "R" | |
| 537 | apply (rule minor) | |
| 538 | apply (rule major [THEN conjunct1]) | |
| 539 | apply (rule major [THEN conjunct2]) | |
| 540 | done | |
| 541 | ||
| 542 | lemma context_conjI: | |
| 23553 | 543 | assumes "P" "P ==> Q" shows "P & Q" | 
| 544 | by (iprover intro: conjI assms) | |
| 15411 | 545 | |
| 546 | ||
| 20944 | 547 | subsubsection {*Disjunction*}
 | 
| 15411 | 548 | |
| 549 | lemma disjI1: "P ==> P|Q" | |
| 550 | apply (unfold or_def) | |
| 17589 | 551 | apply (iprover intro: allI impI mp) | 
| 15411 | 552 | done | 
| 553 | ||
| 554 | lemma disjI2: "Q ==> P|Q" | |
| 555 | apply (unfold or_def) | |
| 17589 | 556 | apply (iprover intro: allI impI mp) | 
| 15411 | 557 | done | 
| 558 | ||
| 559 | lemma disjE: | |
| 560 | assumes major: "P|Q" | |
| 561 | and minorP: "P ==> R" | |
| 562 | and minorQ: "Q ==> R" | |
| 563 | shows "R" | |
| 17589 | 564 | by (iprover intro: minorP minorQ impI | 
| 15411 | 565 | major [unfolded or_def, THEN spec, THEN mp, THEN mp]) | 
| 566 | ||
| 567 | ||
| 20944 | 568 | subsubsection {*Classical logic*}
 | 
| 15411 | 569 | |
| 570 | lemma classical: | |
| 571 | assumes prem: "~P ==> P" | |
| 572 | shows "P" | |
| 573 | apply (rule True_or_False [THEN disjE, THEN eqTrueE]) | |
| 574 | apply assumption | |
| 575 | apply (rule notI [THEN prem, THEN eqTrueI]) | |
| 576 | apply (erule subst) | |
| 577 | apply assumption | |
| 578 | done | |
| 579 | ||
| 580 | lemmas ccontr = FalseE [THEN classical, standard] | |
| 581 | ||
| 582 | (*notE with premises exchanged; it discharges ~R so that it can be used to | |
| 583 | make elimination rules*) | |
| 584 | lemma rev_notE: | |
| 585 | assumes premp: "P" | |
| 586 | and premnot: "~R ==> ~P" | |
| 587 | shows "R" | |
| 588 | apply (rule ccontr) | |
| 589 | apply (erule notE [OF premnot premp]) | |
| 590 | done | |
| 591 | ||
| 592 | (*Double negation law*) | |
| 593 | lemma notnotD: "~~P ==> P" | |
| 594 | apply (rule classical) | |
| 595 | apply (erule notE) | |
| 596 | apply assumption | |
| 597 | done | |
| 598 | ||
| 599 | lemma contrapos_pp: | |
| 600 | assumes p1: "Q" | |
| 601 | and p2: "~P ==> ~Q" | |
| 602 | shows "P" | |
| 17589 | 603 | by (iprover intro: classical p1 p2 notE) | 
| 15411 | 604 | |
| 605 | ||
| 20944 | 606 | subsubsection {*Unique existence*}
 | 
| 15411 | 607 | |
| 608 | lemma ex1I: | |
| 23553 | 609 | assumes "P a" "!!x. P(x) ==> x=a" | 
| 15411 | 610 | shows "EX! x. P(x)" | 
| 23553 | 611 | by (unfold Ex1_def, iprover intro: assms exI conjI allI impI) | 
| 15411 | 612 | |
| 613 | text{*Sometimes easier to use: the premises have no shared variables.  Safe!*}
 | |
| 614 | lemma ex_ex1I: | |
| 615 | assumes ex_prem: "EX x. P(x)" | |
| 616 | and eq: "!!x y. [| P(x); P(y) |] ==> x=y" | |
| 617 | shows "EX! x. P(x)" | |
| 17589 | 618 | by (iprover intro: ex_prem [THEN exE] ex1I eq) | 
| 15411 | 619 | |
| 620 | lemma ex1E: | |
| 621 | assumes major: "EX! x. P(x)" | |
| 622 | and minor: "!!x. [| P(x); ALL y. P(y) --> y=x |] ==> R" | |
| 623 | shows "R" | |
| 624 | apply (rule major [unfolded Ex1_def, THEN exE]) | |
| 625 | apply (erule conjE) | |
| 17589 | 626 | apply (iprover intro: minor) | 
| 15411 | 627 | done | 
| 628 | ||
| 629 | lemma ex1_implies_ex: "EX! x. P x ==> EX x. P x" | |
| 630 | apply (erule ex1E) | |
| 631 | apply (rule exI) | |
| 632 | apply assumption | |
| 633 | done | |
| 634 | ||
| 635 | ||
| 20944 | 636 | subsubsection {*THE: definite description operator*}
 | 
| 15411 | 637 | |
| 638 | lemma the_equality: | |
| 639 | assumes prema: "P a" | |
| 640 | and premx: "!!x. P x ==> x=a" | |
| 641 | shows "(THE x. P x) = a" | |
| 642 | apply (rule trans [OF _ the_eq_trivial]) | |
| 643 | apply (rule_tac f = "The" in arg_cong) | |
| 644 | apply (rule ext) | |
| 645 | apply (rule iffI) | |
| 646 | apply (erule premx) | |
| 647 | apply (erule ssubst, rule prema) | |
| 648 | done | |
| 649 | ||
| 650 | lemma theI: | |
| 651 | assumes "P a" and "!!x. P x ==> x=a" | |
| 652 | shows "P (THE x. P x)" | |
| 23553 | 653 | by (iprover intro: assms the_equality [THEN ssubst]) | 
| 15411 | 654 | |
| 655 | lemma theI': "EX! x. P x ==> P (THE x. P x)" | |
| 656 | apply (erule ex1E) | |
| 657 | apply (erule theI) | |
| 658 | apply (erule allE) | |
| 659 | apply (erule mp) | |
| 660 | apply assumption | |
| 661 | done | |
| 662 | ||
| 663 | (*Easier to apply than theI: only one occurrence of P*) | |
| 664 | lemma theI2: | |
| 665 | assumes "P a" "!!x. P x ==> x=a" "!!x. P x ==> Q x" | |
| 666 | shows "Q (THE x. P x)" | |
| 23553 | 667 | by (iprover intro: assms theI) | 
| 15411 | 668 | |
| 24553 | 669 | lemma the1I2: assumes "EX! x. P x" "\<And>x. P x \<Longrightarrow> Q x" shows "Q (THE x. P x)" | 
| 670 | by(iprover intro:assms(2) theI2[where P=P and Q=Q] ex1E[OF assms(1)] | |
| 671 | elim:allE impE) | |
| 672 | ||
| 18697 | 673 | lemma the1_equality [elim?]: "[| EX!x. P x; P a |] ==> (THE x. P x) = a" | 
| 15411 | 674 | apply (rule the_equality) | 
| 675 | apply assumption | |
| 676 | apply (erule ex1E) | |
| 677 | apply (erule all_dupE) | |
| 678 | apply (drule mp) | |
| 679 | apply assumption | |
| 680 | apply (erule ssubst) | |
| 681 | apply (erule allE) | |
| 682 | apply (erule mp) | |
| 683 | apply assumption | |
| 684 | done | |
| 685 | ||
| 686 | lemma the_sym_eq_trivial: "(THE y. x=y) = x" | |
| 687 | apply (rule the_equality) | |
| 688 | apply (rule refl) | |
| 689 | apply (erule sym) | |
| 690 | done | |
| 691 | ||
| 692 | ||
| 20944 | 693 | subsubsection {*Classical intro rules for disjunction and existential quantifiers*}
 | 
| 15411 | 694 | |
| 695 | lemma disjCI: | |
| 696 | assumes "~Q ==> P" shows "P|Q" | |
| 697 | apply (rule classical) | |
| 23553 | 698 | apply (iprover intro: assms disjI1 disjI2 notI elim: notE) | 
| 15411 | 699 | done | 
| 700 | ||
| 701 | lemma excluded_middle: "~P | P" | |
| 17589 | 702 | by (iprover intro: disjCI) | 
| 15411 | 703 | |
| 20944 | 704 | text {*
 | 
| 705 | case distinction as a natural deduction rule. | |
| 706 |   Note that @{term "~P"} is the second case, not the first
 | |
| 707 | *} | |
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 708 | lemma case_split [case_names True False]: | 
| 15411 | 709 | assumes prem1: "P ==> Q" | 
| 710 | and prem2: "~P ==> Q" | |
| 711 | shows "Q" | |
| 712 | apply (rule excluded_middle [THEN disjE]) | |
| 713 | apply (erule prem2) | |
| 714 | apply (erule prem1) | |
| 715 | done | |
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 716 | |
| 15411 | 717 | (*Classical implies (-->) elimination. *) | 
| 718 | lemma impCE: | |
| 719 | assumes major: "P-->Q" | |
| 720 | and minor: "~P ==> R" "Q ==> R" | |
| 721 | shows "R" | |
| 722 | apply (rule excluded_middle [of P, THEN disjE]) | |
| 17589 | 723 | apply (iprover intro: minor major [THEN mp])+ | 
| 15411 | 724 | done | 
| 725 | ||
| 726 | (*This version of --> elimination works on Q before P. It works best for | |
| 727 | those cases in which P holds "almost everywhere". Can't install as | |
| 728 | default: would break old proofs.*) | |
| 729 | lemma impCE': | |
| 730 | assumes major: "P-->Q" | |
| 731 | and minor: "Q ==> R" "~P ==> R" | |
| 732 | shows "R" | |
| 733 | apply (rule excluded_middle [of P, THEN disjE]) | |
| 17589 | 734 | apply (iprover intro: minor major [THEN mp])+ | 
| 15411 | 735 | done | 
| 736 | ||
| 737 | (*Classical <-> elimination. *) | |
| 738 | lemma iffCE: | |
| 739 | assumes major: "P=Q" | |
| 740 | and minor: "[| P; Q |] ==> R" "[| ~P; ~Q |] ==> R" | |
| 741 | shows "R" | |
| 742 | apply (rule major [THEN iffE]) | |
| 17589 | 743 | apply (iprover intro: minor elim: impCE notE) | 
| 15411 | 744 | done | 
| 745 | ||
| 746 | lemma exCI: | |
| 747 | assumes "ALL x. ~P(x) ==> P(a)" | |
| 748 | shows "EX x. P(x)" | |
| 749 | apply (rule ccontr) | |
| 23553 | 750 | apply (iprover intro: assms exI allI notI notE [of "\<exists>x. P x"]) | 
| 15411 | 751 | done | 
| 752 | ||
| 753 | ||
| 12386 | 754 | subsubsection {* Intuitionistic Reasoning *}
 | 
| 755 | ||
| 756 | lemma impE': | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 757 | assumes 1: "P --> Q" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 758 | and 2: "Q ==> R" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 759 | and 3: "P --> Q ==> P" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 760 | shows R | 
| 12386 | 761 | proof - | 
| 762 | from 3 and 1 have P . | |
| 763 | with 1 have Q by (rule impE) | |
| 764 | with 2 show R . | |
| 765 | qed | |
| 766 | ||
| 767 | lemma allE': | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 768 | assumes 1: "ALL x. P x" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 769 | and 2: "P x ==> ALL x. P x ==> Q" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 770 | shows Q | 
| 12386 | 771 | proof - | 
| 772 | from 1 have "P x" by (rule spec) | |
| 773 | from this and 1 show Q by (rule 2) | |
| 774 | qed | |
| 775 | ||
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 776 | lemma notE': | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 777 | assumes 1: "~ P" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 778 | and 2: "~ P ==> P" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 779 | shows R | 
| 12386 | 780 | proof - | 
| 781 | from 2 and 1 have P . | |
| 782 | with 1 show R by (rule notE) | |
| 783 | qed | |
| 784 | ||
| 22444 
fb80fedd192d
added safe intro rules for removing "True" subgoals as well as "~ False" ones.
 dixon parents: 
22377diff
changeset | 785 | lemma TrueE: "True ==> P ==> P" . | 
| 
fb80fedd192d
added safe intro rules for removing "True" subgoals as well as "~ False" ones.
 dixon parents: 
22377diff
changeset | 786 | lemma notFalseE: "~ False ==> P ==> P" . | 
| 
fb80fedd192d
added safe intro rules for removing "True" subgoals as well as "~ False" ones.
 dixon parents: 
22377diff
changeset | 787 | |
| 22467 
c9357ef01168
TrueElim and notTrueElim tested and added as safe elim rules.
 dixon parents: 
22445diff
changeset | 788 | lemmas [Pure.elim!] = disjE iffE FalseE conjE exE TrueE notFalseE | 
| 15801 | 789 | and [Pure.intro!] = iffI conjI impI TrueI notI allI refl | 
| 790 | and [Pure.elim 2] = allE notE' impE' | |
| 791 | and [Pure.intro] = exI disjI2 disjI1 | |
| 12386 | 792 | |
| 793 | lemmas [trans] = trans | |
| 794 | and [sym] = sym not_sym | |
| 15801 | 795 | and [Pure.elim?] = iffD1 iffD2 impE | 
| 11750 | 796 | |
| 28952 
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
 haftmann parents: 
28856diff
changeset | 797 | use "Tools/hologic.ML" | 
| 23553 | 798 | |
| 11438 
3d9222b80989
declare trans [trans]  (*overridden in theory Calculation*);
 wenzelm parents: 
11432diff
changeset | 799 | |
| 11750 | 800 | subsubsection {* Atomizing meta-level connectives *}
 | 
| 801 | ||
| 28513 | 802 | axiomatization where | 
| 803 | eq_reflection: "x = y \<Longrightarrow> x \<equiv> y" (*admissible axiom*) | |
| 804 | ||
| 11750 | 805 | lemma atomize_all [atomize]: "(!!x. P x) == Trueprop (ALL x. P x)" | 
| 12003 | 806 | proof | 
| 9488 | 807 | assume "!!x. P x" | 
| 23389 | 808 | then show "ALL x. P x" .. | 
| 9488 | 809 | next | 
| 810 | assume "ALL x. P x" | |
| 23553 | 811 | then show "!!x. P x" by (rule allE) | 
| 9488 | 812 | qed | 
| 813 | ||
| 11750 | 814 | lemma atomize_imp [atomize]: "(A ==> B) == Trueprop (A --> B)" | 
| 12003 | 815 | proof | 
| 9488 | 816 | assume r: "A ==> B" | 
| 10383 | 817 | show "A --> B" by (rule impI) (rule r) | 
| 9488 | 818 | next | 
| 819 | assume "A --> B" and A | |
| 23553 | 820 | then show B by (rule mp) | 
| 9488 | 821 | qed | 
| 822 | ||
| 14749 | 823 | lemma atomize_not: "(A ==> False) == Trueprop (~A)" | 
| 824 | proof | |
| 825 | assume r: "A ==> False" | |
| 826 | show "~A" by (rule notI) (rule r) | |
| 827 | next | |
| 828 | assume "~A" and A | |
| 23553 | 829 | then show False by (rule notE) | 
| 14749 | 830 | qed | 
| 831 | ||
| 11750 | 832 | lemma atomize_eq [atomize]: "(x == y) == Trueprop (x = y)" | 
| 12003 | 833 | proof | 
| 10432 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 834 | assume "x == y" | 
| 23553 | 835 | show "x = y" by (unfold `x == y`) (rule refl) | 
| 10432 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 836 | next | 
| 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 837 | assume "x = y" | 
| 23553 | 838 | then show "x == y" by (rule eq_reflection) | 
| 10432 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 839 | qed | 
| 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 840 | |
| 28856 
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
 wenzelm parents: 
28741diff
changeset | 841 | lemma atomize_conj [atomize]: "(A &&& B) == Trueprop (A & B)" | 
| 12003 | 842 | proof | 
| 28856 
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
 wenzelm parents: 
28741diff
changeset | 843 | assume conj: "A &&& B" | 
| 19121 | 844 | show "A & B" | 
| 845 | proof (rule conjI) | |
| 846 | from conj show A by (rule conjunctionD1) | |
| 847 | from conj show B by (rule conjunctionD2) | |
| 848 | qed | |
| 11953 | 849 | next | 
| 19121 | 850 | assume conj: "A & B" | 
| 28856 
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
 wenzelm parents: 
28741diff
changeset | 851 | show "A &&& B" | 
| 19121 | 852 | proof - | 
| 853 | from conj show A .. | |
| 854 | from conj show B .. | |
| 11953 | 855 | qed | 
| 856 | qed | |
| 857 | ||
| 12386 | 858 | lemmas [symmetric, rulify] = atomize_all atomize_imp | 
| 18832 | 859 | and [symmetric, defn] = atomize_all atomize_imp atomize_eq | 
| 12386 | 860 | |
| 11750 | 861 | |
| 26580 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 862 | subsubsection {* Atomizing elimination rules *}
 | 
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 863 | |
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 864 | setup AtomizeElim.setup | 
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 865 | |
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 866 | lemma atomize_exL[atomize_elim]: "(!!x. P x ==> Q) == ((EX x. P x) ==> Q)" | 
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 867 | by rule iprover+ | 
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 868 | |
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 869 | lemma atomize_conjL[atomize_elim]: "(A ==> B ==> C) == (A & B ==> C)" | 
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 870 | by rule iprover+ | 
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 871 | |
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 872 | lemma atomize_disjL[atomize_elim]: "((A ==> C) ==> (B ==> C) ==> C) == ((A | B ==> C) ==> C)" | 
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 873 | by rule iprover+ | 
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 874 | |
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 875 | lemma atomize_elimL[atomize_elim]: "(!!B. (A ==> B) ==> B) == Trueprop A" .. | 
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 876 | |
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 877 | |
| 20944 | 878 | subsection {* Package setup *}
 | 
| 879 | ||
| 11750 | 880 | subsubsection {* Classical Reasoner setup *}
 | 
| 9529 | 881 | |
| 26411 | 882 | lemma imp_elim: "P --> Q ==> (~ R ==> P) ==> (Q ==> R) ==> R" | 
| 883 | by (rule classical) iprover | |
| 884 | ||
| 885 | lemma swap: "~ P ==> (~ R ==> P) ==> R" | |
| 886 | by (rule classical) iprover | |
| 887 | ||
| 20944 | 888 | lemma thin_refl: | 
| 889 | "\<And>X. \<lbrakk> x=x; PROP W \<rbrakk> \<Longrightarrow> PROP W" . | |
| 890 | ||
| 21151 | 891 | ML {*
 | 
| 892 | structure Hypsubst = HypsubstFun( | |
| 893 | struct | |
| 894 | structure Simplifier = Simplifier | |
| 21218 | 895 | val dest_eq = HOLogic.dest_eq | 
| 21151 | 896 | val dest_Trueprop = HOLogic.dest_Trueprop | 
| 897 | val dest_imp = HOLogic.dest_imp | |
| 26411 | 898 |   val eq_reflection = @{thm eq_reflection}
 | 
| 899 |   val rev_eq_reflection = @{thm meta_eq_to_obj_eq}
 | |
| 900 |   val imp_intr = @{thm impI}
 | |
| 901 |   val rev_mp = @{thm rev_mp}
 | |
| 902 |   val subst = @{thm subst}
 | |
| 903 |   val sym = @{thm sym}
 | |
| 22129 | 904 |   val thin_refl = @{thm thin_refl};
 | 
| 27572 
67cd6ed76446
single_hyp(_meta)_subst_tac: Controlled substitution of a single hyp
 krauss parents: 
27338diff
changeset | 905 |   val prop_subst = @{lemma "PROP P t ==> PROP prop (x = t ==> PROP P x)"
 | 
| 
67cd6ed76446
single_hyp(_meta)_subst_tac: Controlled substitution of a single hyp
 krauss parents: 
27338diff
changeset | 906 | by (unfold prop_def) (drule eq_reflection, unfold)} | 
| 21151 | 907 | end); | 
| 21671 | 908 | open Hypsubst; | 
| 21151 | 909 | |
| 910 | structure Classical = ClassicalFun( | |
| 911 | struct | |
| 26411 | 912 |   val imp_elim = @{thm imp_elim}
 | 
| 913 |   val not_elim = @{thm notE}
 | |
| 914 |   val swap = @{thm swap}
 | |
| 915 |   val classical = @{thm classical}
 | |
| 21151 | 916 | val sizef = Drule.size_of_thm | 
| 917 | val hyp_subst_tacs = [Hypsubst.hyp_subst_tac] | |
| 918 | end); | |
| 919 | ||
| 920 | structure BasicClassical: BASIC_CLASSICAL = Classical; | |
| 21671 | 921 | open BasicClassical; | 
| 22129 | 922 | |
| 27338 | 923 | ML_Antiquote.value "claset" | 
| 924 | (Scan.succeed "Classical.local_claset_of (ML_Context.the_local_context ())"); | |
| 24035 | 925 | |
| 926 | structure ResAtpset = NamedThmsFun(val name = "atp" val description = "ATP rules"); | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 927 | |
| 29869 
a7a8b90cd882
Renamed descriptions of Nitpick (and ATP) attributes, so that they fit well with the rest of the sentence in ProofGeneral.
 blanchet parents: 
29868diff
changeset | 928 | structure ResBlacklist = NamedThmsFun(val name = "noatp" val description = "theorems blacklisted for ATP"); | 
| 21151 | 929 | *} | 
| 930 | ||
| 25388 | 931 | text {*ResBlacklist holds theorems blacklisted to sledgehammer. 
 | 
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 932 | These theorems typically produce clauses that are prolific (match too many equality or | 
| 25388 | 933 | membership literals) and relate to seldom-used facts. Some duplicate other rules.*} | 
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 934 | |
| 21009 | 935 | setup {*
 | 
| 936 | let | |
| 937 | (*prevent substitution on bool*) | |
| 938 | fun hyp_subst_tac' i thm = if i <= Thm.nprems_of thm andalso | |
| 939 |     Term.exists_Const (fn ("op =", Type (_, [T, _])) => T <> Type ("bool", []) | _ => false)
 | |
| 940 | (nth (Thm.prems_of thm) (i - 1)) then Hypsubst.hyp_subst_tac i thm else no_tac thm; | |
| 941 | in | |
| 21151 | 942 | Hypsubst.hypsubst_setup | 
| 943 | #> ContextRules.addSWrapper (fn tac => hyp_subst_tac' ORELSE' tac) | |
| 944 | #> Classical.setup | |
| 945 | #> ResAtpset.setup | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 946 | #> ResBlacklist.setup | 
| 21009 | 947 | end | 
| 948 | *} | |
| 949 | ||
| 950 | declare iffI [intro!] | |
| 951 | and notI [intro!] | |
| 952 | and impI [intro!] | |
| 953 | and disjCI [intro!] | |
| 954 | and conjI [intro!] | |
| 955 | and TrueI [intro!] | |
| 956 | and refl [intro!] | |
| 957 | ||
| 958 | declare iffCE [elim!] | |
| 959 | and FalseE [elim!] | |
| 960 | and impCE [elim!] | |
| 961 | and disjE [elim!] | |
| 962 | and conjE [elim!] | |
| 963 | and conjE [elim!] | |
| 964 | ||
| 965 | declare ex_ex1I [intro!] | |
| 966 | and allI [intro!] | |
| 967 | and the_equality [intro] | |
| 968 | and exI [intro] | |
| 969 | ||
| 970 | declare exE [elim!] | |
| 971 | allE [elim] | |
| 972 | ||
| 22377 | 973 | ML {* val HOL_cs = @{claset} *}
 | 
| 19162 | 974 | |
| 20223 | 975 | lemma contrapos_np: "~ Q ==> (~ P ==> Q) ==> P" | 
| 976 | apply (erule swap) | |
| 977 | apply (erule (1) meta_mp) | |
| 978 | done | |
| 10383 | 979 | |
| 18689 
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
 wenzelm parents: 
18595diff
changeset | 980 | declare ex_ex1I [rule del, intro! 2] | 
| 
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
 wenzelm parents: 
18595diff
changeset | 981 | and ex1I [intro] | 
| 
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
 wenzelm parents: 
18595diff
changeset | 982 | |
| 12386 | 983 | lemmas [intro?] = ext | 
| 984 | and [elim?] = ex1_implies_ex | |
| 11977 | 985 | |
| 20944 | 986 | (*Better then ex1E for classical reasoner: needs no quantifier duplication!*) | 
| 20973 | 987 | lemma alt_ex1E [elim!]: | 
| 20944 | 988 | assumes major: "\<exists>!x. P x" | 
| 989 | and prem: "\<And>x. \<lbrakk> P x; \<forall>y y'. P y \<and> P y' \<longrightarrow> y = y' \<rbrakk> \<Longrightarrow> R" | |
| 990 | shows R | |
| 991 | apply (rule ex1E [OF major]) | |
| 992 | apply (rule prem) | |
| 22129 | 993 | apply (tactic {* ares_tac @{thms allI} 1 *})+
 | 
| 994 | apply (tactic {* etac (Classical.dup_elim @{thm allE}) 1 *})
 | |
| 995 | apply iprover | |
| 996 | done | |
| 20944 | 997 | |
| 21151 | 998 | ML {*
 | 
| 25388 | 999 | structure Blast = BlastFun | 
| 1000 | ( | |
| 21151 | 1001 | type claset = Classical.claset | 
| 22744 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22481diff
changeset | 1002 |   val equality_name = @{const_name "op ="}
 | 
| 22993 | 1003 |   val not_name = @{const_name Not}
 | 
| 26411 | 1004 |   val notE = @{thm notE}
 | 
| 1005 |   val ccontr = @{thm ccontr}
 | |
| 21151 | 1006 | val contr_tac = Classical.contr_tac | 
| 1007 | val dup_intr = Classical.dup_intr | |
| 1008 | val hyp_subst_tac = Hypsubst.blast_hyp_subst_tac | |
| 1009 | val rep_cs = Classical.rep_cs | |
| 1010 | val cla_modifiers = Classical.cla_modifiers | |
| 1011 | val cla_meth' = Classical.cla_meth' | |
| 25388 | 1012 | ); | 
| 21671 | 1013 | val blast_tac = Blast.blast_tac; | 
| 20944 | 1014 | *} | 
| 1015 | ||
| 21151 | 1016 | setup Blast.setup | 
| 1017 | ||
| 20944 | 1018 | |
| 1019 | subsubsection {* Simplifier *}
 | |
| 12281 | 1020 | |
| 1021 | lemma eta_contract_eq: "(%s. f s) = f" .. | |
| 1022 | ||
| 1023 | lemma simp_thms: | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 1024 | shows not_not: "(~ ~ P) = P" | 
| 15354 | 1025 | and Not_eq_iff: "((~P) = (~Q)) = (P = Q)" | 
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 1026 | and | 
| 12436 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 berghofe parents: 
12386diff
changeset | 1027 | "(P ~= Q) = (P = (~Q))" | 
| 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 berghofe parents: 
12386diff
changeset | 1028 | "(P | ~P) = True" "(~P | P) = True" | 
| 12281 | 1029 | "(x = x) = True" | 
| 20944 | 1030 | and not_True_eq_False: "(\<not> True) = False" | 
| 1031 | and not_False_eq_True: "(\<not> False) = True" | |
| 1032 | and | |
| 12436 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 berghofe parents: 
12386diff
changeset | 1033 | "(~P) ~= P" "P ~= (~P)" | 
| 20944 | 1034 | "(True=P) = P" | 
| 1035 | and eq_True: "(P = True) = P" | |
| 1036 | and "(False=P) = (~P)" | |
| 1037 | and eq_False: "(P = False) = (\<not> P)" | |
| 1038 | and | |
| 12281 | 1039 | "(True --> P) = P" "(False --> P) = True" | 
| 1040 | "(P --> True) = True" "(P --> P) = True" | |
| 1041 | "(P --> False) = (~P)" "(P --> ~P) = (~P)" | |
| 1042 | "(P & True) = P" "(True & P) = P" | |
| 1043 | "(P & False) = False" "(False & P) = False" | |
| 1044 | "(P & P) = P" "(P & (P & Q)) = (P & Q)" | |
| 1045 | "(P & ~P) = False" "(~P & P) = False" | |
| 1046 | "(P | True) = True" "(True | P) = True" | |
| 1047 | "(P | False) = P" "(False | P) = P" | |
| 12436 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 berghofe parents: 
12386diff
changeset | 1048 | "(P | P) = P" "(P | (P | Q)) = (P | Q)" and | 
| 12281 | 1049 | "(ALL x. P) = P" "(EX x. P) = P" "EX x. x=t" "EX x. t=x" | 
| 31166 
a90fe83f58ea
"{x. P x & x=t & Q x}" is now rewritten to "if P t & Q t then {t} else {}"
 nipkow parents: 
31156diff
changeset | 1050 | and | 
| 12281 | 1051 | "!!P. (EX x. x=t & P(x)) = P(t)" | 
| 1052 | "!!P. (EX x. t=x & P(x)) = P(t)" | |
| 1053 | "!!P. (ALL x. x=t --> P(x)) = P(t)" | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 1054 | "!!P. (ALL x. t=x --> P(x)) = P(t)" | 
| 17589 | 1055 | by (blast, blast, blast, blast, blast, iprover+) | 
| 13421 | 1056 | |
| 14201 | 1057 | lemma disj_absorb: "(A | A) = A" | 
| 1058 | by blast | |
| 1059 | ||
| 1060 | lemma disj_left_absorb: "(A | (A | B)) = (A | B)" | |
| 1061 | by blast | |
| 1062 | ||
| 1063 | lemma conj_absorb: "(A & A) = A" | |
| 1064 | by blast | |
| 1065 | ||
| 1066 | lemma conj_left_absorb: "(A & (A & B)) = (A & B)" | |
| 1067 | by blast | |
| 1068 | ||
| 12281 | 1069 | lemma eq_ac: | 
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 1070 | shows eq_commute: "(a=b) = (b=a)" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 1071 | and eq_left_commute: "(P=(Q=R)) = (Q=(P=R))" | 
| 17589 | 1072 | and eq_assoc: "((P=Q)=R) = (P=(Q=R))" by (iprover, blast+) | 
| 1073 | lemma neq_commute: "(a~=b) = (b~=a)" by iprover | |
| 12281 | 1074 | |
| 1075 | lemma conj_comms: | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 1076 | shows conj_commute: "(P&Q) = (Q&P)" | 
| 17589 | 1077 | and conj_left_commute: "(P&(Q&R)) = (Q&(P&R))" by iprover+ | 
| 1078 | lemma conj_assoc: "((P&Q)&R) = (P&(Q&R))" by iprover | |
| 12281 | 1079 | |
| 19174 | 1080 | lemmas conj_ac = conj_commute conj_left_commute conj_assoc | 
| 1081 | ||
| 12281 | 1082 | lemma disj_comms: | 
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 1083 | shows disj_commute: "(P|Q) = (Q|P)" | 
| 17589 | 1084 | and disj_left_commute: "(P|(Q|R)) = (Q|(P|R))" by iprover+ | 
| 1085 | lemma disj_assoc: "((P|Q)|R) = (P|(Q|R))" by iprover | |
| 12281 | 1086 | |
| 19174 | 1087 | lemmas disj_ac = disj_commute disj_left_commute disj_assoc | 
| 1088 | ||
| 17589 | 1089 | lemma conj_disj_distribL: "(P&(Q|R)) = (P&Q | P&R)" by iprover | 
| 1090 | lemma conj_disj_distribR: "((P|Q)&R) = (P&R | Q&R)" by iprover | |
| 12281 | 1091 | |
| 17589 | 1092 | lemma disj_conj_distribL: "(P|(Q&R)) = ((P|Q) & (P|R))" by iprover | 
| 1093 | lemma disj_conj_distribR: "((P&Q)|R) = ((P|R) & (Q|R))" by iprover | |
| 12281 | 1094 | |
| 17589 | 1095 | lemma imp_conjR: "(P --> (Q&R)) = ((P-->Q) & (P-->R))" by iprover | 
| 1096 | lemma imp_conjL: "((P&Q) -->R) = (P --> (Q --> R))" by iprover | |
| 1097 | lemma imp_disjL: "((P|Q) --> R) = ((P-->R)&(Q-->R))" by iprover | |
| 12281 | 1098 | |
| 1099 | text {* These two are specialized, but @{text imp_disj_not1} is useful in @{text "Auth/Yahalom"}. *}
 | |
| 1100 | lemma imp_disj_not1: "(P --> Q | R) = (~Q --> P --> R)" by blast | |
| 1101 | lemma imp_disj_not2: "(P --> Q | R) = (~R --> P --> Q)" by blast | |
| 1102 | ||
| 1103 | lemma imp_disj1: "((P-->Q)|R) = (P--> Q|R)" by blast | |
| 1104 | lemma imp_disj2: "(Q|(P-->R)) = (P--> Q|R)" by blast | |
| 1105 | ||
| 21151 | 1106 | lemma imp_cong: "(P = P') ==> (P' ==> (Q = Q')) ==> ((P --> Q) = (P' --> Q'))" | 
| 1107 | by iprover | |
| 1108 | ||
| 17589 | 1109 | lemma de_Morgan_disj: "(~(P | Q)) = (~P & ~Q)" by iprover | 
| 12281 | 1110 | lemma de_Morgan_conj: "(~(P & Q)) = (~P | ~Q)" by blast | 
| 1111 | lemma not_imp: "(~(P --> Q)) = (P & ~Q)" by blast | |
| 1112 | lemma not_iff: "(P~=Q) = (P = (~Q))" by blast | |
| 1113 | lemma disj_not1: "(~P | Q) = (P --> Q)" by blast | |
| 1114 | lemma disj_not2: "(P | ~Q) = (Q --> P)"  -- {* changes orientation :-( *}
 | |
| 1115 | by blast | |
| 1116 | lemma imp_conv_disj: "(P --> Q) = ((~P) | Q)" by blast | |
| 1117 | ||
| 17589 | 1118 | lemma iff_conv_conj_imp: "(P = Q) = ((P --> Q) & (Q --> P))" by iprover | 
| 12281 | 1119 | |
| 1120 | ||
| 1121 | lemma cases_simp: "((P --> Q) & (~P --> Q)) = Q" | |
| 1122 |   -- {* Avoids duplication of subgoals after @{text split_if}, when the true and false *}
 | |
| 1123 |   -- {* cases boil down to the same thing. *}
 | |
| 1124 | by blast | |
| 1125 | ||
| 1126 | lemma not_all: "(~ (! x. P(x))) = (? x.~P(x))" by blast | |
| 1127 | lemma imp_all: "((! x. P x) --> Q) = (? x. P x --> Q)" by blast | |
| 17589 | 1128 | lemma not_ex: "(~ (? x. P(x))) = (! x.~P(x))" by iprover | 
| 1129 | lemma imp_ex: "((? x. P x) --> Q) = (! x. P x --> Q)" by iprover | |
| 23403 | 1130 | lemma all_not_ex: "(ALL x. P x) = (~ (EX x. ~ P x ))" by blast | 
| 12281 | 1131 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1132 | declare All_def [noatp] | 
| 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1133 | |
| 17589 | 1134 | lemma ex_disj_distrib: "(? x. P(x) | Q(x)) = ((? x. P(x)) | (? x. Q(x)))" by iprover | 
| 1135 | lemma all_conj_distrib: "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))" by iprover | |
| 12281 | 1136 | |
| 1137 | text {*
 | |
| 1138 |   \medskip The @{text "&"} congruence rule: not included by default!
 | |
| 1139 | May slow rewrite proofs down by as much as 50\% *} | |
| 1140 | ||
| 1141 | lemma conj_cong: | |
| 1142 | "(P = P') ==> (P' ==> (Q = Q')) ==> ((P & Q) = (P' & Q'))" | |
| 17589 | 1143 | by iprover | 
| 12281 | 1144 | |
| 1145 | lemma rev_conj_cong: | |
| 1146 | "(Q = Q') ==> (Q' ==> (P = P')) ==> ((P & Q) = (P' & Q'))" | |
| 17589 | 1147 | by iprover | 
| 12281 | 1148 | |
| 1149 | text {* The @{text "|"} congruence rule: not included by default! *}
 | |
| 1150 | ||
| 1151 | lemma disj_cong: | |
| 1152 | "(P = P') ==> (~P' ==> (Q = Q')) ==> ((P | Q) = (P' | Q'))" | |
| 1153 | by blast | |
| 1154 | ||
| 1155 | ||
| 1156 | text {* \medskip if-then-else rules *}
 | |
| 1157 | ||
| 1158 | lemma if_True: "(if True then x else y) = x" | |
| 1159 | by (unfold if_def) blast | |
| 1160 | ||
| 1161 | lemma if_False: "(if False then x else y) = y" | |
| 1162 | by (unfold if_def) blast | |
| 1163 | ||
| 1164 | lemma if_P: "P ==> (if P then x else y) = x" | |
| 1165 | by (unfold if_def) blast | |
| 1166 | ||
| 1167 | lemma if_not_P: "~P ==> (if P then x else y) = y" | |
| 1168 | by (unfold if_def) blast | |
| 1169 | ||
| 1170 | lemma split_if: "P (if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))" | |
| 1171 | apply (rule case_split [of Q]) | |
| 15481 | 1172 | apply (simplesubst if_P) | 
| 1173 | prefer 3 apply (simplesubst if_not_P, blast+) | |
| 12281 | 1174 | done | 
| 1175 | ||
| 1176 | lemma split_if_asm: "P (if Q then x else y) = (~((Q & ~P x) | (~Q & ~P y)))" | |
| 15481 | 1177 | by (simplesubst split_if, blast) | 
| 12281 | 1178 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1179 | lemmas if_splits [noatp] = split_if split_if_asm | 
| 12281 | 1180 | |
| 1181 | lemma if_cancel: "(if c then x else x) = x" | |
| 15481 | 1182 | by (simplesubst split_if, blast) | 
| 12281 | 1183 | |
| 1184 | lemma if_eq_cancel: "(if x = y then y else x) = x" | |
| 15481 | 1185 | by (simplesubst split_if, blast) | 
| 12281 | 1186 | |
| 1187 | lemma if_bool_eq_conj: "(if P then Q else R) = ((P-->Q) & (~P-->R))" | |
| 19796 | 1188 |   -- {* This form is useful for expanding @{text "if"}s on the RIGHT of the @{text "==>"} symbol. *}
 | 
| 12281 | 1189 | by (rule split_if) | 
| 1190 | ||
| 1191 | lemma if_bool_eq_disj: "(if P then Q else R) = ((P&Q) | (~P&R))" | |
| 19796 | 1192 |   -- {* And this form is useful for expanding @{text "if"}s on the LEFT. *}
 | 
| 15481 | 1193 | apply (simplesubst split_if, blast) | 
| 12281 | 1194 | done | 
| 1195 | ||
| 17589 | 1196 | lemma Eq_TrueI: "P ==> P == True" by (unfold atomize_eq) iprover | 
| 1197 | lemma Eq_FalseI: "~P ==> P == False" by (unfold atomize_eq) iprover | |
| 12281 | 1198 | |
| 15423 | 1199 | text {* \medskip let rules for simproc *}
 | 
| 1200 | ||
| 1201 | lemma Let_folded: "f x \<equiv> g x \<Longrightarrow> Let x f \<equiv> Let x g" | |
| 1202 | by (unfold Let_def) | |
| 1203 | ||
| 1204 | lemma Let_unfold: "f x \<equiv> g \<Longrightarrow> Let x f \<equiv> g" | |
| 1205 | by (unfold Let_def) | |
| 1206 | ||
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1207 | text {*
 | 
| 16999 | 1208 | The following copy of the implication operator is useful for | 
| 1209 | fine-tuning congruence rules. It instructs the simplifier to simplify | |
| 1210 | its premise. | |
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1211 | *} | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1212 | |
| 17197 | 1213 | constdefs | 
| 1214 | simp_implies :: "[prop, prop] => prop" (infixr "=simp=>" 1) | |
| 28562 | 1215 | [code del]: "simp_implies \<equiv> op ==>" | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1216 | |
| 18457 | 1217 | lemma simp_impliesI: | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1218 | assumes PQ: "(PROP P \<Longrightarrow> PROP Q)" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1219 | shows "PROP P =simp=> PROP Q" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1220 | apply (unfold simp_implies_def) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1221 | apply (rule PQ) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1222 | apply assumption | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1223 | done | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1224 | |
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1225 | lemma simp_impliesE: | 
| 25388 | 1226 | assumes PQ: "PROP P =simp=> PROP Q" | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1227 | and P: "PROP P" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1228 | and QR: "PROP Q \<Longrightarrow> PROP R" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1229 | shows "PROP R" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1230 | apply (rule QR) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1231 | apply (rule PQ [unfolded simp_implies_def]) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1232 | apply (rule P) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1233 | done | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1234 | |
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1235 | lemma simp_implies_cong: | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1236 | assumes PP' :"PROP P == PROP P'" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1237 | and P'QQ': "PROP P' ==> (PROP Q == PROP Q')" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1238 | shows "(PROP P =simp=> PROP Q) == (PROP P' =simp=> PROP Q')" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1239 | proof (unfold simp_implies_def, rule equal_intr_rule) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1240 | assume PQ: "PROP P \<Longrightarrow> PROP Q" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1241 | and P': "PROP P'" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1242 | from PP' [symmetric] and P' have "PROP P" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1243 | by (rule equal_elim_rule1) | 
| 23553 | 1244 | then have "PROP Q" by (rule PQ) | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1245 | with P'QQ' [OF P'] show "PROP Q'" by (rule equal_elim_rule1) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1246 | next | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1247 | assume P'Q': "PROP P' \<Longrightarrow> PROP Q'" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1248 | and P: "PROP P" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1249 | from PP' and P have P': "PROP P'" by (rule equal_elim_rule1) | 
| 23553 | 1250 | then have "PROP Q'" by (rule P'Q') | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1251 | with P'QQ' [OF P', symmetric] show "PROP Q" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1252 | by (rule equal_elim_rule1) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1253 | qed | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1254 | |
| 20944 | 1255 | lemma uncurry: | 
| 1256 | assumes "P \<longrightarrow> Q \<longrightarrow> R" | |
| 1257 | shows "P \<and> Q \<longrightarrow> R" | |
| 23553 | 1258 | using assms by blast | 
| 20944 | 1259 | |
| 1260 | lemma iff_allI: | |
| 1261 | assumes "\<And>x. P x = Q x" | |
| 1262 | shows "(\<forall>x. P x) = (\<forall>x. Q x)" | |
| 23553 | 1263 | using assms by blast | 
| 20944 | 1264 | |
| 1265 | lemma iff_exI: | |
| 1266 | assumes "\<And>x. P x = Q x" | |
| 1267 | shows "(\<exists>x. P x) = (\<exists>x. Q x)" | |
| 23553 | 1268 | using assms by blast | 
| 20944 | 1269 | |
| 1270 | lemma all_comm: | |
| 1271 | "(\<forall>x y. P x y) = (\<forall>y x. P x y)" | |
| 1272 | by blast | |
| 1273 | ||
| 1274 | lemma ex_comm: | |
| 1275 | "(\<exists>x y. P x y) = (\<exists>y x. P x y)" | |
| 1276 | by blast | |
| 1277 | ||
| 28952 
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
 haftmann parents: 
28856diff
changeset | 1278 | use "Tools/simpdata.ML" | 
| 21671 | 1279 | ML {* open Simpdata *}
 | 
| 1280 | ||
| 21151 | 1281 | setup {*
 | 
| 1282 | Simplifier.method_setup Splitter.split_modifiers | |
| 26496 
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
 wenzelm parents: 
26411diff
changeset | 1283 | #> Simplifier.map_simpset (K Simpdata.simpset_simprocs) | 
| 21151 | 1284 | #> Splitter.setup | 
| 26496 
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
 wenzelm parents: 
26411diff
changeset | 1285 | #> clasimp_setup | 
| 21151 | 1286 | #> EqSubst.setup | 
| 1287 | *} | |
| 1288 | ||
| 24035 | 1289 | text {* Simproc for proving @{text "(y = x) == False"} from premise @{text "~(x = y)"}: *}
 | 
| 1290 | ||
| 1291 | simproc_setup neq ("x = y") = {* fn _ =>
 | |
| 1292 | let | |
| 1293 |   val neq_to_EQ_False = @{thm not_sym} RS @{thm Eq_FalseI};
 | |
| 1294 | fun is_neq eq lhs rhs thm = | |
| 1295 | (case Thm.prop_of thm of | |
| 1296 | _ $ (Not $ (eq' $ l' $ r')) => | |
| 1297 | Not = HOLogic.Not andalso eq' = eq andalso | |
| 1298 | r' aconv lhs andalso l' aconv rhs | |
| 1299 | | _ => false); | |
| 1300 | fun proc ss ct = | |
| 1301 | (case Thm.term_of ct of | |
| 1302 | eq $ lhs $ rhs => | |
| 1303 | (case find_first (is_neq eq lhs rhs) (Simplifier.prems_of_ss ss) of | |
| 1304 | SOME thm => SOME (thm RS neq_to_EQ_False) | |
| 1305 | | NONE => NONE) | |
| 1306 | | _ => NONE); | |
| 1307 | in proc end; | |
| 1308 | *} | |
| 1309 | ||
| 1310 | simproc_setup let_simp ("Let x f") = {*
 | |
| 1311 | let | |
| 1312 | val (f_Let_unfold, x_Let_unfold) = | |
| 28741 | 1313 |     let val [(_ $ (f $ x) $ _)] = prems_of @{thm Let_unfold}
 | 
| 24035 | 1314 |     in (cterm_of @{theory} f, cterm_of @{theory} x) end
 | 
| 1315 | val (f_Let_folded, x_Let_folded) = | |
| 28741 | 1316 |     let val [(_ $ (f $ x) $ _)] = prems_of @{thm Let_folded}
 | 
| 24035 | 1317 |     in (cterm_of @{theory} f, cterm_of @{theory} x) end;
 | 
| 1318 | val g_Let_folded = | |
| 28741 | 1319 |     let val [(_ $ _ $ (g $ _))] = prems_of @{thm Let_folded}
 | 
| 1320 |     in cterm_of @{theory} g end;
 | |
| 1321 | fun count_loose (Bound i) k = if i >= k then 1 else 0 | |
| 1322 | | count_loose (s $ t) k = count_loose s k + count_loose t k | |
| 1323 | | count_loose (Abs (_, _, t)) k = count_loose t (k + 1) | |
| 1324 | | count_loose _ _ = 0; | |
| 1325 |   fun is_trivial_let (Const (@{const_name Let}, _) $ x $ t) =
 | |
| 1326 | case t | |
| 1327 | of Abs (_, _, t') => count_loose t' 0 <= 1 | |
| 1328 | | _ => true; | |
| 1329 | in fn _ => fn ss => fn ct => if is_trivial_let (Thm.term_of ct) | |
| 31151 | 1330 |   then SOME @{thm Let_def} (*no or one ocurrence of bound variable*)
 | 
| 28741 | 1331 | else let (*Norbert Schirmer's case*) | 
| 1332 | val ctxt = Simplifier.the_context ss; | |
| 1333 | val thy = ProofContext.theory_of ctxt; | |
| 1334 | val t = Thm.term_of ct; | |
| 1335 | val ([t'], ctxt') = Variable.import_terms false [t] ctxt; | |
| 1336 | in Option.map (hd o Variable.export ctxt' ctxt o single) | |
| 1337 |     (case t' of Const (@{const_name Let},_) $ x $ f => (* x and f are already in normal form *)
 | |
| 1338 | if is_Free x orelse is_Bound x orelse is_Const x | |
| 1339 |       then SOME @{thm Let_def}
 | |
| 1340 | else | |
| 1341 | let | |
| 1342 | val n = case f of (Abs (x, _, _)) => x | _ => "x"; | |
| 1343 | val cx = cterm_of thy x; | |
| 1344 |           val {T = xT, ...} = rep_cterm cx;
 | |
| 1345 | val cf = cterm_of thy f; | |
| 1346 | val fx_g = Simplifier.rewrite ss (Thm.capply cf cx); | |
| 1347 | val (_ $ _ $ g) = prop_of fx_g; | |
| 1348 | val g' = abstract_over (x,g); | |
| 1349 | in (if (g aconv g') | |
| 1350 | then | |
| 1351 | let | |
| 1352 | val rl = | |
| 1353 |                     cterm_instantiate [(f_Let_unfold, cf), (x_Let_unfold, cx)] @{thm Let_unfold};
 | |
| 1354 | in SOME (rl OF [fx_g]) end | |
| 1355 | else if Term.betapply (f, x) aconv g then NONE (*avoid identity conversion*) | |
| 1356 | else let | |
| 1357 | val abs_g'= Abs (n,xT,g'); | |
| 1358 | val g'x = abs_g'$x; | |
| 1359 | val g_g'x = symmetric (beta_conversion false (cterm_of thy g'x)); | |
| 1360 | val rl = cterm_instantiate | |
| 1361 | [(f_Let_folded, cterm_of thy f), (x_Let_folded, cx), | |
| 1362 | (g_Let_folded, cterm_of thy abs_g')] | |
| 1363 |                              @{thm Let_folded};
 | |
| 1364 | in SOME (rl OF [transitive fx_g g_g'x]) | |
| 1365 | end) | |
| 1366 | end | |
| 1367 | | _ => NONE) | |
| 1368 | end | |
| 1369 | end *} | |
| 24035 | 1370 | |
| 21151 | 1371 | lemma True_implies_equals: "(True \<Longrightarrow> PROP P) \<equiv> PROP P" | 
| 1372 | proof | |
| 23389 | 1373 | assume "True \<Longrightarrow> PROP P" | 
| 1374 | from this [OF TrueI] show "PROP P" . | |
| 21151 | 1375 | next | 
| 1376 | assume "PROP P" | |
| 23389 | 1377 | then show "PROP P" . | 
| 21151 | 1378 | qed | 
| 1379 | ||
| 1380 | lemma ex_simps: | |
| 1381 | "!!P Q. (EX x. P x & Q) = ((EX x. P x) & Q)" | |
| 1382 | "!!P Q. (EX x. P & Q x) = (P & (EX x. Q x))" | |
| 1383 | "!!P Q. (EX x. P x | Q) = ((EX x. P x) | Q)" | |
| 1384 | "!!P Q. (EX x. P | Q x) = (P | (EX x. Q x))" | |
| 1385 | "!!P Q. (EX x. P x --> Q) = ((ALL x. P x) --> Q)" | |
| 1386 | "!!P Q. (EX x. P --> Q x) = (P --> (EX x. Q x))" | |
| 1387 |   -- {* Miniscoping: pushing in existential quantifiers. *}
 | |
| 1388 | by (iprover | blast)+ | |
| 1389 | ||
| 1390 | lemma all_simps: | |
| 1391 | "!!P Q. (ALL x. P x & Q) = ((ALL x. P x) & Q)" | |
| 1392 | "!!P Q. (ALL x. P & Q x) = (P & (ALL x. Q x))" | |
| 1393 | "!!P Q. (ALL x. P x | Q) = ((ALL x. P x) | Q)" | |
| 1394 | "!!P Q. (ALL x. P | Q x) = (P | (ALL x. Q x))" | |
| 1395 | "!!P Q. (ALL x. P x --> Q) = ((EX x. P x) --> Q)" | |
| 1396 | "!!P Q. (ALL x. P --> Q x) = (P --> (ALL x. Q x))" | |
| 1397 |   -- {* Miniscoping: pushing in universal quantifiers. *}
 | |
| 1398 | by (iprover | blast)+ | |
| 15481 | 1399 | |
| 21671 | 1400 | lemmas [simp] = | 
| 1401 | triv_forall_equality (*prunes params*) | |
| 1402 | True_implies_equals (*prune asms `True'*) | |
| 1403 | if_True | |
| 1404 | if_False | |
| 1405 | if_cancel | |
| 1406 | if_eq_cancel | |
| 1407 | imp_disjL | |
| 20973 | 1408 | (*In general it seems wrong to add distributive laws by default: they | 
| 1409 | might cause exponential blow-up. But imp_disjL has been in for a while | |
| 1410 | and cannot be removed without affecting existing proofs. Moreover, | |
| 1411 | rewriting by "(P|Q --> R) = ((P-->R)&(Q-->R))" might be justified on the | |
| 1412 | grounds that it allows simplification of R in the two cases.*) | |
| 21671 | 1413 | conj_assoc | 
| 1414 | disj_assoc | |
| 1415 | de_Morgan_conj | |
| 1416 | de_Morgan_disj | |
| 1417 | imp_disj1 | |
| 1418 | imp_disj2 | |
| 1419 | not_imp | |
| 1420 | disj_not1 | |
| 1421 | not_all | |
| 1422 | not_ex | |
| 1423 | cases_simp | |
| 1424 | the_eq_trivial | |
| 1425 | the_sym_eq_trivial | |
| 1426 | ex_simps | |
| 1427 | all_simps | |
| 1428 | simp_thms | |
| 1429 | ||
| 1430 | lemmas [cong] = imp_cong simp_implies_cong | |
| 1431 | lemmas [split] = split_if | |
| 20973 | 1432 | |
| 22377 | 1433 | ML {* val HOL_ss = @{simpset} *}
 | 
| 20973 | 1434 | |
| 20944 | 1435 | text {* Simplifies x assuming c and y assuming ~c *}
 | 
| 1436 | lemma if_cong: | |
| 1437 | assumes "b = c" | |
| 1438 | and "c \<Longrightarrow> x = u" | |
| 1439 | and "\<not> c \<Longrightarrow> y = v" | |
| 1440 | shows "(if b then x else y) = (if c then u else v)" | |
| 23553 | 1441 | unfolding if_def using assms by simp | 
| 20944 | 1442 | |
| 1443 | text {* Prevents simplification of x and y:
 | |
| 1444 | faster and allows the execution of functional programs. *} | |
| 1445 | lemma if_weak_cong [cong]: | |
| 1446 | assumes "b = c" | |
| 1447 | shows "(if b then x else y) = (if c then x else y)" | |
| 23553 | 1448 | using assms by (rule arg_cong) | 
| 20944 | 1449 | |
| 1450 | text {* Prevents simplification of t: much faster *}
 | |
| 1451 | lemma let_weak_cong: | |
| 1452 | assumes "a = b" | |
| 1453 | shows "(let x = a in t x) = (let x = b in t x)" | |
| 23553 | 1454 | using assms by (rule arg_cong) | 
| 20944 | 1455 | |
| 1456 | text {* To tidy up the result of a simproc.  Only the RHS will be simplified. *}
 | |
| 1457 | lemma eq_cong2: | |
| 1458 | assumes "u = u'" | |
| 1459 | shows "(t \<equiv> u) \<equiv> (t \<equiv> u')" | |
| 23553 | 1460 | using assms by simp | 
| 20944 | 1461 | |
| 1462 | lemma if_distrib: | |
| 1463 | "f (if c then x else y) = (if c then f x else f y)" | |
| 1464 | by simp | |
| 1465 | ||
| 1466 | text {* This lemma restricts the effect of the rewrite rule u=v to the left-hand
 | |
| 21502 | 1467 |   side of an equality.  Used in @{text "{Integ,Real}/simproc.ML"} *}
 | 
| 20944 | 1468 | lemma restrict_to_left: | 
| 1469 | assumes "x = y" | |
| 1470 | shows "(x = z) = (y = z)" | |
| 23553 | 1471 | using assms by simp | 
| 20944 | 1472 | |
| 17459 | 1473 | |
| 20944 | 1474 | subsubsection {* Generic cases and induction *}
 | 
| 17459 | 1475 | |
| 20944 | 1476 | text {* Rule projections: *}
 | 
| 18887 | 1477 | |
| 20944 | 1478 | ML {*
 | 
| 1479 | structure ProjectRule = ProjectRuleFun | |
| 25388 | 1480 | ( | 
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1481 |   val conjunct1 = @{thm conjunct1}
 | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1482 |   val conjunct2 = @{thm conjunct2}
 | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1483 |   val mp = @{thm mp}
 | 
| 25388 | 1484 | ) | 
| 17459 | 1485 | *} | 
| 1486 | ||
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1487 | constdefs | 
| 18457 | 1488 | induct_forall where "induct_forall P == \<forall>x. P x" | 
| 1489 | induct_implies where "induct_implies A B == A \<longrightarrow> B" | |
| 1490 | induct_equal where "induct_equal x y == x = y" | |
| 1491 | induct_conj where "induct_conj A B == A \<and> B" | |
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1492 | |
| 11989 | 1493 | lemma induct_forall_eq: "(!!x. P x) == Trueprop (induct_forall (\<lambda>x. P x))" | 
| 18457 | 1494 | by (unfold atomize_all induct_forall_def) | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1495 | |
| 11989 | 1496 | lemma induct_implies_eq: "(A ==> B) == Trueprop (induct_implies A B)" | 
| 18457 | 1497 | by (unfold atomize_imp induct_implies_def) | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1498 | |
| 11989 | 1499 | lemma induct_equal_eq: "(x == y) == Trueprop (induct_equal x y)" | 
| 18457 | 1500 | by (unfold atomize_eq induct_equal_def) | 
| 1501 | ||
| 28856 
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
 wenzelm parents: 
28741diff
changeset | 1502 | lemma induct_conj_eq: "(A &&& B) == Trueprop (induct_conj A B)" | 
| 18457 | 1503 | by (unfold atomize_conj induct_conj_def) | 
| 1504 | ||
| 1505 | lemmas induct_atomize = induct_forall_eq induct_implies_eq induct_equal_eq induct_conj_eq | |
| 1506 | lemmas induct_rulify [symmetric, standard] = induct_atomize | |
| 1507 | lemmas induct_rulify_fallback = | |
| 1508 | induct_forall_def induct_implies_def induct_equal_def induct_conj_def | |
| 1509 | ||
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1510 | |
| 11989 | 1511 | lemma induct_forall_conj: "induct_forall (\<lambda>x. induct_conj (A x) (B x)) = | 
| 1512 | induct_conj (induct_forall A) (induct_forall B)" | |
| 17589 | 1513 | by (unfold induct_forall_def induct_conj_def) iprover | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1514 | |
| 11989 | 1515 | lemma induct_implies_conj: "induct_implies C (induct_conj A B) = | 
| 1516 | induct_conj (induct_implies C A) (induct_implies C B)" | |
| 17589 | 1517 | by (unfold induct_implies_def induct_conj_def) iprover | 
| 11989 | 1518 | |
| 13598 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 berghofe parents: 
13596diff
changeset | 1519 | lemma induct_conj_curry: "(induct_conj A B ==> PROP C) == (A ==> B ==> PROP C)" | 
| 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 berghofe parents: 
13596diff
changeset | 1520 | proof | 
| 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 berghofe parents: 
13596diff
changeset | 1521 | assume r: "induct_conj A B ==> PROP C" and A B | 
| 18457 | 1522 | show "PROP C" by (rule r) (simp add: induct_conj_def `A` `B`) | 
| 13598 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 berghofe parents: 
13596diff
changeset | 1523 | next | 
| 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 berghofe parents: 
13596diff
changeset | 1524 | assume r: "A ==> B ==> PROP C" and "induct_conj A B" | 
| 18457 | 1525 | show "PROP C" by (rule r) (simp_all add: `induct_conj A B` [unfolded induct_conj_def]) | 
| 13598 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 berghofe parents: 
13596diff
changeset | 1526 | qed | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1527 | |
| 11989 | 1528 | lemmas induct_conj = induct_forall_conj induct_implies_conj induct_conj_curry | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1529 | |
| 11989 | 1530 | hide const induct_forall induct_implies induct_equal induct_conj | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1531 | |
| 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1532 | text {* Method setup. *}
 | 
| 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1533 | |
| 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1534 | ML {*
 | 
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1535 | structure Induct = InductFun | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1536 | ( | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1537 |   val cases_default = @{thm case_split}
 | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1538 |   val atomize = @{thms induct_atomize}
 | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1539 |   val rulify = @{thms induct_rulify}
 | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1540 |   val rulify_fallback = @{thms induct_rulify_fallback}
 | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1541 | ) | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1542 | *} | 
| 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1543 | |
| 24830 
a7b3ab44d993
moved Pure/Isar/induct_attrib.ML and Provers/induct_method.ML to Tools/induct.ML;
 wenzelm parents: 
24748diff
changeset | 1544 | setup Induct.setup | 
| 18457 | 1545 | |
| 27326 
d3beec370964
moved src/HOL/Tools/induct_tacs.ML to src/Tools/induct_tacs.ML;
 wenzelm parents: 
27212diff
changeset | 1546 | use "~~/src/Tools/induct_tacs.ML" | 
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1547 | setup InductTacs.setup | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1548 | |
| 20944 | 1549 | |
| 28325 | 1550 | subsubsection {* Coherent logic *}
 | 
| 1551 | ||
| 1552 | ML {*
 | |
| 1553 | structure Coherent = CoherentFun | |
| 1554 | ( | |
| 1555 |   val atomize_elimL = @{thm atomize_elimL}
 | |
| 1556 |   val atomize_exL = @{thm atomize_exL}
 | |
| 1557 |   val atomize_conjL = @{thm atomize_conjL}
 | |
| 1558 |   val atomize_disjL = @{thm atomize_disjL}
 | |
| 1559 | val operator_names = | |
| 1560 |     [@{const_name "op |"}, @{const_name "op &"}, @{const_name "Ex"}]
 | |
| 1561 | ); | |
| 1562 | *} | |
| 1563 | ||
| 1564 | setup Coherent.setup | |
| 1565 | ||
| 1566 | ||
| 31024 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1567 | subsubsection {* Reorienting equalities *}
 | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1568 | |
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1569 | ML {*
 | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1570 | signature REORIENT_PROC = | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1571 | sig | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1572 | val init : theory -> theory | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1573 | val add : (term -> bool) -> theory -> theory | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1574 | val proc : morphism -> simpset -> cterm -> thm option | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1575 | end; | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1576 | |
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1577 | structure ReorientProc : REORIENT_PROC = | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1578 | struct | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1579 | structure Data = TheoryDataFun | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1580 | ( | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1581 | type T = term -> bool; | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1582 | val empty = (fn _ => false); | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1583 | val copy = I; | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1584 | val extend = I; | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1585 | fun merge _ (m1, m2) = (fn t => m1 t orelse m2 t); | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1586 | ) | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1587 | |
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1588 | val init = Data.init; | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1589 | fun add m = Data.map (fn matches => fn t => matches t orelse m t); | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1590 |   val meta_reorient = @{thm eq_commute [THEN eq_reflection]};
 | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1591 | fun proc phi ss ct = | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1592 | let | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1593 | val ctxt = Simplifier.the_context ss; | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1594 | val thy = ProofContext.theory_of ctxt; | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1595 | val matches = Data.get thy; | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1596 | in | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1597 | case Thm.term_of ct of | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1598 | (_ $ t $ u) => if matches u then NONE else SOME meta_reorient | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1599 | | _ => NONE | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1600 | end; | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1601 | end; | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1602 | *} | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1603 | |
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1604 | setup ReorientProc.init | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1605 | |
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1606 | setup {*
 | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1607 | ReorientProc.add | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1608 |     (fn Const(@{const_name HOL.zero}, _) => true
 | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1609 |       | Const(@{const_name HOL.one}, _) => true
 | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1610 | | _ => false) | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1611 | *} | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1612 | |
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1613 | simproc_setup reorient_zero ("0 = x") = ReorientProc.proc
 | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1614 | simproc_setup reorient_one ("1 = x") = ReorientProc.proc
 | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1615 | |
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1616 | |
| 20944 | 1617 | subsection {* Other simple lemmas and lemma duplicates *}
 | 
| 1618 | ||
| 24166 | 1619 | lemma Let_0 [simp]: "Let 0 f = f 0" | 
| 1620 | unfolding Let_def .. | |
| 1621 | ||
| 1622 | lemma Let_1 [simp]: "Let 1 f = f 1" | |
| 1623 | unfolding Let_def .. | |
| 1624 | ||
| 20944 | 1625 | lemma ex1_eq [iff]: "EX! x. x = t" "EX! x. t = x" | 
| 1626 | by blast+ | |
| 1627 | ||
| 1628 | lemma choice_eq: "(ALL x. EX! y. P x y) = (EX! f. ALL x. P x (f x))" | |
| 1629 | apply (rule iffI) | |
| 1630 | apply (rule_tac a = "%x. THE y. P x y" in ex1I) | |
| 1631 | apply (fast dest!: theI') | |
| 1632 | apply (fast intro: ext the1_equality [symmetric]) | |
| 1633 | apply (erule ex1E) | |
| 1634 | apply (rule allI) | |
| 1635 | apply (rule ex1I) | |
| 1636 | apply (erule spec) | |
| 1637 | apply (erule_tac x = "%z. if z = x then y else f z" in allE) | |
| 1638 | apply (erule impE) | |
| 1639 | apply (rule allI) | |
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1640 | apply (case_tac "xa = x") | 
| 20944 | 1641 | apply (drule_tac [3] x = x in fun_cong, simp_all) | 
| 1642 | done | |
| 1643 | ||
| 1644 | lemma mk_left_commute: | |
| 21547 
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
 haftmann parents: 
21524diff
changeset | 1645 | fixes f (infix "\<otimes>" 60) | 
| 
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
 haftmann parents: 
21524diff
changeset | 1646 | assumes a: "\<And>x y z. (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)" and | 
| 
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
 haftmann parents: 
21524diff
changeset | 1647 | c: "\<And>x y. x \<otimes> y = y \<otimes> x" | 
| 
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
 haftmann parents: 
21524diff
changeset | 1648 | shows "x \<otimes> (y \<otimes> z) = y \<otimes> (x \<otimes> z)" | 
| 20944 | 1649 | by (rule trans [OF trans [OF c a] arg_cong [OF c, of "f y"]]) | 
| 1650 | ||
| 22218 | 1651 | lemmas eq_sym_conv = eq_commute | 
| 1652 | ||
| 23037 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1653 | lemma nnf_simps: | 
| 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1654 | "(\<not>(P \<and> Q)) = (\<not> P \<or> \<not> Q)" "(\<not> (P \<or> Q)) = (\<not> P \<and> \<not>Q)" "(P \<longrightarrow> Q) = (\<not>P \<or> Q)" | 
| 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1655 | "(P = Q) = ((P \<and> Q) \<or> (\<not>P \<and> \<not> Q))" "(\<not>(P = Q)) = ((P \<and> \<not> Q) \<or> (\<not>P \<and> Q))" | 
| 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1656 | "(\<not> \<not>(P)) = P" | 
| 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1657 | by blast+ | 
| 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1658 | |
| 21671 | 1659 | |
| 1660 | subsection {* Basic ML bindings *}
 | |
| 1661 | ||
| 1662 | ML {*
 | |
| 22129 | 1663 | val FalseE = @{thm FalseE}
 | 
| 1664 | val Let_def = @{thm Let_def}
 | |
| 1665 | val TrueI = @{thm TrueI}
 | |
| 1666 | val allE = @{thm allE}
 | |
| 1667 | val allI = @{thm allI}
 | |
| 1668 | val all_dupE = @{thm all_dupE}
 | |
| 1669 | val arg_cong = @{thm arg_cong}
 | |
| 1670 | val box_equals = @{thm box_equals}
 | |
| 1671 | val ccontr = @{thm ccontr}
 | |
| 1672 | val classical = @{thm classical}
 | |
| 1673 | val conjE = @{thm conjE}
 | |
| 1674 | val conjI = @{thm conjI}
 | |
| 1675 | val conjunct1 = @{thm conjunct1}
 | |
| 1676 | val conjunct2 = @{thm conjunct2}
 | |
| 1677 | val disjCI = @{thm disjCI}
 | |
| 1678 | val disjE = @{thm disjE}
 | |
| 1679 | val disjI1 = @{thm disjI1}
 | |
| 1680 | val disjI2 = @{thm disjI2}
 | |
| 1681 | val eq_reflection = @{thm eq_reflection}
 | |
| 1682 | val ex1E = @{thm ex1E}
 | |
| 1683 | val ex1I = @{thm ex1I}
 | |
| 1684 | val ex1_implies_ex = @{thm ex1_implies_ex}
 | |
| 1685 | val exE = @{thm exE}
 | |
| 1686 | val exI = @{thm exI}
 | |
| 1687 | val excluded_middle = @{thm excluded_middle}
 | |
| 1688 | val ext = @{thm ext}
 | |
| 1689 | val fun_cong = @{thm fun_cong}
 | |
| 1690 | val iffD1 = @{thm iffD1}
 | |
| 1691 | val iffD2 = @{thm iffD2}
 | |
| 1692 | val iffI = @{thm iffI}
 | |
| 1693 | val impE = @{thm impE}
 | |
| 1694 | val impI = @{thm impI}
 | |
| 1695 | val meta_eq_to_obj_eq = @{thm meta_eq_to_obj_eq}
 | |
| 1696 | val mp = @{thm mp}
 | |
| 1697 | val notE = @{thm notE}
 | |
| 1698 | val notI = @{thm notI}
 | |
| 1699 | val not_all = @{thm not_all}
 | |
| 1700 | val not_ex = @{thm not_ex}
 | |
| 1701 | val not_iff = @{thm not_iff}
 | |
| 1702 | val not_not = @{thm not_not}
 | |
| 1703 | val not_sym = @{thm not_sym}
 | |
| 1704 | val refl = @{thm refl}
 | |
| 1705 | val rev_mp = @{thm rev_mp}
 | |
| 1706 | val spec = @{thm spec}
 | |
| 1707 | val ssubst = @{thm ssubst}
 | |
| 1708 | val subst = @{thm subst}
 | |
| 1709 | val sym = @{thm sym}
 | |
| 1710 | val trans = @{thm trans}
 | |
| 21671 | 1711 | *} | 
| 1712 | ||
| 1713 | ||
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1714 | subsection {* Code generator setup *}
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1715 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1716 | subsubsection {* SML code generator setup *}
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1717 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1718 | use "Tools/recfun_codegen.ML" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1719 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1720 | setup {*
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1721 | Codegen.setup | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1722 | #> RecfunCodegen.setup | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1723 | *} | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1724 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1725 | types_code | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1726 |   "bool"  ("bool")
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1727 | attach (term_of) {*
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1728 | fun term_of_bool b = if b then HOLogic.true_const else HOLogic.false_const; | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1729 | *} | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1730 | attach (test) {*
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1731 | fun gen_bool i = | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1732 | let val b = one_of [false, true] | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1733 | in (b, fn () => term_of_bool b) end; | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1734 | *} | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1735 |   "prop"  ("bool")
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1736 | attach (term_of) {*
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1737 | fun term_of_prop b = | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1738 | HOLogic.mk_Trueprop (if b then HOLogic.true_const else HOLogic.false_const); | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1739 | *} | 
| 28400 | 1740 | |
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1741 | consts_code | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1742 |   "Trueprop" ("(_)")
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1743 |   "True"    ("true")
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1744 |   "False"   ("false")
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1745 |   "Not"     ("Bool.not")
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1746 |   "op |"    ("(_ orelse/ _)")
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1747 |   "op &"    ("(_ andalso/ _)")
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1748 |   "If"      ("(if _/ then _/ else _)")
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1749 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1750 | setup {*
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1751 | let | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1752 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1753 | fun eq_codegen thy defs dep thyname b t gr = | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1754 | (case strip_comb t of | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1755 |        (Const ("op =", Type (_, [Type ("fun", _), _])), _) => NONE
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1756 |      | (Const ("op =", _), [t, u]) =>
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1757 | let | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1758 | val (pt, gr') = Codegen.invoke_codegen thy defs dep thyname false t gr; | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1759 | val (pu, gr'') = Codegen.invoke_codegen thy defs dep thyname false u gr'; | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1760 | val (_, gr''') = Codegen.invoke_tycodegen thy defs dep thyname false HOLogic.boolT gr''; | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1761 | in | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1762 | SOME (Codegen.parens | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1763 | (Pretty.block [pt, Codegen.str " =", Pretty.brk 1, pu]), gr''') | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1764 | end | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1765 |      | (t as Const ("op =", _), ts) => SOME (Codegen.invoke_codegen
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1766 | thy defs dep thyname b (Codegen.eta_expand t ts 2) gr) | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1767 | | _ => NONE); | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1768 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1769 | in | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1770 | Codegen.add_codegen "eq_codegen" eq_codegen | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1771 | end | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1772 | *} | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1773 | |
| 31151 | 1774 | subsubsection {* Generic code generator preprocessor setup *}
 | 
| 1775 | ||
| 1776 | setup {*
 | |
| 1777 | Code_Preproc.map_pre (K HOL_basic_ss) | |
| 1778 | #> Code_Preproc.map_post (K HOL_basic_ss) | |
| 1779 | *} | |
| 1780 | ||
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1781 | subsubsection {* Equality *}
 | 
| 24844 
98c006a30218
certificates for code generator case expressions
 haftmann parents: 
24842diff
changeset | 1782 | |
| 29608 | 1783 | class eq = | 
| 26513 | 1784 | fixes eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 28400 | 1785 | assumes eq_equals: "eq x y \<longleftrightarrow> x = y" | 
| 26513 | 1786 | begin | 
| 1787 | ||
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1788 | lemma eq [code unfold, code inline del]: "eq = (op =)" | 
| 28346 
b8390cd56b8f
discontinued special treatment of op = vs. eq_class.eq
 haftmann parents: 
28325diff
changeset | 1789 | by (rule ext eq_equals)+ | 
| 
b8390cd56b8f
discontinued special treatment of op = vs. eq_class.eq
 haftmann parents: 
28325diff
changeset | 1790 | |
| 
b8390cd56b8f
discontinued special treatment of op = vs. eq_class.eq
 haftmann parents: 
28325diff
changeset | 1791 | lemma eq_refl: "eq x x \<longleftrightarrow> True" | 
| 
b8390cd56b8f
discontinued special treatment of op = vs. eq_class.eq
 haftmann parents: 
28325diff
changeset | 1792 | unfolding eq by rule+ | 
| 
b8390cd56b8f
discontinued special treatment of op = vs. eq_class.eq
 haftmann parents: 
28325diff
changeset | 1793 | |
| 31151 | 1794 | lemma equals_eq: "(op =) \<equiv> eq" | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1795 | by (rule eq_reflection) (rule ext, rule ext, rule sym, rule eq_equals) | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1796 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1797 | declare equals_eq [symmetric, code post] | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1798 | |
| 26513 | 1799 | end | 
| 1800 | ||
| 30966 | 1801 | declare equals_eq [code] | 
| 1802 | ||
| 31151 | 1803 | setup {*
 | 
| 1804 | Code_Preproc.map_pre (fn simpset => | |
| 1805 |     simpset addsimprocs [Simplifier.simproc_i @{theory} "eq" [@{term "op ="}]
 | |
| 1806 | (fn thy => fn _ => fn t as Const (_, T) => case strip_type T | |
| 1807 |         of ((T as Type _) :: _, _) => SOME @{thm equals_eq}
 | |
| 1808 | | _ => NONE)]) | |
| 1809 | *} | |
| 1810 | ||
| 30966 | 1811 | |
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1812 | subsubsection {* Generic code generator foundation *}
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1813 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1814 | text {* Datatypes *}
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1815 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1816 | code_datatype True False | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1817 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1818 | code_datatype "TYPE('a\<Colon>{})"
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1819 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1820 | code_datatype Trueprop "prop" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1821 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1822 | text {* Code equations *}
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1823 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1824 | lemma [code]: | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1825 | shows "(True \<Longrightarrow> PROP P) \<equiv> PROP P" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1826 | and "(False \<Longrightarrow> Q) \<equiv> Trueprop True" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1827 | and "(PROP P \<Longrightarrow> True) \<equiv> Trueprop True" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1828 | and "(Q \<Longrightarrow> False) \<equiv> Trueprop (\<not> Q)" by (auto intro!: equal_intr_rule) | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1829 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1830 | lemma [code]: | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1831 | shows "False \<and> x \<longleftrightarrow> False" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1832 | and "True \<and> x \<longleftrightarrow> x" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1833 | and "x \<and> False \<longleftrightarrow> False" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1834 | and "x \<and> True \<longleftrightarrow> x" by simp_all | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1835 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1836 | lemma [code]: | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1837 | shows "False \<or> x \<longleftrightarrow> x" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1838 | and "True \<or> x \<longleftrightarrow> True" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1839 | and "x \<or> False \<longleftrightarrow> x" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1840 | and "x \<or> True \<longleftrightarrow> True" by simp_all | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1841 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1842 | lemma [code]: | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1843 | shows "\<not> True \<longleftrightarrow> False" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1844 | and "\<not> False \<longleftrightarrow> True" by (rule HOL.simp_thms)+ | 
| 28513 | 1845 | |
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1846 | lemmas [code] = Let_def if_True if_False | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1847 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1848 | lemmas [code, code unfold, symmetric, code post] = imp_conv_disj | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1849 | |
| 31132 | 1850 | instantiation itself :: (type) eq | 
| 1851 | begin | |
| 1852 | ||
| 1853 | definition eq_itself :: "'a itself \<Rightarrow> 'a itself \<Rightarrow> bool" where | |
| 1854 | "eq_itself x y \<longleftrightarrow> x = y" | |
| 1855 | ||
| 1856 | instance proof | |
| 1857 | qed (fact eq_itself_def) | |
| 1858 | ||
| 1859 | end | |
| 1860 | ||
| 1861 | lemma eq_itself_code [code]: | |
| 1862 |   "eq_class.eq TYPE('a) TYPE('a) \<longleftrightarrow> True"
 | |
| 1863 | by (simp add: eq) | |
| 1864 | ||
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1865 | text {* Equality *}
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1866 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1867 | declare simp_thms(6) [code nbe] | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1868 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1869 | setup {*
 | 
| 31156 | 1870 |   Code.add_const_alias @{thm equals_eq}
 | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1871 | *} | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1872 | |
| 31151 | 1873 | hide (open) const eq | 
| 1874 | hide const eq | |
| 1875 | ||
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1876 | text {* Cases *}
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1877 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1878 | lemma Let_case_cert: | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1879 | assumes "CASE \<equiv> (\<lambda>x. Let x f)" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1880 | shows "CASE x \<equiv> f x" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1881 | using assms by simp_all | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1882 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1883 | lemma If_case_cert: | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1884 | assumes "CASE \<equiv> (\<lambda>b. If b f g)" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1885 | shows "(CASE True \<equiv> f) &&& (CASE False \<equiv> g)" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1886 | using assms by simp_all | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1887 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1888 | setup {*
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1889 |   Code.add_case @{thm Let_case_cert}
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1890 |   #> Code.add_case @{thm If_case_cert}
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1891 |   #> Code.add_undefined @{const_name undefined}
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1892 | *} | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1893 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1894 | code_abort undefined | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1895 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1896 | subsubsection {* Generic code generator target languages *}
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1897 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1898 | text {* type bool *}
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1899 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1900 | code_type bool | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1901 | (SML "bool") | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1902 | (OCaml "bool") | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1903 | (Haskell "Bool") | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1904 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1905 | code_const True and False and Not and "op &" and "op |" and If | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1906 | (SML "true" and "false" and "not" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1907 | and infixl 1 "andalso" and infixl 0 "orelse" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1908 | and "!(if (_)/ then (_)/ else (_))") | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1909 | (OCaml "true" and "false" and "not" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1910 | and infixl 4 "&&" and infixl 2 "||" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1911 | and "!(if (_)/ then (_)/ else (_))") | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1912 | (Haskell "True" and "False" and "not" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1913 | and infixl 3 "&&" and infixl 2 "||" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1914 | and "!(if (_)/ then (_)/ else (_))") | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1915 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1916 | code_reserved SML | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1917 | bool true false not | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1918 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1919 | code_reserved OCaml | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1920 | bool not | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1921 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1922 | text {* using built-in Haskell equality *}
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1923 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1924 | code_class eq | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1925 | (Haskell "Eq") | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1926 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1927 | code_const "eq_class.eq" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1928 | (Haskell infixl 4 "==") | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1929 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1930 | code_const "op =" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1931 | (Haskell infixl 4 "==") | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1932 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1933 | text {* undefined *}
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1934 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1935 | code_const undefined | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1936 | (SML "!(raise/ Fail/ \"undefined\")") | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1937 | (OCaml "failwith/ \"undefined\"") | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1938 | (Haskell "error/ \"undefined\"") | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1939 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1940 | subsubsection {* Evaluation and normalization by evaluation *}
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1941 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1942 | setup {*
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1943 |   Value.add_evaluator ("SML", Codegen.eval_term o ProofContext.theory_of)
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1944 | *} | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1945 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1946 | ML {*
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1947 | structure Eval_Method = | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1948 | struct | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1949 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1950 | val eval_ref : (unit -> bool) option ref = ref NONE; | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1951 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1952 | end; | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1953 | *} | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1954 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1955 | oracle eval_oracle = {* fn ct =>
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1956 | let | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1957 | val thy = Thm.theory_of_cterm ct; | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1958 | val t = Thm.term_of ct; | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1959 |     val dummy = @{cprop True};
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1960 | in case try HOLogic.dest_Trueprop t | 
| 30947 | 1961 | of SOME t' => if Code_ML.eval NONE | 
| 30970 
3fe2e418a071
generic postprocessing scheme for term evaluations
 haftmann parents: 
30966diff
changeset | 1962 |          ("Eval_Method.eval_ref", Eval_Method.eval_ref) (K I) thy t' [] 
 | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1963 |        then Thm.capply (Thm.capply @{cterm "op \<equiv> \<Colon> prop \<Rightarrow> prop \<Rightarrow> prop"} ct) dummy
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1964 | else dummy | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1965 | | NONE => dummy | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1966 | end | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1967 | *} | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1968 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1969 | ML {*
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1970 | fun gen_eval_method conv ctxt = SIMPLE_METHOD' | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1971 | (CONVERSION (Conv.params_conv (~1) (K (Conv.concl_conv (~1) conv)) ctxt) | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1972 | THEN' rtac TrueI) | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1973 | *} | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1974 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1975 | method_setup eval = {* Scan.succeed (gen_eval_method eval_oracle) *}
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1976 | "solve goal by evaluation" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1977 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1978 | method_setup evaluation = {* Scan.succeed (gen_eval_method Codegen.evaluation_conv) *}
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1979 | "solve goal by evaluation" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1980 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1981 | method_setup normalization = {*
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1982 | Scan.succeed (K (SIMPLE_METHOD' (CONVERSION Nbe.norm_conv THEN' (fn k => TRY (rtac TrueI k))))) | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1983 | *} "solve goal by normalization" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1984 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1985 | subsubsection {* Quickcheck *}
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1986 | |
| 31172 
74d72ba262fb
added collection of simplification rules of recursive functions for quickcheck
 bulwahn parents: 
31156diff
changeset | 1987 | ML {*
 | 
| 
74d72ba262fb
added collection of simplification rules of recursive functions for quickcheck
 bulwahn parents: 
31156diff
changeset | 1988 | structure Quickcheck_RecFun_Simp_Thms = NamedThmsFun | 
| 
74d72ba262fb
added collection of simplification rules of recursive functions for quickcheck
 bulwahn parents: 
31156diff
changeset | 1989 | ( | 
| 
74d72ba262fb
added collection of simplification rules of recursive functions for quickcheck
 bulwahn parents: 
31156diff
changeset | 1990 | val name = "quickcheck_recfun_simp" | 
| 
74d72ba262fb
added collection of simplification rules of recursive functions for quickcheck
 bulwahn parents: 
31156diff
changeset | 1991 | val description = "simplification rules of recursive functions as needed by Quickcheck" | 
| 
74d72ba262fb
added collection of simplification rules of recursive functions for quickcheck
 bulwahn parents: 
31156diff
changeset | 1992 | ) | 
| 
74d72ba262fb
added collection of simplification rules of recursive functions for quickcheck
 bulwahn parents: 
31156diff
changeset | 1993 | *} | 
| 
74d72ba262fb
added collection of simplification rules of recursive functions for quickcheck
 bulwahn parents: 
31156diff
changeset | 1994 | |
| 
74d72ba262fb
added collection of simplification rules of recursive functions for quickcheck
 bulwahn parents: 
31156diff
changeset | 1995 | setup {*
 | 
| 
74d72ba262fb
added collection of simplification rules of recursive functions for quickcheck
 bulwahn parents: 
31156diff
changeset | 1996 | Quickcheck_RecFun_Simp_Thms.setup | 
| 
74d72ba262fb
added collection of simplification rules of recursive functions for quickcheck
 bulwahn parents: 
31156diff
changeset | 1997 | *} | 
| 
74d72ba262fb
added collection of simplification rules of recursive functions for quickcheck
 bulwahn parents: 
31156diff
changeset | 1998 | |
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1999 | setup {*
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2000 |   Quickcheck.add_generator ("SML", Codegen.test_term)
 | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2001 | *} | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2002 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2003 | quickcheck_params [size = 5, iterations = 50] | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2004 | |
| 23247 | 2005 | |
| 30980 | 2006 | subsection {* Nitpick setup *}
 | 
| 30309 
188f0658af9f
Added a "nitpick_maybe" symbol, which is used by Nitpick. This will go away once Nitpick is part of HOL.
 blanchet parents: 
30254diff
changeset | 2007 | |
| 
188f0658af9f
Added a "nitpick_maybe" symbol, which is used by Nitpick. This will go away once Nitpick is part of HOL.
 blanchet parents: 
30254diff
changeset | 2008 | text {* This will be relocated once Nitpick is moved to HOL. *}
 | 
| 
188f0658af9f
Added a "nitpick_maybe" symbol, which is used by Nitpick. This will go away once Nitpick is part of HOL.
 blanchet parents: 
30254diff
changeset | 2009 | |
| 29863 
dadad1831e9d
Added "nitpick_const_simps" and "nitpick_ind_intros" attributes for theorems;
 blanchet parents: 
29608diff
changeset | 2010 | ML {*
 | 
| 30254 
7b8afdfa2f83
Second try at adding "nitpick_const_def" attribute.
 blanchet parents: 
30242diff
changeset | 2011 | structure Nitpick_Const_Def_Thms = NamedThmsFun | 
| 
7b8afdfa2f83
Second try at adding "nitpick_const_def" attribute.
 blanchet parents: 
30242diff
changeset | 2012 | ( | 
| 
7b8afdfa2f83
Second try at adding "nitpick_const_def" attribute.
 blanchet parents: 
30242diff
changeset | 2013 | val name = "nitpick_const_def" | 
| 
7b8afdfa2f83
Second try at adding "nitpick_const_def" attribute.
 blanchet parents: 
30242diff
changeset | 2014 | val description = "alternative definitions of constants as needed by Nitpick" | 
| 
7b8afdfa2f83
Second try at adding "nitpick_const_def" attribute.
 blanchet parents: 
30242diff
changeset | 2015 | ) | 
| 29866 
6e93ae65c678
Added Nitpick_Const_Psimp attribute, dropped the 's' in Nitpick_Const_Simps, and killed the Nitpick_Ind_Intros attribute.
 blanchet parents: 
29863diff
changeset | 2016 | structure Nitpick_Const_Simp_Thms = NamedThmsFun | 
| 29863 
dadad1831e9d
Added "nitpick_const_simps" and "nitpick_ind_intros" attributes for theorems;
 blanchet parents: 
29608diff
changeset | 2017 | ( | 
| 29866 
6e93ae65c678
Added Nitpick_Const_Psimp attribute, dropped the 's' in Nitpick_Const_Simps, and killed the Nitpick_Ind_Intros attribute.
 blanchet parents: 
29863diff
changeset | 2018 | val name = "nitpick_const_simp" | 
| 29869 
a7a8b90cd882
Renamed descriptions of Nitpick (and ATP) attributes, so that they fit well with the rest of the sentence in ProofGeneral.
 blanchet parents: 
29868diff
changeset | 2019 | val description = "equational specification of constants as needed by Nitpick" | 
| 29863 
dadad1831e9d
Added "nitpick_const_simps" and "nitpick_ind_intros" attributes for theorems;
 blanchet parents: 
29608diff
changeset | 2020 | ) | 
| 29866 
6e93ae65c678
Added Nitpick_Const_Psimp attribute, dropped the 's' in Nitpick_Const_Simps, and killed the Nitpick_Ind_Intros attribute.
 blanchet parents: 
29863diff
changeset | 2021 | structure Nitpick_Const_Psimp_Thms = NamedThmsFun | 
| 29863 
dadad1831e9d
Added "nitpick_const_simps" and "nitpick_ind_intros" attributes for theorems;
 blanchet parents: 
29608diff
changeset | 2022 | ( | 
| 29866 
6e93ae65c678
Added Nitpick_Const_Psimp attribute, dropped the 's' in Nitpick_Const_Simps, and killed the Nitpick_Ind_Intros attribute.
 blanchet parents: 
29863diff
changeset | 2023 | val name = "nitpick_const_psimp" | 
| 29869 
a7a8b90cd882
Renamed descriptions of Nitpick (and ATP) attributes, so that they fit well with the rest of the sentence in ProofGeneral.
 blanchet parents: 
29868diff
changeset | 2024 | val description = "partial equational specification of constants as needed by Nitpick" | 
| 29863 
dadad1831e9d
Added "nitpick_const_simps" and "nitpick_ind_intros" attributes for theorems;
 blanchet parents: 
29608diff
changeset | 2025 | ) | 
| 29868 | 2026 | structure Nitpick_Ind_Intro_Thms = NamedThmsFun | 
| 2027 | ( | |
| 2028 | val name = "nitpick_ind_intro" | |
| 29869 
a7a8b90cd882
Renamed descriptions of Nitpick (and ATP) attributes, so that they fit well with the rest of the sentence in ProofGeneral.
 blanchet parents: 
29868diff
changeset | 2029 | val description = "introduction rules for (co)inductive predicates as needed by Nitpick" | 
| 29868 | 2030 | ) | 
| 29863 
dadad1831e9d
Added "nitpick_const_simps" and "nitpick_ind_intros" attributes for theorems;
 blanchet parents: 
29608diff
changeset | 2031 | *} | 
| 30980 | 2032 | |
| 2033 | setup {*
 | |
| 2034 | Nitpick_Const_Def_Thms.setup | |
| 2035 | #> Nitpick_Const_Simp_Thms.setup | |
| 2036 | #> Nitpick_Const_Psimp_Thms.setup | |
| 2037 | #> Nitpick_Ind_Intro_Thms.setup | |
| 2038 | *} | |
| 2039 | ||
| 29863 
dadad1831e9d
Added "nitpick_const_simps" and "nitpick_ind_intros" attributes for theorems;
 blanchet parents: 
29608diff
changeset | 2040 | |
| 22839 | 2041 | subsection {* Legacy tactics and ML bindings *}
 | 
| 21671 | 2042 | |
| 2043 | ML {*
 | |
| 2044 | fun strip_tac i = REPEAT (resolve_tac [impI, allI] i); | |
| 2045 | ||
| 2046 | (* combination of (spec RS spec RS ...(j times) ... spec RS mp) *) | |
| 2047 | local | |
| 2048 |   fun wrong_prem (Const ("All", _) $ (Abs (_, _, t))) = wrong_prem t
 | |
| 2049 | | wrong_prem (Bound _) = true | |
| 2050 | | wrong_prem _ = false; | |
| 2051 | val filter_right = filter (not o wrong_prem o HOLogic.dest_Trueprop o hd o Thm.prems_of); | |
| 2052 | in | |
| 2053 | fun smp i = funpow i (fn m => filter_right ([spec] RL m)) ([mp]); | |
| 2054 | fun smp_tac j = EVERY'[dresolve_tac (smp j), atac]; | |
| 2055 | end; | |
| 22839 | 2056 | |
| 2057 | val all_conj_distrib = thm "all_conj_distrib"; | |
| 2058 | val all_simps = thms "all_simps"; | |
| 2059 | val atomize_not = thm "atomize_not"; | |
| 24830 
a7b3ab44d993
moved Pure/Isar/induct_attrib.ML and Provers/induct_method.ML to Tools/induct.ML;
 wenzelm parents: 
24748diff
changeset | 2060 | val case_split = thm "case_split"; | 
| 22839 | 2061 | val cases_simp = thm "cases_simp"; | 
| 2062 | val choice_eq = thm "choice_eq" | |
| 2063 | val cong = thm "cong" | |
| 2064 | val conj_comms = thms "conj_comms"; | |
| 2065 | val conj_cong = thm "conj_cong"; | |
| 2066 | val de_Morgan_conj = thm "de_Morgan_conj"; | |
| 2067 | val de_Morgan_disj = thm "de_Morgan_disj"; | |
| 2068 | val disj_assoc = thm "disj_assoc"; | |
| 2069 | val disj_comms = thms "disj_comms"; | |
| 2070 | val disj_cong = thm "disj_cong"; | |
| 2071 | val eq_ac = thms "eq_ac"; | |
| 2072 | val eq_cong2 = thm "eq_cong2" | |
| 2073 | val Eq_FalseI = thm "Eq_FalseI"; | |
| 2074 | val Eq_TrueI = thm "Eq_TrueI"; | |
| 2075 | val Ex1_def = thm "Ex1_def" | |
| 2076 | val ex_disj_distrib = thm "ex_disj_distrib"; | |
| 2077 | val ex_simps = thms "ex_simps"; | |
| 2078 | val if_cancel = thm "if_cancel"; | |
| 2079 | val if_eq_cancel = thm "if_eq_cancel"; | |
| 2080 | val if_False = thm "if_False"; | |
| 2081 | val iff_conv_conj_imp = thm "iff_conv_conj_imp"; | |
| 2082 | val iff = thm "iff" | |
| 2083 | val if_splits = thms "if_splits"; | |
| 2084 | val if_True = thm "if_True"; | |
| 2085 | val if_weak_cong = thm "if_weak_cong" | |
| 2086 | val imp_all = thm "imp_all"; | |
| 2087 | val imp_cong = thm "imp_cong"; | |
| 2088 | val imp_conjL = thm "imp_conjL"; | |
| 2089 | val imp_conjR = thm "imp_conjR"; | |
| 2090 | val imp_conv_disj = thm "imp_conv_disj"; | |
| 2091 | val simp_implies_def = thm "simp_implies_def"; | |
| 2092 | val simp_thms = thms "simp_thms"; | |
| 2093 | val split_if = thm "split_if"; | |
| 2094 | val the1_equality = thm "the1_equality" | |
| 2095 | val theI = thm "theI" | |
| 2096 | val theI' = thm "theI'" | |
| 2097 | val True_implies_equals = thm "True_implies_equals"; | |
| 23037 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 2098 | val nnf_conv = Simplifier.rewrite (HOL_basic_ss addsimps simp_thms @ @{thms "nnf_simps"})
 | 
| 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 2099 | |
| 21671 | 2100 | *} | 
| 2101 | ||
| 14357 | 2102 | end |