| author | nipkow | 
| Fri, 29 Nov 1996 15:07:27 +0100 | |
| changeset 2279 | 2f337bf81085 | 
| parent 2031 | 03a843f0f447 | 
| child 2637 | e9b203f854ae | 
| permissions | -rw-r--r-- | 
| 1475 | 1 | (* Title: HOL/wf.ML | 
| 923 | 2 | ID: $Id$ | 
| 1475 | 3 | Author: Tobias Nipkow, with minor changes by Konrad Slind | 
| 4 | Copyright 1992 University of Cambridge/1995 TU Munich | |
| 923 | 5 | |
| 1475 | 6 | For WF.thy. Wellfoundedness, induction, and recursion | 
| 923 | 7 | *) | 
| 8 | ||
| 9 | open WF; | |
| 10 | ||
| 950 | 11 | val H_cong = read_instantiate [("f","H")] (standard(refl RS cong RS cong));
 | 
| 923 | 12 | val H_cong1 = refl RS H_cong; | 
| 13 | ||
| 14 | (*Restriction to domain A. If r is well-founded over A then wf(r)*) | |
| 15 | val [prem1,prem2] = goalw WF.thy [wf_def] | |
| 1642 | 16 | "[| r <= A Times A; \ | 
| 972 
e61b058d58d2
changed syntax of tuples from <..., ...> to (..., ...)
 clasohm parents: 
950diff
changeset | 17 | \ !!x P. [| ! x. (! y. (y,x) : r --> P(y)) --> P(x); x:A |] ==> P(x) |] \ | 
| 923 | 18 | \ ==> wf(r)"; | 
| 19 | by (strip_tac 1); | |
| 20 | by (rtac allE 1); | |
| 21 | by (assume_tac 1); | |
| 1786 
8a31d85d27b8
best_tac, deepen_tac and safe_tac now also use default claset.
 berghofe parents: 
1771diff
changeset | 22 | by (best_tac (!claset addSEs [prem1 RS subsetD RS SigmaE2] addIs [prem2]) 1); | 
| 923 | 23 | qed "wfI"; | 
| 24 | ||
| 25 | val major::prems = goalw WF.thy [wf_def] | |
| 26 | "[| wf(r); \ | |
| 972 
e61b058d58d2
changed syntax of tuples from <..., ...> to (..., ...)
 clasohm parents: 
950diff
changeset | 27 | \ !!x.[| ! y. (y,x): r --> P(y) |] ==> P(x) \ | 
| 923 | 28 | \ |] ==> P(a)"; | 
| 29 | by (rtac (major RS spec RS mp RS spec) 1); | |
| 1760 
6f41a494f3b1
Replaced fast_tac by Fast_tac (which uses default claset)
 berghofe parents: 
1642diff
changeset | 30 | by (fast_tac (!claset addEs prems) 1); | 
| 923 | 31 | qed "wf_induct"; | 
| 32 | ||
| 33 | (*Perform induction on i, then prove the wf(r) subgoal using prems. *) | |
| 34 | fun wf_ind_tac a prems i = | |
| 35 |     EVERY [res_inst_tac [("a",a)] wf_induct i,
 | |
| 1465 | 36 | rename_last_tac a ["1"] (i+1), | 
| 37 | ares_tac prems i]; | |
| 923 | 38 | |
| 972 
e61b058d58d2
changed syntax of tuples from <..., ...> to (..., ...)
 clasohm parents: 
950diff
changeset | 39 | val prems = goal WF.thy "[| wf(r); (a,x):r; (x,a):r |] ==> P"; | 
| 
e61b058d58d2
changed syntax of tuples from <..., ...> to (..., ...)
 clasohm parents: 
950diff
changeset | 40 | by (subgoal_tac "! x. (a,x):r --> (x,a):r --> P" 1); | 
| 1760 
6f41a494f3b1
Replaced fast_tac by Fast_tac (which uses default claset)
 berghofe parents: 
1642diff
changeset | 41 | by (fast_tac (!claset addIs prems) 1); | 
| 923 | 42 | by (wf_ind_tac "a" prems 1); | 
| 1760 
6f41a494f3b1
Replaced fast_tac by Fast_tac (which uses default claset)
 berghofe parents: 
1642diff
changeset | 43 | by (Fast_tac 1); | 
| 923 | 44 | qed "wf_asym"; | 
| 45 | ||
| 972 
e61b058d58d2
changed syntax of tuples from <..., ...> to (..., ...)
 clasohm parents: 
950diff
changeset | 46 | val prems = goal WF.thy "[| wf(r); (a,a): r |] ==> P"; | 
| 923 | 47 | by (rtac wf_asym 1); | 
| 48 | by (REPEAT (resolve_tac prems 1)); | |
| 1618 | 49 | qed "wf_irrefl"; | 
| 923 | 50 | |
| 1475 | 51 | (*transitive closure of a wf relation is wf! *) | 
| 923 | 52 | val [prem] = goal WF.thy "wf(r) ==> wf(r^+)"; | 
| 53 | by (rewtac wf_def); | |
| 54 | by (strip_tac 1); | |
| 55 | (*must retain the universal formula for later use!*) | |
| 56 | by (rtac allE 1 THEN assume_tac 1); | |
| 57 | by (etac mp 1); | |
| 58 | by (res_inst_tac [("a","x")] (prem RS wf_induct) 1);
 | |
| 59 | by (rtac (impI RS allI) 1); | |
| 60 | by (etac tranclE 1); | |
| 1760 
6f41a494f3b1
Replaced fast_tac by Fast_tac (which uses default claset)
 berghofe parents: 
1642diff
changeset | 61 | by (Fast_tac 1); | 
| 
6f41a494f3b1
Replaced fast_tac by Fast_tac (which uses default claset)
 berghofe parents: 
1642diff
changeset | 62 | by (Fast_tac 1); | 
| 923 | 63 | qed "wf_trancl"; | 
| 64 | ||
| 65 | ||
| 66 | (** cut **) | |
| 67 | ||
| 68 | (*This rewrite rule works upon formulae; thus it requires explicit use of | |
| 69 | H_cong to expose the equality*) | |
| 70 | goalw WF.thy [cut_def] | |
| 972 
e61b058d58d2
changed syntax of tuples from <..., ...> to (..., ...)
 clasohm parents: 
950diff
changeset | 71 | "(cut f r x = cut g r x) = (!y. (y,x):r --> f(y)=g(y))"; | 
| 1552 | 72 | by (simp_tac (HOL_ss addsimps [expand_fun_eq] | 
| 1475 | 73 | setloop (split_tac [expand_if])) 1); | 
| 74 | qed "cuts_eq"; | |
| 923 | 75 | |
| 972 
e61b058d58d2
changed syntax of tuples from <..., ...> to (..., ...)
 clasohm parents: 
950diff
changeset | 76 | goalw WF.thy [cut_def] "!!x. (x,a):r ==> (cut f r a)(x) = f(x)"; | 
| 1552 | 77 | by (asm_simp_tac HOL_ss 1); | 
| 923 | 78 | qed "cut_apply"; | 
| 79 | ||
| 80 | (*** is_recfun ***) | |
| 81 | ||
| 82 | goalw WF.thy [is_recfun_def,cut_def] | |
| 1475 | 83 | "!!f. [| is_recfun r H a f; ~(b,a):r |] ==> f(b) = (@z.True)"; | 
| 923 | 84 | by (etac ssubst 1); | 
| 1552 | 85 | by (asm_simp_tac HOL_ss 1); | 
| 923 | 86 | qed "is_recfun_undef"; | 
| 87 | ||
| 88 | (*** NOTE! some simplifications need a different finish_tac!! ***) | |
| 89 | fun indhyp_tac hyps = | |
| 90 | (cut_facts_tac hyps THEN' | |
| 91 | DEPTH_SOLVE_1 o (ares_tac [TrueI] ORELSE' | |
| 1465 | 92 | eresolve_tac [transD, mp, allE])); | 
| 1771 | 93 | val wf_super_ss = HOL_ss addsolver indhyp_tac; | 
| 923 | 94 | |
| 95 | val prems = goalw WF.thy [is_recfun_def,cut_def] | |
| 1475 | 96 | "[| wf(r); trans(r); is_recfun r H a f; is_recfun r H b g |] ==> \ | 
| 972 
e61b058d58d2
changed syntax of tuples from <..., ...> to (..., ...)
 clasohm parents: 
950diff
changeset | 97 | \ (x,a):r --> (x,b):r --> f(x)=g(x)"; | 
| 923 | 98 | by (cut_facts_tac prems 1); | 
| 99 | by (etac wf_induct 1); | |
| 100 | by (REPEAT (rtac impI 1 ORELSE etac ssubst 1)); | |
| 101 | by (asm_simp_tac (wf_super_ss addcongs [if_cong]) 1); | |
| 1485 
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
 nipkow parents: 
1475diff
changeset | 102 | qed_spec_mp "is_recfun_equal"; | 
| 923 | 103 | |
| 104 | ||
| 105 | val prems as [wfr,transr,recfa,recgb,_] = goalw WF.thy [cut_def] | |
| 106 | "[| wf(r); trans(r); \ | |
| 1475 | 107 | \ is_recfun r H a f; is_recfun r H b g; (b,a):r |] ==> \ | 
| 923 | 108 | \ cut f r b = g"; | 
| 109 | val gundef = recgb RS is_recfun_undef | |
| 110 | and fisg = recgb RS (recfa RS (transr RS (wfr RS is_recfun_equal))); | |
| 111 | by (cut_facts_tac prems 1); | |
| 112 | by (rtac ext 1); | |
| 113 | by (asm_simp_tac (wf_super_ss addsimps [gundef,fisg] | |
| 114 | setloop (split_tac [expand_if])) 1); | |
| 115 | qed "is_recfun_cut"; | |
| 116 | ||
| 117 | (*** Main Existence Lemma -- Basic Properties of the_recfun ***) | |
| 118 | ||
| 119 | val prems = goalw WF.thy [the_recfun_def] | |
| 1475 | 120 | "is_recfun r H a f ==> is_recfun r H a (the_recfun r H a)"; | 
| 121 | by (res_inst_tac [("P", "is_recfun r H a")] selectI 1);
 | |
| 923 | 122 | by (resolve_tac prems 1); | 
| 123 | qed "is_the_recfun"; | |
| 124 | ||
| 125 | val prems = goal WF.thy | |
| 1475 | 126 | "[| wf(r); trans(r) |] ==> is_recfun r H a (the_recfun r H a)"; | 
| 127 | by (cut_facts_tac prems 1); | |
| 128 | by (wf_ind_tac "a" prems 1); | |
| 129 |   by (res_inst_tac [("f","cut (%y. H (the_recfun r H y) y) r a1")]
 | |
| 130 | is_the_recfun 1); | |
| 1552 | 131 | by (rewtac is_recfun_def); | 
| 2031 | 132 | by (stac cuts_eq 1); | 
| 1475 | 133 | by (rtac allI 1); | 
| 134 | by (rtac impI 1); | |
| 135 |   by (res_inst_tac [("f1","H"),("x","y")](arg_cong RS fun_cong) 1);
 | |
| 136 | by (subgoal_tac | |
| 137 | "the_recfun r H y = cut(%x. H(cut(the_recfun r H y) r x) x) r y" 1); | |
| 138 | by (etac allE 2); | |
| 139 | by (dtac impE 2); | |
| 140 | by (atac 2); | |
| 141 | by (atac 3); | |
| 142 | by (atac 2); | |
| 143 | by (etac ssubst 1); | |
| 144 | by (simp_tac (HOL_ss addsimps [cuts_eq]) 1); | |
| 145 | by (rtac allI 1); | |
| 146 | by (rtac impI 1); | |
| 147 | by (asm_simp_tac (wf_super_ss addsimps[cut_apply,is_recfun_cut,cuts_eq]) 1); | |
| 148 |   by (res_inst_tac [("f1","H"),("x","ya")](arg_cong RS fun_cong) 1);
 | |
| 149 | by (fold_tac [is_recfun_def]); | |
| 150 | by (asm_simp_tac (wf_super_ss addsimps[cut_apply,is_recfun_cut,cuts_eq]) 1); | |
| 923 | 151 | qed "unfold_the_recfun"; | 
| 152 | ||
| 1475 | 153 | val unwind1_the_recfun = rewrite_rule[is_recfun_def] unfold_the_recfun; | 
| 923 | 154 | |
| 1475 | 155 | (*--------------Old proof----------------------------------------------------- | 
| 923 | 156 | val prems = goal WF.thy | 
| 1475 | 157 | "[| wf(r); trans(r) |] ==> is_recfun r H a (the_recfun r H a)"; | 
| 158 | by (cut_facts_tac prems 1); | |
| 159 | by (wf_ind_tac "a" prems 1); | |
| 160 | by (res_inst_tac [("f", "cut (%y. wftrec r H y) r a1")] is_the_recfun 1); 
 | |
| 161 | by (rewrite_goals_tac [is_recfun_def, wftrec_def]); | |
| 2031 | 162 | by (stac cuts_eq 1); | 
| 1475 | 163 | (*Applying the substitution: must keep the quantified assumption!!*) | 
| 164 | by (EVERY1 [strip_tac, rtac H_cong1, rtac allE, atac, | |
| 165 | etac (mp RS ssubst), atac]); | |
| 166 | by (fold_tac [is_recfun_def]); | |
| 167 | by (asm_simp_tac (wf_super_ss addsimps[cut_apply,is_recfun_cut,cuts_eq]) 1); | |
| 168 | qed "unfold_the_recfun"; | |
| 169 | ---------------------------------------------------------------------------*) | |
| 923 | 170 | |
| 171 | (** Removal of the premise trans(r) **) | |
| 1475 | 172 | val th = rewrite_rule[is_recfun_def] | 
| 173 | (trans_trancl RSN (2,(wf_trancl RS unfold_the_recfun))); | |
| 923 | 174 | |
| 175 | goalw WF.thy [wfrec_def] | |
| 1475 | 176 | "!!r. wf(r) ==> wfrec r H a = H (cut (wfrec r H) r a) a"; | 
| 177 | by (rtac H_cong 1); | |
| 178 | by (rtac refl 2); | |
| 179 | by (simp_tac (HOL_ss addsimps [cuts_eq]) 1); | |
| 180 | by (rtac allI 1); | |
| 181 | by (rtac impI 1); | |
| 182 | by (simp_tac(HOL_ss addsimps [wfrec_def]) 1); | |
| 183 | by (res_inst_tac [("a1","a")] (th RS ssubst) 1);
 | |
| 184 | by (atac 1); | |
| 185 | by (forward_tac[wf_trancl] 1); | |
| 186 | by (forward_tac[r_into_trancl] 1); | |
| 187 | by (asm_simp_tac (HOL_ss addsimps [cut_apply]) 1); | |
| 188 | by (rtac H_cong 1); (*expose the equality of cuts*) | |
| 189 | by (rtac refl 2); | |
| 190 | by (simp_tac (HOL_ss addsimps [cuts_eq, cut_apply, r_into_trancl]) 1); | |
| 191 | by (strip_tac 1); | |
| 1485 
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
 nipkow parents: 
1475diff
changeset | 192 | by (res_inst_tac [("r","r^+")] is_recfun_equal 1);
 | 
| 1475 | 193 | by (atac 1); | 
| 194 | by (rtac trans_trancl 1); | |
| 195 | by (rtac unfold_the_recfun 1); | |
| 196 | by (atac 1); | |
| 197 | by (rtac trans_trancl 1); | |
| 198 | by (rtac unfold_the_recfun 1); | |
| 199 | by (atac 1); | |
| 200 | by (rtac trans_trancl 1); | |
| 201 | by (rtac transD 1); | |
| 202 | by (rtac trans_trancl 1); | |
| 203 | by (forw_inst_tac [("a","ya")] r_into_trancl 1);
 | |
| 204 | by (atac 1); | |
| 205 | by (atac 1); | |
| 206 | by (forw_inst_tac [("a","ya")] r_into_trancl 1);
 | |
| 207 | by (atac 1); | |
| 208 | qed "wfrec"; | |
| 209 | ||
| 210 | (*--------------Old proof----------------------------------------------------- | |
| 211 | goalw WF.thy [wfrec_def] | |
| 212 | "!!r. wf(r) ==> wfrec r H a = H (cut (wfrec r H) r a) a"; | |
| 923 | 213 | by (etac (wf_trancl RS wftrec RS ssubst) 1); | 
| 214 | by (rtac trans_trancl 1); | |
| 215 | by (rtac (refl RS H_cong) 1); (*expose the equality of cuts*) | |
| 1475 | 216 | by (simp_tac (HOL_ss addsimps [cuts_eq, cut_apply, r_into_trancl]) 1); | 
| 923 | 217 | qed "wfrec"; | 
| 1475 | 218 | ---------------------------------------------------------------------------*) | 
| 923 | 219 | |
| 1475 | 220 | (*--------------------------------------------------------------------------- | 
| 221 | * This form avoids giant explosions in proofs. NOTE USE OF == | |
| 222 | *---------------------------------------------------------------------------*) | |
| 923 | 223 | val rew::prems = goal WF.thy | 
| 1475 | 224 | "[| f==wfrec r H; wf(r) |] ==> f(a) = H (cut f r a) a"; | 
| 923 | 225 | by (rewtac rew); | 
| 226 | by (REPEAT (resolve_tac (prems@[wfrec]) 1)); | |
| 227 | qed "def_wfrec"; | |
| 1475 | 228 |