| author | wenzelm | 
| Sun, 08 Jun 2008 14:29:09 +0200 | |
| changeset 27090 | 2f45c1b1b05d | 
| parent 26105 | ae06618225ec | 
| child 27656 | d4f6e64ee7cc | 
| permissions | -rw-r--r-- | 
| 8924 | 1 | (* Title: HOL/SetInterval.thy | 
| 2 | ID: $Id$ | |
| 13735 | 3 | Author: Tobias Nipkow and Clemens Ballarin | 
| 14485 | 4 | Additions by Jeremy Avigad in March 2004 | 
| 8957 | 5 | Copyright 2000 TU Muenchen | 
| 8924 | 6 | |
| 13735 | 7 | lessThan, greaterThan, atLeast, atMost and two-sided intervals | 
| 8924 | 8 | *) | 
| 9 | ||
| 14577 | 10 | header {* Set intervals *}
 | 
| 11 | ||
| 15131 | 12 | theory SetInterval | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25560diff
changeset | 13 | imports Int | 
| 15131 | 14 | begin | 
| 8924 | 15 | |
| 24691 | 16 | context ord | 
| 17 | begin | |
| 18 | definition | |
| 25062 | 19 |   lessThan    :: "'a => 'a set"	("(1{..<_})") where
 | 
| 20 |   "{..<u} == {x. x < u}"
 | |
| 24691 | 21 | |
| 22 | definition | |
| 25062 | 23 |   atMost      :: "'a => 'a set"	("(1{.._})") where
 | 
| 24 |   "{..u} == {x. x \<le> u}"
 | |
| 24691 | 25 | |
| 26 | definition | |
| 25062 | 27 |   greaterThan :: "'a => 'a set"	("(1{_<..})") where
 | 
| 28 |   "{l<..} == {x. l<x}"
 | |
| 24691 | 29 | |
| 30 | definition | |
| 25062 | 31 |   atLeast     :: "'a => 'a set"	("(1{_..})") where
 | 
| 32 |   "{l..} == {x. l\<le>x}"
 | |
| 24691 | 33 | |
| 34 | definition | |
| 25062 | 35 |   greaterThanLessThan :: "'a => 'a => 'a set"  ("(1{_<..<_})") where
 | 
| 36 |   "{l<..<u} == {l<..} Int {..<u}"
 | |
| 24691 | 37 | |
| 38 | definition | |
| 25062 | 39 |   atLeastLessThan :: "'a => 'a => 'a set"      ("(1{_..<_})") where
 | 
| 40 |   "{l..<u} == {l..} Int {..<u}"
 | |
| 24691 | 41 | |
| 42 | definition | |
| 25062 | 43 |   greaterThanAtMost :: "'a => 'a => 'a set"    ("(1{_<.._})") where
 | 
| 44 |   "{l<..u} == {l<..} Int {..u}"
 | |
| 24691 | 45 | |
| 46 | definition | |
| 25062 | 47 |   atLeastAtMost :: "'a => 'a => 'a set"        ("(1{_.._})") where
 | 
| 48 |   "{l..u} == {l..} Int {..u}"
 | |
| 24691 | 49 | |
| 50 | end | |
| 51 | (* | |
| 8924 | 52 | constdefs | 
| 15045 | 53 |   lessThan    :: "('a::ord) => 'a set"	("(1{..<_})")
 | 
| 54 |   "{..<u} == {x. x<u}"
 | |
| 8924 | 55 | |
| 11609 
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
 wenzelm parents: 
10214diff
changeset | 56 |   atMost      :: "('a::ord) => 'a set"	("(1{.._})")
 | 
| 
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
 wenzelm parents: 
10214diff
changeset | 57 |   "{..u} == {x. x<=u}"
 | 
| 8924 | 58 | |
| 15045 | 59 |   greaterThan :: "('a::ord) => 'a set"	("(1{_<..})")
 | 
| 60 |   "{l<..} == {x. l<x}"
 | |
| 8924 | 61 | |
| 11609 
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
 wenzelm parents: 
10214diff
changeset | 62 |   atLeast     :: "('a::ord) => 'a set"	("(1{_..})")
 | 
| 
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
 wenzelm parents: 
10214diff
changeset | 63 |   "{l..} == {x. l<=x}"
 | 
| 8924 | 64 | |
| 15045 | 65 |   greaterThanLessThan :: "['a::ord, 'a] => 'a set"  ("(1{_<..<_})")
 | 
| 66 |   "{l<..<u} == {l<..} Int {..<u}"
 | |
| 13735 | 67 | |
| 15045 | 68 |   atLeastLessThan :: "['a::ord, 'a] => 'a set"      ("(1{_..<_})")
 | 
| 69 |   "{l..<u} == {l..} Int {..<u}"
 | |
| 13735 | 70 | |
| 15045 | 71 |   greaterThanAtMost :: "['a::ord, 'a] => 'a set"    ("(1{_<.._})")
 | 
| 72 |   "{l<..u} == {l<..} Int {..u}"
 | |
| 13735 | 73 | |
| 74 |   atLeastAtMost :: "['a::ord, 'a] => 'a set"        ("(1{_.._})")
 | |
| 75 |   "{l..u} == {l..} Int {..u}"
 | |
| 24691 | 76 | *) | 
| 13735 | 77 | |
| 15048 | 78 | text{* A note of warning when using @{term"{..<n}"} on type @{typ
 | 
| 79 | nat}: it is equivalent to @{term"{0::nat..<n}"} but some lemmas involving
 | |
| 15052 | 80 | @{term"{m..<n}"} may not exist in @{term"{..<n}"}-form as well. *}
 | 
| 15048 | 81 | |
| 14418 | 82 | syntax | 
| 83 |   "@UNION_le"   :: "nat => nat => 'b set => 'b set"       ("(3UN _<=_./ _)" 10)
 | |
| 84 |   "@UNION_less" :: "nat => nat => 'b set => 'b set"       ("(3UN _<_./ _)" 10)
 | |
| 85 |   "@INTER_le"   :: "nat => nat => 'b set => 'b set"       ("(3INT _<=_./ _)" 10)
 | |
| 86 |   "@INTER_less" :: "nat => nat => 'b set => 'b set"       ("(3INT _<_./ _)" 10)
 | |
| 87 | ||
| 88 | syntax (input) | |
| 89 |   "@UNION_le"   :: "nat => nat => 'b set => 'b set"       ("(3\<Union> _\<le>_./ _)" 10)
 | |
| 90 |   "@UNION_less" :: "nat => nat => 'b set => 'b set"       ("(3\<Union> _<_./ _)" 10)
 | |
| 91 |   "@INTER_le"   :: "nat => nat => 'b set => 'b set"       ("(3\<Inter> _\<le>_./ _)" 10)
 | |
| 92 |   "@INTER_less" :: "nat => nat => 'b set => 'b set"       ("(3\<Inter> _<_./ _)" 10)
 | |
| 93 | ||
| 94 | syntax (xsymbols) | |
| 14846 | 95 |   "@UNION_le"   :: "nat \<Rightarrow> nat => 'b set => 'b set"       ("(3\<Union>(00\<^bsub>_ \<le> _\<^esub>)/ _)" 10)
 | 
| 96 |   "@UNION_less" :: "nat \<Rightarrow> nat => 'b set => 'b set"       ("(3\<Union>(00\<^bsub>_ < _\<^esub>)/ _)" 10)
 | |
| 97 |   "@INTER_le"   :: "nat \<Rightarrow> nat => 'b set => 'b set"       ("(3\<Inter>(00\<^bsub>_ \<le> _\<^esub>)/ _)" 10)
 | |
| 98 |   "@INTER_less" :: "nat \<Rightarrow> nat => 'b set => 'b set"       ("(3\<Inter>(00\<^bsub>_ < _\<^esub>)/ _)" 10)
 | |
| 14418 | 99 | |
| 100 | translations | |
| 101 |   "UN i<=n. A"  == "UN i:{..n}. A"
 | |
| 15045 | 102 |   "UN i<n. A"   == "UN i:{..<n}. A"
 | 
| 14418 | 103 |   "INT i<=n. A" == "INT i:{..n}. A"
 | 
| 15045 | 104 |   "INT i<n. A"  == "INT i:{..<n}. A"
 | 
| 14418 | 105 | |
| 106 | ||
| 14485 | 107 | subsection {* Various equivalences *}
 | 
| 13735 | 108 | |
| 25062 | 109 | lemma (in ord) lessThan_iff [iff]: "(i: lessThan k) = (i<k)" | 
| 13850 | 110 | by (simp add: lessThan_def) | 
| 13735 | 111 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 112 | lemma Compl_lessThan [simp]: | 
| 13735 | 113 | "!!k:: 'a::linorder. -lessThan k = atLeast k" | 
| 13850 | 114 | apply (auto simp add: lessThan_def atLeast_def) | 
| 13735 | 115 | done | 
| 116 | ||
| 13850 | 117 | lemma single_Diff_lessThan [simp]: "!!k:: 'a::order. {k} - lessThan k = {k}"
 | 
| 118 | by auto | |
| 13735 | 119 | |
| 25062 | 120 | lemma (in ord) greaterThan_iff [iff]: "(i: greaterThan k) = (k<i)" | 
| 13850 | 121 | by (simp add: greaterThan_def) | 
| 13735 | 122 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 123 | lemma Compl_greaterThan [simp]: | 
| 13735 | 124 | "!!k:: 'a::linorder. -greaterThan k = atMost k" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25919diff
changeset | 125 | by (auto simp add: greaterThan_def atMost_def) | 
| 13735 | 126 | |
| 13850 | 127 | lemma Compl_atMost [simp]: "!!k:: 'a::linorder. -atMost k = greaterThan k" | 
| 128 | apply (subst Compl_greaterThan [symmetric]) | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 129 | apply (rule double_complement) | 
| 13735 | 130 | done | 
| 131 | ||
| 25062 | 132 | lemma (in ord) atLeast_iff [iff]: "(i: atLeast k) = (k<=i)" | 
| 13850 | 133 | by (simp add: atLeast_def) | 
| 13735 | 134 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 135 | lemma Compl_atLeast [simp]: | 
| 13735 | 136 | "!!k:: 'a::linorder. -atLeast k = lessThan k" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25919diff
changeset | 137 | by (auto simp add: lessThan_def atLeast_def) | 
| 13735 | 138 | |
| 25062 | 139 | lemma (in ord) atMost_iff [iff]: "(i: atMost k) = (i<=k)" | 
| 13850 | 140 | by (simp add: atMost_def) | 
| 13735 | 141 | |
| 14485 | 142 | lemma atMost_Int_atLeast: "!!n:: 'a::order. atMost n Int atLeast n = {n}"
 | 
| 143 | by (blast intro: order_antisym) | |
| 13850 | 144 | |
| 145 | ||
| 14485 | 146 | subsection {* Logical Equivalences for Set Inclusion and Equality *}
 | 
| 13850 | 147 | |
| 148 | lemma atLeast_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 149 | "(atLeast x \<subseteq> atLeast y) = (y \<le> (x::'a::order))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 150 | by (blast intro: order_trans) | 
| 13850 | 151 | |
| 152 | lemma atLeast_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 153 | "(atLeast x = atLeast y) = (x = (y::'a::linorder))" | 
| 13850 | 154 | by (blast intro: order_antisym order_trans) | 
| 155 | ||
| 156 | lemma greaterThan_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 157 | "(greaterThan x \<subseteq> greaterThan y) = (y \<le> (x::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 158 | apply (auto simp add: greaterThan_def) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 159 | apply (subst linorder_not_less [symmetric], blast) | 
| 13850 | 160 | done | 
| 161 | ||
| 162 | lemma greaterThan_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 163 | "(greaterThan x = greaterThan y) = (x = (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 164 | apply (rule iffI) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 165 | apply (erule equalityE) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 166 | apply (simp_all add: greaterThan_subset_iff) | 
| 13850 | 167 | done | 
| 168 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 169 | lemma atMost_subset_iff [iff]: "(atMost x \<subseteq> atMost y) = (x \<le> (y::'a::order))" | 
| 13850 | 170 | by (blast intro: order_trans) | 
| 171 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 172 | lemma atMost_eq_iff [iff]: "(atMost x = atMost y) = (x = (y::'a::linorder))" | 
| 13850 | 173 | by (blast intro: order_antisym order_trans) | 
| 174 | ||
| 175 | lemma lessThan_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 176 | "(lessThan x \<subseteq> lessThan y) = (x \<le> (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 177 | apply (auto simp add: lessThan_def) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 178 | apply (subst linorder_not_less [symmetric], blast) | 
| 13850 | 179 | done | 
| 180 | ||
| 181 | lemma lessThan_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 182 | "(lessThan x = lessThan y) = (x = (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 183 | apply (rule iffI) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 184 | apply (erule equalityE) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 185 | apply (simp_all add: lessThan_subset_iff) | 
| 13735 | 186 | done | 
| 187 | ||
| 188 | ||
| 13850 | 189 | subsection {*Two-sided intervals*}
 | 
| 13735 | 190 | |
| 24691 | 191 | context ord | 
| 192 | begin | |
| 193 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23496diff
changeset | 194 | lemma greaterThanLessThan_iff [simp,noatp]: | 
| 25062 | 195 |   "(i : {l<..<u}) = (l < i & i < u)"
 | 
| 13735 | 196 | by (simp add: greaterThanLessThan_def) | 
| 197 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23496diff
changeset | 198 | lemma atLeastLessThan_iff [simp,noatp]: | 
| 25062 | 199 |   "(i : {l..<u}) = (l <= i & i < u)"
 | 
| 13735 | 200 | by (simp add: atLeastLessThan_def) | 
| 201 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23496diff
changeset | 202 | lemma greaterThanAtMost_iff [simp,noatp]: | 
| 25062 | 203 |   "(i : {l<..u}) = (l < i & i <= u)"
 | 
| 13735 | 204 | by (simp add: greaterThanAtMost_def) | 
| 205 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23496diff
changeset | 206 | lemma atLeastAtMost_iff [simp,noatp]: | 
| 25062 | 207 |   "(i : {l..u}) = (l <= i & i <= u)"
 | 
| 13735 | 208 | by (simp add: atLeastAtMost_def) | 
| 209 | ||
| 14577 | 210 | text {* The above four lemmas could be declared as iffs.
 | 
| 211 |   If we do so, a call to blast in Hyperreal/Star.ML, lemma @{text STAR_Int}
 | |
| 212 | seems to take forever (more than one hour). *} | |
| 24691 | 213 | end | 
| 13735 | 214 | |
| 15554 | 215 | subsubsection{* Emptyness and singletons *}
 | 
| 216 | ||
| 24691 | 217 | context order | 
| 218 | begin | |
| 15554 | 219 | |
| 25062 | 220 | lemma atLeastAtMost_empty [simp]: "n < m ==> {m..n} = {}";
 | 
| 24691 | 221 | by (auto simp add: atLeastAtMost_def atMost_def atLeast_def) | 
| 222 | ||
| 25062 | 223 | lemma atLeastLessThan_empty[simp]: "n \<le> m ==> {m..<n} = {}"
 | 
| 15554 | 224 | by (auto simp add: atLeastLessThan_def) | 
| 225 | ||
| 25062 | 226 | lemma greaterThanAtMost_empty[simp]:"l \<le> k ==> {k<..l} = {}"
 | 
| 17719 | 227 | by(auto simp:greaterThanAtMost_def greaterThan_def atMost_def) | 
| 228 | ||
| 25062 | 229 | lemma greaterThanLessThan_empty[simp]:"l \<le> k ==> {k<..l} = {}"
 | 
| 17719 | 230 | by(auto simp:greaterThanLessThan_def greaterThan_def lessThan_def) | 
| 231 | ||
| 25062 | 232 | lemma atLeastAtMost_singleton [simp]: "{a..a} = {a}"
 | 
| 24691 | 233 | by (auto simp add: atLeastAtMost_def atMost_def atLeast_def) | 
| 234 | ||
| 235 | end | |
| 14485 | 236 | |
| 237 | subsection {* Intervals of natural numbers *}
 | |
| 238 | ||
| 15047 | 239 | subsubsection {* The Constant @{term lessThan} *}
 | 
| 240 | ||
| 14485 | 241 | lemma lessThan_0 [simp]: "lessThan (0::nat) = {}"
 | 
| 242 | by (simp add: lessThan_def) | |
| 243 | ||
| 244 | lemma lessThan_Suc: "lessThan (Suc k) = insert k (lessThan k)" | |
| 245 | by (simp add: lessThan_def less_Suc_eq, blast) | |
| 246 | ||
| 247 | lemma lessThan_Suc_atMost: "lessThan (Suc k) = atMost k" | |
| 248 | by (simp add: lessThan_def atMost_def less_Suc_eq_le) | |
| 249 | ||
| 250 | lemma UN_lessThan_UNIV: "(UN m::nat. lessThan m) = UNIV" | |
| 251 | by blast | |
| 252 | ||
| 15047 | 253 | subsubsection {* The Constant @{term greaterThan} *}
 | 
| 254 | ||
| 14485 | 255 | lemma greaterThan_0 [simp]: "greaterThan 0 = range Suc" | 
| 256 | apply (simp add: greaterThan_def) | |
| 257 | apply (blast dest: gr0_conv_Suc [THEN iffD1]) | |
| 258 | done | |
| 259 | ||
| 260 | lemma greaterThan_Suc: "greaterThan (Suc k) = greaterThan k - {Suc k}"
 | |
| 261 | apply (simp add: greaterThan_def) | |
| 262 | apply (auto elim: linorder_neqE) | |
| 263 | done | |
| 264 | ||
| 265 | lemma INT_greaterThan_UNIV: "(INT m::nat. greaterThan m) = {}"
 | |
| 266 | by blast | |
| 267 | ||
| 15047 | 268 | subsubsection {* The Constant @{term atLeast} *}
 | 
| 269 | ||
| 14485 | 270 | lemma atLeast_0 [simp]: "atLeast (0::nat) = UNIV" | 
| 271 | by (unfold atLeast_def UNIV_def, simp) | |
| 272 | ||
| 273 | lemma atLeast_Suc: "atLeast (Suc k) = atLeast k - {k}"
 | |
| 274 | apply (simp add: atLeast_def) | |
| 275 | apply (simp add: Suc_le_eq) | |
| 276 | apply (simp add: order_le_less, blast) | |
| 277 | done | |
| 278 | ||
| 279 | lemma atLeast_Suc_greaterThan: "atLeast (Suc k) = greaterThan k" | |
| 280 | by (auto simp add: greaterThan_def atLeast_def less_Suc_eq_le) | |
| 281 | ||
| 282 | lemma UN_atLeast_UNIV: "(UN m::nat. atLeast m) = UNIV" | |
| 283 | by blast | |
| 284 | ||
| 15047 | 285 | subsubsection {* The Constant @{term atMost} *}
 | 
| 286 | ||
| 14485 | 287 | lemma atMost_0 [simp]: "atMost (0::nat) = {0}"
 | 
| 288 | by (simp add: atMost_def) | |
| 289 | ||
| 290 | lemma atMost_Suc: "atMost (Suc k) = insert (Suc k) (atMost k)" | |
| 291 | apply (simp add: atMost_def) | |
| 292 | apply (simp add: less_Suc_eq order_le_less, blast) | |
| 293 | done | |
| 294 | ||
| 295 | lemma UN_atMost_UNIV: "(UN m::nat. atMost m) = UNIV" | |
| 296 | by blast | |
| 297 | ||
| 15047 | 298 | subsubsection {* The Constant @{term atLeastLessThan} *}
 | 
| 299 | ||
| 24449 | 300 | text{*The orientation of the following rule is tricky. The lhs is
 | 
| 301 | defined in terms of the rhs. Hence the chosen orientation makes sense | |
| 302 | in this theory --- the reverse orientation complicates proofs (eg | |
| 303 | nontermination). But outside, when the definition of the lhs is rarely | |
| 304 | used, the opposite orientation seems preferable because it reduces a | |
| 305 | specific concept to a more general one. *} | |
| 15047 | 306 | lemma atLeast0LessThan: "{0::nat..<n} = {..<n}"
 | 
| 15042 | 307 | by(simp add:lessThan_def atLeastLessThan_def) | 
| 24449 | 308 | |
| 309 | declare atLeast0LessThan[symmetric, code unfold] | |
| 310 | ||
| 311 | lemma atLeastLessThan0: "{m..<0::nat} = {}"
 | |
| 15047 | 312 | by (simp add: atLeastLessThan_def) | 
| 24449 | 313 | |
| 15047 | 314 | subsubsection {* Intervals of nats with @{term Suc} *}
 | 
| 315 | ||
| 316 | text{*Not a simprule because the RHS is too messy.*}
 | |
| 317 | lemma atLeastLessThanSuc: | |
| 318 |     "{m..<Suc n} = (if m \<le> n then insert n {m..<n} else {})"
 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 319 | by (auto simp add: atLeastLessThan_def) | 
| 15047 | 320 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 321 | lemma atLeastLessThan_singleton [simp]: "{m..<Suc m} = {m}"
 | 
| 15047 | 322 | by (auto simp add: atLeastLessThan_def) | 
| 16041 | 323 | (* | 
| 15047 | 324 | lemma atLeast_sum_LessThan [simp]: "{m + k..<k::nat} = {}"
 | 
| 325 | by (induct k, simp_all add: atLeastLessThanSuc) | |
| 326 | ||
| 327 | lemma atLeastSucLessThan [simp]: "{Suc n..<n} = {}"
 | |
| 328 | by (auto simp add: atLeastLessThan_def) | |
| 16041 | 329 | *) | 
| 15045 | 330 | lemma atLeastLessThanSuc_atLeastAtMost: "{l..<Suc u} = {l..u}"
 | 
| 14485 | 331 | by (simp add: lessThan_Suc_atMost atLeastAtMost_def atLeastLessThan_def) | 
| 332 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 333 | lemma atLeastSucAtMost_greaterThanAtMost: "{Suc l..u} = {l<..u}"
 | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 334 | by (simp add: atLeast_Suc_greaterThan atLeastAtMost_def | 
| 14485 | 335 | greaterThanAtMost_def) | 
| 336 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 337 | lemma atLeastSucLessThan_greaterThanLessThan: "{Suc l..<u} = {l<..<u}"
 | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 338 | by (simp add: atLeast_Suc_greaterThan atLeastLessThan_def | 
| 14485 | 339 | greaterThanLessThan_def) | 
| 340 | ||
| 15554 | 341 | lemma atLeastAtMostSuc_conv: "m \<le> Suc n \<Longrightarrow> {m..Suc n} = insert (Suc n) {m..n}"
 | 
| 342 | by (auto simp add: atLeastAtMost_def) | |
| 343 | ||
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 344 | subsubsection {* Image *}
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 345 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 346 | lemma image_add_atLeastAtMost: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 347 |   "(%n::nat. n+k) ` {i..j} = {i+k..j+k}" (is "?A = ?B")
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 348 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 349 | show "?A \<subseteq> ?B" by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 350 | next | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 351 | show "?B \<subseteq> ?A" | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 352 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 353 | fix n assume a: "n : ?B" | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19538diff
changeset | 354 |     hence "n - k : {i..j}" by auto
 | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 355 | moreover have "n = (n - k) + k" using a by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 356 | ultimately show "n : ?A" by blast | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 357 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 358 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 359 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 360 | lemma image_add_atLeastLessThan: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 361 |   "(%n::nat. n+k) ` {i..<j} = {i+k..<j+k}" (is "?A = ?B")
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 362 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 363 | show "?A \<subseteq> ?B" by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 364 | next | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 365 | show "?B \<subseteq> ?A" | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 366 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 367 | fix n assume a: "n : ?B" | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19538diff
changeset | 368 |     hence "n - k : {i..<j}" by auto
 | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 369 | moreover have "n = (n - k) + k" using a by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 370 | ultimately show "n : ?A" by blast | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 371 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 372 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 373 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 374 | corollary image_Suc_atLeastAtMost[simp]: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 375 |   "Suc ` {i..j} = {Suc i..Suc j}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 376 | using image_add_atLeastAtMost[where k=1] by simp | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 377 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 378 | corollary image_Suc_atLeastLessThan[simp]: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 379 |   "Suc ` {i..<j} = {Suc i..<Suc j}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 380 | using image_add_atLeastLessThan[where k=1] by simp | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 381 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 382 | lemma image_add_int_atLeastLessThan: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 383 |     "(%x. x + (l::int)) ` {0..<u-l} = {l..<u}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 384 | apply (auto simp add: image_def) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 385 | apply (rule_tac x = "x - l" in bexI) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 386 | apply auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 387 | done | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 388 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 389 | |
| 14485 | 390 | subsubsection {* Finiteness *}
 | 
| 391 | ||
| 15045 | 392 | lemma finite_lessThan [iff]: fixes k :: nat shows "finite {..<k}"
 | 
| 14485 | 393 | by (induct k) (simp_all add: lessThan_Suc) | 
| 394 | ||
| 395 | lemma finite_atMost [iff]: fixes k :: nat shows "finite {..k}"
 | |
| 396 | by (induct k) (simp_all add: atMost_Suc) | |
| 397 | ||
| 398 | lemma finite_greaterThanLessThan [iff]: | |
| 15045 | 399 |   fixes l :: nat shows "finite {l<..<u}"
 | 
| 14485 | 400 | by (simp add: greaterThanLessThan_def) | 
| 401 | ||
| 402 | lemma finite_atLeastLessThan [iff]: | |
| 15045 | 403 |   fixes l :: nat shows "finite {l..<u}"
 | 
| 14485 | 404 | by (simp add: atLeastLessThan_def) | 
| 405 | ||
| 406 | lemma finite_greaterThanAtMost [iff]: | |
| 15045 | 407 |   fixes l :: nat shows "finite {l<..u}"
 | 
| 14485 | 408 | by (simp add: greaterThanAtMost_def) | 
| 409 | ||
| 410 | lemma finite_atLeastAtMost [iff]: | |
| 411 |   fixes l :: nat shows "finite {l..u}"
 | |
| 412 | by (simp add: atLeastAtMost_def) | |
| 413 | ||
| 414 | lemma bounded_nat_set_is_finite: | |
| 24853 | 415 | "(ALL i:N. i < (n::nat)) ==> finite N" | 
| 14485 | 416 |   -- {* A bounded set of natural numbers is finite. *}
 | 
| 417 | apply (rule finite_subset) | |
| 418 | apply (rule_tac [2] finite_lessThan, auto) | |
| 419 | done | |
| 420 | ||
| 24853 | 421 | text{* Any subset of an interval of natural numbers the size of the
 | 
| 422 | subset is exactly that interval. *} | |
| 423 | ||
| 424 | lemma subset_card_intvl_is_intvl: | |
| 425 |   "A <= {k..<k+card A} \<Longrightarrow> A = {k..<k+card A}" (is "PROP ?P")
 | |
| 426 | proof cases | |
| 427 | assume "finite A" | |
| 428 | thus "PROP ?P" | |
| 429 | proof(induct A rule:finite_linorder_induct) | |
| 430 | case empty thus ?case by auto | |
| 431 | next | |
| 432 | case (insert A b) | |
| 433 | moreover hence "b ~: A" by auto | |
| 434 |     moreover have "A <= {k..<k+card A}" and "b = k+card A"
 | |
| 435 | using `b ~: A` insert by fastsimp+ | |
| 436 | ultimately show ?case by auto | |
| 437 | qed | |
| 438 | next | |
| 439 | assume "~finite A" thus "PROP ?P" by simp | |
| 440 | qed | |
| 441 | ||
| 442 | ||
| 14485 | 443 | subsubsection {* Cardinality *}
 | 
| 444 | ||
| 15045 | 445 | lemma card_lessThan [simp]: "card {..<u} = u"
 | 
| 15251 | 446 | by (induct u, simp_all add: lessThan_Suc) | 
| 14485 | 447 | |
| 448 | lemma card_atMost [simp]: "card {..u} = Suc u"
 | |
| 449 | by (simp add: lessThan_Suc_atMost [THEN sym]) | |
| 450 | ||
| 15045 | 451 | lemma card_atLeastLessThan [simp]: "card {l..<u} = u - l"
 | 
| 452 |   apply (subgoal_tac "card {l..<u} = card {..<u-l}")
 | |
| 14485 | 453 | apply (erule ssubst, rule card_lessThan) | 
| 15045 | 454 |   apply (subgoal_tac "(%x. x + l) ` {..<u-l} = {l..<u}")
 | 
| 14485 | 455 | apply (erule subst) | 
| 456 | apply (rule card_image) | |
| 457 | apply (simp add: inj_on_def) | |
| 458 | apply (auto simp add: image_def atLeastLessThan_def lessThan_def) | |
| 459 | apply (rule_tac x = "x - l" in exI) | |
| 460 | apply arith | |
| 461 | done | |
| 462 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 463 | lemma card_atLeastAtMost [simp]: "card {l..u} = Suc u - l"
 | 
| 14485 | 464 | by (subst atLeastLessThanSuc_atLeastAtMost [THEN sym], simp) | 
| 465 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 466 | lemma card_greaterThanAtMost [simp]: "card {l<..u} = u - l"
 | 
| 14485 | 467 | by (subst atLeastSucAtMost_greaterThanAtMost [THEN sym], simp) | 
| 468 | ||
| 15045 | 469 | lemma card_greaterThanLessThan [simp]: "card {l<..<u} = u - Suc l"
 | 
| 14485 | 470 | by (subst atLeastSucLessThan_greaterThanLessThan [THEN sym], simp) | 
| 471 | ||
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 472 | |
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 473 | lemma ex_bij_betw_nat_finite: | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 474 |   "finite M \<Longrightarrow> \<exists>h. bij_betw h {0..<card M} M"
 | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 475 | apply(drule finite_imp_nat_seg_image_inj_on) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 476 | apply(auto simp:atLeast0LessThan[symmetric] lessThan_def[symmetric] card_image bij_betw_def) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 477 | done | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 478 | |
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 479 | lemma ex_bij_betw_finite_nat: | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 480 |   "finite M \<Longrightarrow> \<exists>h. bij_betw h M {0..<card M}"
 | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 481 | by (blast dest: ex_bij_betw_nat_finite bij_betw_inv) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 482 | |
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 483 | |
| 14485 | 484 | subsection {* Intervals of integers *}
 | 
| 485 | ||
| 15045 | 486 | lemma atLeastLessThanPlusOne_atLeastAtMost_int: "{l..<u+1} = {l..(u::int)}"
 | 
| 14485 | 487 | by (auto simp add: atLeastAtMost_def atLeastLessThan_def) | 
| 488 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 489 | lemma atLeastPlusOneAtMost_greaterThanAtMost_int: "{l+1..u} = {l<..(u::int)}"
 | 
| 14485 | 490 | by (auto simp add: atLeastAtMost_def greaterThanAtMost_def) | 
| 491 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 492 | lemma atLeastPlusOneLessThan_greaterThanLessThan_int: | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 493 |     "{l+1..<u} = {l<..<u::int}"
 | 
| 14485 | 494 | by (auto simp add: atLeastLessThan_def greaterThanLessThan_def) | 
| 495 | ||
| 496 | subsubsection {* Finiteness *}
 | |
| 497 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 498 | lemma image_atLeastZeroLessThan_int: "0 \<le> u ==> | 
| 15045 | 499 |     {(0::int)..<u} = int ` {..<nat u}"
 | 
| 14485 | 500 | apply (unfold image_def lessThan_def) | 
| 501 | apply auto | |
| 502 | apply (rule_tac x = "nat x" in exI) | |
| 503 | apply (auto simp add: zless_nat_conj zless_nat_eq_int_zless [THEN sym]) | |
| 504 | done | |
| 505 | ||
| 15045 | 506 | lemma finite_atLeastZeroLessThan_int: "finite {(0::int)..<u}"
 | 
| 14485 | 507 | apply (case_tac "0 \<le> u") | 
| 508 | apply (subst image_atLeastZeroLessThan_int, assumption) | |
| 509 | apply (rule finite_imageI) | |
| 510 | apply auto | |
| 511 | done | |
| 512 | ||
| 15045 | 513 | lemma finite_atLeastLessThan_int [iff]: "finite {l..<u::int}"
 | 
| 514 |   apply (subgoal_tac "(%x. x + l) ` {0..<u-l} = {l..<u}")
 | |
| 14485 | 515 | apply (erule subst) | 
| 516 | apply (rule finite_imageI) | |
| 517 | apply (rule finite_atLeastZeroLessThan_int) | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 518 | apply (rule image_add_int_atLeastLessThan) | 
| 14485 | 519 | done | 
| 520 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 521 | lemma finite_atLeastAtMost_int [iff]: "finite {l..(u::int)}"
 | 
| 14485 | 522 | by (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym], simp) | 
| 523 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 524 | lemma finite_greaterThanAtMost_int [iff]: "finite {l<..(u::int)}"
 | 
| 14485 | 525 | by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp) | 
| 526 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 527 | lemma finite_greaterThanLessThan_int [iff]: "finite {l<..<u::int}"
 | 
| 14485 | 528 | by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp) | 
| 529 | ||
| 24853 | 530 | |
| 14485 | 531 | subsubsection {* Cardinality *}
 | 
| 532 | ||
| 15045 | 533 | lemma card_atLeastZeroLessThan_int: "card {(0::int)..<u} = nat u"
 | 
| 14485 | 534 | apply (case_tac "0 \<le> u") | 
| 535 | apply (subst image_atLeastZeroLessThan_int, assumption) | |
| 536 | apply (subst card_image) | |
| 537 | apply (auto simp add: inj_on_def) | |
| 538 | done | |
| 539 | ||
| 15045 | 540 | lemma card_atLeastLessThan_int [simp]: "card {l..<u} = nat (u - l)"
 | 
| 541 |   apply (subgoal_tac "card {l..<u} = card {0..<u-l}")
 | |
| 14485 | 542 | apply (erule ssubst, rule card_atLeastZeroLessThan_int) | 
| 15045 | 543 |   apply (subgoal_tac "(%x. x + l) ` {0..<u-l} = {l..<u}")
 | 
| 14485 | 544 | apply (erule subst) | 
| 545 | apply (rule card_image) | |
| 546 | apply (simp add: inj_on_def) | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 547 | apply (rule image_add_int_atLeastLessThan) | 
| 14485 | 548 | done | 
| 549 | ||
| 550 | lemma card_atLeastAtMost_int [simp]: "card {l..u} = nat (u - l + 1)"
 | |
| 551 | apply (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym]) | |
| 552 | apply (auto simp add: compare_rls) | |
| 553 | done | |
| 554 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 555 | lemma card_greaterThanAtMost_int [simp]: "card {l<..u} = nat (u - l)"
 | 
| 14485 | 556 | by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp) | 
| 557 | ||
| 15045 | 558 | lemma card_greaterThanLessThan_int [simp]: "card {l<..<u} = nat (u - (l + 1))"
 | 
| 14485 | 559 | by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp) | 
| 560 | ||
| 561 | ||
| 13850 | 562 | subsection {*Lemmas useful with the summation operator setsum*}
 | 
| 563 | ||
| 16102 
c5f6726d9bb1
Locale expressions: rename with optional mixfix syntax.
 ballarin parents: 
16052diff
changeset | 564 | text {* For examples, see Algebra/poly/UnivPoly2.thy *}
 | 
| 13735 | 565 | |
| 14577 | 566 | subsubsection {* Disjoint Unions *}
 | 
| 13735 | 567 | |
| 14577 | 568 | text {* Singletons and open intervals *}
 | 
| 13735 | 569 | |
| 570 | lemma ivl_disj_un_singleton: | |
| 15045 | 571 |   "{l::'a::linorder} Un {l<..} = {l..}"
 | 
| 572 |   "{..<u} Un {u::'a::linorder} = {..u}"
 | |
| 573 |   "(l::'a::linorder) < u ==> {l} Un {l<..<u} = {l..<u}"
 | |
| 574 |   "(l::'a::linorder) < u ==> {l<..<u} Un {u} = {l<..u}"
 | |
| 575 |   "(l::'a::linorder) <= u ==> {l} Un {l<..u} = {l..u}"
 | |
| 576 |   "(l::'a::linorder) <= u ==> {l..<u} Un {u} = {l..u}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 577 | by auto | 
| 13735 | 578 | |
| 14577 | 579 | text {* One- and two-sided intervals *}
 | 
| 13735 | 580 | |
| 581 | lemma ivl_disj_un_one: | |
| 15045 | 582 |   "(l::'a::linorder) < u ==> {..l} Un {l<..<u} = {..<u}"
 | 
| 583 |   "(l::'a::linorder) <= u ==> {..<l} Un {l..<u} = {..<u}"
 | |
| 584 |   "(l::'a::linorder) <= u ==> {..l} Un {l<..u} = {..u}"
 | |
| 585 |   "(l::'a::linorder) <= u ==> {..<l} Un {l..u} = {..u}"
 | |
| 586 |   "(l::'a::linorder) <= u ==> {l<..u} Un {u<..} = {l<..}"
 | |
| 587 |   "(l::'a::linorder) < u ==> {l<..<u} Un {u..} = {l<..}"
 | |
| 588 |   "(l::'a::linorder) <= u ==> {l..u} Un {u<..} = {l..}"
 | |
| 589 |   "(l::'a::linorder) <= u ==> {l..<u} Un {u..} = {l..}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 590 | by auto | 
| 13735 | 591 | |
| 14577 | 592 | text {* Two- and two-sided intervals *}
 | 
| 13735 | 593 | |
| 594 | lemma ivl_disj_un_two: | |
| 15045 | 595 |   "[| (l::'a::linorder) < m; m <= u |] ==> {l<..<m} Un {m..<u} = {l<..<u}"
 | 
| 596 |   "[| (l::'a::linorder) <= m; m < u |] ==> {l<..m} Un {m<..<u} = {l<..<u}"
 | |
| 597 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..<m} Un {m..<u} = {l..<u}"
 | |
| 598 |   "[| (l::'a::linorder) <= m; m < u |] ==> {l..m} Un {m<..<u} = {l..<u}"
 | |
| 599 |   "[| (l::'a::linorder) < m; m <= u |] ==> {l<..<m} Un {m..u} = {l<..u}"
 | |
| 600 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l<..m} Un {m<..u} = {l<..u}"
 | |
| 601 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..<m} Un {m..u} = {l..u}"
 | |
| 602 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..m} Un {m<..u} = {l..u}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 603 | by auto | 
| 13735 | 604 | |
| 605 | lemmas ivl_disj_un = ivl_disj_un_singleton ivl_disj_un_one ivl_disj_un_two | |
| 606 | ||
| 14577 | 607 | subsubsection {* Disjoint Intersections *}
 | 
| 13735 | 608 | |
| 14577 | 609 | text {* Singletons and open intervals *}
 | 
| 13735 | 610 | |
| 611 | lemma ivl_disj_int_singleton: | |
| 15045 | 612 |   "{l::'a::order} Int {l<..} = {}"
 | 
| 613 |   "{..<u} Int {u} = {}"
 | |
| 614 |   "{l} Int {l<..<u} = {}"
 | |
| 615 |   "{l<..<u} Int {u} = {}"
 | |
| 616 |   "{l} Int {l<..u} = {}"
 | |
| 617 |   "{l..<u} Int {u} = {}"
 | |
| 13735 | 618 | by simp+ | 
| 619 | ||
| 14577 | 620 | text {* One- and two-sided intervals *}
 | 
| 13735 | 621 | |
| 622 | lemma ivl_disj_int_one: | |
| 15045 | 623 |   "{..l::'a::order} Int {l<..<u} = {}"
 | 
| 624 |   "{..<l} Int {l..<u} = {}"
 | |
| 625 |   "{..l} Int {l<..u} = {}"
 | |
| 626 |   "{..<l} Int {l..u} = {}"
 | |
| 627 |   "{l<..u} Int {u<..} = {}"
 | |
| 628 |   "{l<..<u} Int {u..} = {}"
 | |
| 629 |   "{l..u} Int {u<..} = {}"
 | |
| 630 |   "{l..<u} Int {u..} = {}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 631 | by auto | 
| 13735 | 632 | |
| 14577 | 633 | text {* Two- and two-sided intervals *}
 | 
| 13735 | 634 | |
| 635 | lemma ivl_disj_int_two: | |
| 15045 | 636 |   "{l::'a::order<..<m} Int {m..<u} = {}"
 | 
| 637 |   "{l<..m} Int {m<..<u} = {}"
 | |
| 638 |   "{l..<m} Int {m..<u} = {}"
 | |
| 639 |   "{l..m} Int {m<..<u} = {}"
 | |
| 640 |   "{l<..<m} Int {m..u} = {}"
 | |
| 641 |   "{l<..m} Int {m<..u} = {}"
 | |
| 642 |   "{l..<m} Int {m..u} = {}"
 | |
| 643 |   "{l..m} Int {m<..u} = {}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 644 | by auto | 
| 13735 | 645 | |
| 646 | lemmas ivl_disj_int = ivl_disj_int_singleton ivl_disj_int_one ivl_disj_int_two | |
| 647 | ||
| 15542 | 648 | subsubsection {* Some Differences *}
 | 
| 649 | ||
| 650 | lemma ivl_diff[simp]: | |
| 651 |  "i \<le> n \<Longrightarrow> {i..<m} - {i..<n} = {n..<(m::'a::linorder)}"
 | |
| 652 | by(auto) | |
| 653 | ||
| 654 | ||
| 655 | subsubsection {* Some Subset Conditions *}
 | |
| 656 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23496diff
changeset | 657 | lemma ivl_subset [simp,noatp]: | 
| 15542 | 658 |  "({i..<j} \<subseteq> {m..<n}) = (j \<le> i | m \<le> i & j \<le> (n::'a::linorder))"
 | 
| 659 | apply(auto simp:linorder_not_le) | |
| 660 | apply(rule ccontr) | |
| 661 | apply(insert linorder_le_less_linear[of i n]) | |
| 662 | apply(clarsimp simp:linorder_not_le) | |
| 663 | apply(fastsimp) | |
| 664 | done | |
| 665 | ||
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 666 | |
| 15042 | 667 | subsection {* Summation indexed over intervals *}
 | 
| 668 | ||
| 669 | syntax | |
| 670 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _ = _.._./ _)" [0,0,0,10] 10)
 | |
| 15048 | 671 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 16052 | 672 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _<_./ _)" [0,0,10] 10)
 | 
| 673 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _<=_./ _)" [0,0,10] 10)
 | |
| 15042 | 674 | syntax (xsymbols) | 
| 675 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _.._./ _)" [0,0,0,10] 10)
 | |
| 15048 | 676 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 16052 | 677 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_<_./ _)" [0,0,10] 10)
 | 
| 678 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_\<le>_./ _)" [0,0,10] 10)
 | |
| 15042 | 679 | syntax (HTML output) | 
| 680 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _.._./ _)" [0,0,0,10] 10)
 | |
| 15048 | 681 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 16052 | 682 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_<_./ _)" [0,0,10] 10)
 | 
| 683 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_\<le>_./ _)" [0,0,10] 10)
 | |
| 15056 | 684 | syntax (latex_sum output) | 
| 15052 | 685 | "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 686 |  ("(3\<^raw:$\sum_{>_ = _\<^raw:}^{>_\<^raw:}$> _)" [0,0,0,10] 10)
 | |
| 687 | "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | |
| 688 |  ("(3\<^raw:$\sum_{>_ = _\<^raw:}^{<>_\<^raw:}$> _)" [0,0,0,10] 10)
 | |
| 16052 | 689 | "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 690 |  ("(3\<^raw:$\sum_{>_ < _\<^raw:}$> _)" [0,0,10] 10)
 | |
| 15052 | 691 | "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 16052 | 692 |  ("(3\<^raw:$\sum_{>_ \<le> _\<^raw:}$> _)" [0,0,10] 10)
 | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 693 | |
| 15048 | 694 | translations | 
| 695 |   "\<Sum>x=a..b. t" == "setsum (%x. t) {a..b}"
 | |
| 696 |   "\<Sum>x=a..<b. t" == "setsum (%x. t) {a..<b}"
 | |
| 16052 | 697 |   "\<Sum>i\<le>n. t" == "setsum (\<lambda>i. t) {..n}"
 | 
| 15048 | 698 |   "\<Sum>i<n. t" == "setsum (\<lambda>i. t) {..<n}"
 | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 699 | |
| 15052 | 700 | text{* The above introduces some pretty alternative syntaxes for
 | 
| 15056 | 701 | summation over intervals: | 
| 15052 | 702 | \begin{center}
 | 
| 703 | \begin{tabular}{lll}
 | |
| 15056 | 704 | Old & New & \LaTeX\\ | 
| 705 | @{term[source]"\<Sum>x\<in>{a..b}. e"} & @{term"\<Sum>x=a..b. e"} & @{term[mode=latex_sum]"\<Sum>x=a..b. e"}\\
 | |
| 706 | @{term[source]"\<Sum>x\<in>{a..<b}. e"} & @{term"\<Sum>x=a..<b. e"} & @{term[mode=latex_sum]"\<Sum>x=a..<b. e"}\\
 | |
| 16052 | 707 | @{term[source]"\<Sum>x\<in>{..b}. e"} & @{term"\<Sum>x\<le>b. e"} & @{term[mode=latex_sum]"\<Sum>x\<le>b. e"}\\
 | 
| 15056 | 708 | @{term[source]"\<Sum>x\<in>{..<b}. e"} & @{term"\<Sum>x<b. e"} & @{term[mode=latex_sum]"\<Sum>x<b. e"}
 | 
| 15052 | 709 | \end{tabular}
 | 
| 710 | \end{center}
 | |
| 15056 | 711 | The left column shows the term before introduction of the new syntax, | 
| 712 | the middle column shows the new (default) syntax, and the right column | |
| 713 | shows a special syntax. The latter is only meaningful for latex output | |
| 714 | and has to be activated explicitly by setting the print mode to | |
| 21502 | 715 | @{text latex_sum} (e.g.\ via @{text "mode = latex_sum"} in
 | 
| 15056 | 716 | antiquotations). It is not the default \LaTeX\ output because it only | 
| 717 | works well with italic-style formulae, not tt-style. | |
| 15052 | 718 | |
| 719 | Note that for uniformity on @{typ nat} it is better to use
 | |
| 720 | @{term"\<Sum>x::nat=0..<n. e"} rather than @{text"\<Sum>x<n. e"}: @{text setsum} may
 | |
| 721 | not provide all lemmas available for @{term"{m..<n}"} also in the
 | |
| 722 | special form for @{term"{..<n}"}. *}
 | |
| 723 | ||
| 15542 | 724 | text{* This congruence rule should be used for sums over intervals as
 | 
| 725 | the standard theorem @{text[source]setsum_cong} does not work well
 | |
| 726 | with the simplifier who adds the unsimplified premise @{term"x:B"} to
 | |
| 727 | the context. *} | |
| 728 | ||
| 729 | lemma setsum_ivl_cong: | |
| 730 | "\<lbrakk>a = c; b = d; !!x. \<lbrakk> c \<le> x; x < d \<rbrakk> \<Longrightarrow> f x = g x \<rbrakk> \<Longrightarrow> | |
| 731 |  setsum f {a..<b} = setsum g {c..<d}"
 | |
| 732 | by(rule setsum_cong, simp_all) | |
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 733 | |
| 16041 | 734 | (* FIXME why are the following simp rules but the corresponding eqns | 
| 735 | on intervals are not? *) | |
| 736 | ||
| 16052 | 737 | lemma setsum_atMost_Suc[simp]: "(\<Sum>i \<le> Suc n. f i) = (\<Sum>i \<le> n. f i) + f(Suc n)" | 
| 738 | by (simp add:atMost_Suc add_ac) | |
| 739 | ||
| 16041 | 740 | lemma setsum_lessThan_Suc[simp]: "(\<Sum>i < Suc n. f i) = (\<Sum>i < n. f i) + f n" | 
| 741 | by (simp add:lessThan_Suc add_ac) | |
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 742 | |
| 15911 | 743 | lemma setsum_cl_ivl_Suc[simp]: | 
| 15561 | 744 |   "setsum f {m..Suc n} = (if Suc n < m then 0 else setsum f {m..n} + f(Suc n))"
 | 
| 745 | by (auto simp:add_ac atLeastAtMostSuc_conv) | |
| 746 | ||
| 15911 | 747 | lemma setsum_op_ivl_Suc[simp]: | 
| 15561 | 748 |   "setsum f {m..<Suc n} = (if n < m then 0 else setsum f {m..<n} + f(n))"
 | 
| 749 | by (auto simp:add_ac atLeastLessThanSuc) | |
| 16041 | 750 | (* | 
| 15561 | 751 | lemma setsum_cl_ivl_add_one_nat: "(n::nat) <= m + 1 ==> | 
| 752 | (\<Sum>i=n..m+1. f i) = (\<Sum>i=n..m. f i) + f(m + 1)" | |
| 753 | by (auto simp:add_ac atLeastAtMostSuc_conv) | |
| 16041 | 754 | *) | 
| 15539 | 755 | lemma setsum_add_nat_ivl: "\<lbrakk> m \<le> n; n \<le> p \<rbrakk> \<Longrightarrow> | 
| 756 |   setsum f {m..<n} + setsum f {n..<p} = setsum f {m..<p::nat}"
 | |
| 757 | by (simp add:setsum_Un_disjoint[symmetric] ivl_disj_int ivl_disj_un) | |
| 758 | ||
| 759 | lemma setsum_diff_nat_ivl: | |
| 760 | fixes f :: "nat \<Rightarrow> 'a::ab_group_add" | |
| 761 | shows "\<lbrakk> m \<le> n; n \<le> p \<rbrakk> \<Longrightarrow> | |
| 762 |   setsum f {m..<p} - setsum f {m..<n} = setsum f {n..<p}"
 | |
| 763 | using setsum_add_nat_ivl [of m n p f,symmetric] | |
| 764 | apply (simp add: add_ac) | |
| 765 | done | |
| 766 | ||
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 767 | subsection{* Shifting bounds *}
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 768 | |
| 15539 | 769 | lemma setsum_shift_bounds_nat_ivl: | 
| 770 |   "setsum f {m+k..<n+k} = setsum (%i. f(i + k)){m..<n::nat}"
 | |
| 771 | by (induct "n", auto simp:atLeastLessThanSuc) | |
| 772 | ||
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 773 | lemma setsum_shift_bounds_cl_nat_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 774 |   "setsum f {m+k..n+k} = setsum (%i. f(i + k)){m..n::nat}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 775 | apply (insert setsum_reindex[OF inj_on_add_nat, where h=f and B = "{m..n}"])
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 776 | apply (simp add:image_add_atLeastAtMost o_def) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 777 | done | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 778 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 779 | corollary setsum_shift_bounds_cl_Suc_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 780 |   "setsum f {Suc m..Suc n} = setsum (%i. f(Suc i)){m..n}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 781 | by (simp add:setsum_shift_bounds_cl_nat_ivl[where k=1,simplified]) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 782 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 783 | corollary setsum_shift_bounds_Suc_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 784 |   "setsum f {Suc m..<Suc n} = setsum (%i. f(Suc i)){m..<n}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 785 | by (simp add:setsum_shift_bounds_nat_ivl[where k=1,simplified]) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 786 | |
| 19106 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 787 | lemma setsum_head: | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 788 | fixes n :: nat | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 789 | assumes mn: "m <= n" | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 790 |   shows "(\<Sum>x\<in>{m..n}. P x) = P m + (\<Sum>x\<in>{m<..n}. P x)" (is "?lhs = ?rhs")
 | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 791 | proof - | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 792 | from mn | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 793 |   have "{m..n} = {m} \<union> {m<..n}"
 | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 794 | by (auto intro: ivl_disj_un_singleton) | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 795 |   hence "?lhs = (\<Sum>x\<in>{m} \<union> {m<..n}. P x)"
 | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 796 | by (simp add: atLeast0LessThan) | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 797 | also have "\<dots> = ?rhs" by simp | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 798 | finally show ?thesis . | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 799 | qed | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 800 | |
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 801 | lemma setsum_head_upt: | 
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 802 | fixes m::nat | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 803 | assumes m: "0 < m" | 
| 19106 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 804 |   shows "(\<Sum>x<m. P x) = P 0 + (\<Sum>x\<in>{1..<m}. P x)"
 | 
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 805 | proof - | 
| 19106 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 806 |   have "(\<Sum>x<m. P x) = (\<Sum>x\<in>{0..<m}. P x)" 
 | 
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 807 | by (simp add: atLeast0LessThan) | 
| 19106 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 808 | also | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 809 | from m | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 810 |   have "\<dots> = (\<Sum>x\<in>{0..m - 1}. P x)"
 | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 811 | by (cases m) (auto simp add: atLeastLessThanSuc_atLeastAtMost) | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 812 | also | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 813 |   have "\<dots> = P 0 + (\<Sum>x\<in>{0<..m - 1}. P x)"
 | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 814 | by (simp add: setsum_head) | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 815 | also | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 816 | from m | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 817 |   have "{0<..m - 1} = {1..<m}" 
 | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 818 | by (cases m) (auto simp add: atLeastLessThanSuc_atLeastAtMost) | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 819 | finally show ?thesis . | 
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 820 | qed | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 821 | |
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 822 | subsection {* The formula for geometric sums *}
 | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 823 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 824 | lemma geometric_sum: | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 825 | "x ~= 1 ==> (\<Sum>i=0..<n. x ^ i) = | 
| 22713 | 826 |   (x ^ n - 1) / (x - 1::'a::{field, recpower})"
 | 
| 23496 | 827 | by (induct "n") (simp_all add:field_simps power_Suc) | 
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 828 | |
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 829 | subsection {* The formula for arithmetic sums *}
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 830 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 831 | lemma gauss_sum: | 
| 23277 | 832 |   "((1::'a::comm_semiring_1) + 1)*(\<Sum>i\<in>{1..n}. of_nat i) =
 | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 833 | of_nat n*((of_nat n)+1)" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 834 | proof (induct n) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 835 | case 0 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 836 | show ?case by simp | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 837 | next | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 838 | case (Suc n) | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23431diff
changeset | 839 | then show ?case by (simp add: ring_simps) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 840 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 841 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 842 | theorem arith_series_general: | 
| 23277 | 843 |   "((1::'a::comm_semiring_1) + 1) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) =
 | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 844 | of_nat n * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 845 | proof cases | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 846 | assume ngt1: "n > 1" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 847 | let ?I = "\<lambda>i. of_nat i" and ?n = "of_nat n" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 848 | have | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 849 |     "(\<Sum>i\<in>{..<n}. a+?I i*d) =
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 850 |      ((\<Sum>i\<in>{..<n}. a) + (\<Sum>i\<in>{..<n}. ?I i*d))"
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 851 | by (rule setsum_addf) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 852 |   also from ngt1 have "\<dots> = ?n*a + (\<Sum>i\<in>{..<n}. ?I i*d)" by simp
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 853 |   also from ngt1 have "\<dots> = (?n*a + d*(\<Sum>i\<in>{1..<n}. ?I i))"
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 854 | by (simp add: setsum_right_distrib setsum_head_upt mult_ac) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 855 |   also have "(1+1)*\<dots> = (1+1)*?n*a + d*(1+1)*(\<Sum>i\<in>{1..<n}. ?I i)"
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 856 | by (simp add: left_distrib right_distrib) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 857 |   also from ngt1 have "{1..<n} = {1..n - 1}"
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 858 | by (cases n) (auto simp: atLeastLessThanSuc_atLeastAtMost) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 859 | also from ngt1 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 860 |   have "(1+1)*?n*a + d*(1+1)*(\<Sum>i\<in>{1..n - 1}. ?I i) = ((1+1)*?n*a + d*?I (n - 1)*?I n)"
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 861 | by (simp only: mult_ac gauss_sum [of "n - 1"]) | 
| 23431 
25ca91279a9b
change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
 huffman parents: 
23413diff
changeset | 862 | (simp add: mult_ac trans [OF add_commute of_nat_Suc [symmetric]]) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 863 | finally show ?thesis by (simp add: mult_ac add_ac right_distrib) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 864 | next | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 865 | assume "\<not>(n > 1)" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 866 | hence "n = 1 \<or> n = 0" by auto | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 867 | thus ?thesis by (auto simp: mult_ac right_distrib) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 868 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 869 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 870 | lemma arith_series_nat: | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 871 |   "Suc (Suc 0) * (\<Sum>i\<in>{..<n}. a+i*d) = n * (a + (a+(n - 1)*d))"
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 872 | proof - | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 873 | have | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 874 |     "((1::nat) + 1) * (\<Sum>i\<in>{..<n::nat}. a + of_nat(i)*d) =
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 875 | of_nat(n) * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 876 | by (rule arith_series_general) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 877 | thus ?thesis by (auto simp add: of_nat_id) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 878 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 879 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 880 | lemma arith_series_int: | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 881 |   "(2::int) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) =
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 882 | of_nat n * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 883 | proof - | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 884 | have | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 885 |     "((1::int) + 1) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) =
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 886 | of_nat(n) * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 887 | by (rule arith_series_general) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 888 | thus ?thesis by simp | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 889 | qed | 
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 890 | |
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 891 | lemma sum_diff_distrib: | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 892 | fixes P::"nat\<Rightarrow>nat" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 893 | shows | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 894 | "\<forall>x. Q x \<le> P x \<Longrightarrow> | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 895 | (\<Sum>x<n. P x) - (\<Sum>x<n. Q x) = (\<Sum>x<n. P x - Q x)" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 896 | proof (induct n) | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 897 | case 0 show ?case by simp | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 898 | next | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 899 | case (Suc n) | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 900 | |
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 901 | let ?lhs = "(\<Sum>x<n. P x) - (\<Sum>x<n. Q x)" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 902 | let ?rhs = "\<Sum>x<n. P x - Q x" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 903 | |
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 904 | from Suc have "?lhs = ?rhs" by simp | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 905 | moreover | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 906 | from Suc have "?lhs + P n - Q n = ?rhs + (P n - Q n)" by simp | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 907 | moreover | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 908 | from Suc have | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 909 | "(\<Sum>x<n. P x) + P n - ((\<Sum>x<n. Q x) + Q n) = ?rhs + (P n - Q n)" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 910 | by (subst diff_diff_left[symmetric], | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 911 | subst diff_add_assoc2) | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 912 | (auto simp: diff_add_assoc2 intro: setsum_mono) | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 913 | ultimately | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 914 | show ?case by simp | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 915 | qed | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 916 | |
| 8924 | 917 | end |