author | paulson <lp15@cam.ac.uk> |
Thu, 28 Jun 2018 14:13:57 +0100 | |
changeset 68527 | 2f4e2aab190a |
parent 61386 | 0a29a984a91b |
child 80914 | d97fdabd9e2b |
permissions | -rw-r--r-- |
17481 | 1 |
(* Title: Sequents/LK/Nat.thy |
7091 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
7095 | 3 |
Copyright 1999 University of Cambridge |
7091 | 4 |
*) |
5 |
||
60770 | 6 |
section \<open>Theory of the natural numbers: Peano's axioms, primitive recursion\<close> |
17481 | 7 |
|
8 |
theory Nat |
|
55229 | 9 |
imports "../LK" |
17481 | 10 |
begin |
11 |
||
12 |
typedecl nat |
|
55380
4de48353034e
prefer vacuous definitional type classes over axiomatic ones;
wenzelm
parents:
55230
diff
changeset
|
13 |
instance nat :: "term" .. |
7091 | 14 |
|
51309 | 15 |
axiomatization |
16 |
Zero :: nat ("0") and |
|
61385 | 17 |
Suc :: "nat \<Rightarrow> nat" and |
18 |
rec :: "[nat, 'a, [nat,'a] \<Rightarrow> 'a] \<Rightarrow> 'a" |
|
51309 | 19 |
where |
61386 | 20 |
induct: "\<lbrakk>$H \<turnstile> $E, P(0), $F; |
21 |
\<And>x. $H, P(x) \<turnstile> $E, P(Suc(x)), $F\<rbrakk> \<Longrightarrow> $H \<turnstile> $E, P(n), $F" and |
|
7095 | 22 |
|
61386 | 23 |
Suc_inject: "\<turnstile> Suc(m) = Suc(n) \<longrightarrow> m = n" and |
24 |
Suc_neq_0: "\<turnstile> Suc(m) \<noteq> 0" and |
|
25 |
rec_0: "\<turnstile> rec(0,a,f) = a" and |
|
26 |
rec_Suc: "\<turnstile> rec(Suc(m), a, f) = f(m, rec(m,a,f))" |
|
51309 | 27 |
|
61385 | 28 |
definition add :: "[nat, nat] \<Rightarrow> nat" (infixl "+" 60) |
29 |
where "m + n == rec(m, n, \<lambda>x y. Suc(y))" |
|
17481 | 30 |
|
21426 | 31 |
|
32 |
declare Suc_neq_0 [simp] |
|
33 |
||
61386 | 34 |
lemma Suc_inject_rule: "$H, $G, m = n \<turnstile> $E \<Longrightarrow> $H, Suc(m) = Suc(n), $G \<turnstile> $E" |
21426 | 35 |
by (rule L_of_imp [OF Suc_inject]) |
36 |
||
61386 | 37 |
lemma Suc_n_not_n: "\<turnstile> Suc(k) \<noteq> k" |
21426 | 38 |
apply (rule_tac n = k in induct) |
55230 | 39 |
apply simp |
55228 | 40 |
apply (fast add!: Suc_inject_rule) |
21426 | 41 |
done |
42 |
||
61386 | 43 |
lemma add_0: "\<turnstile> 0 + n = n" |
21426 | 44 |
apply (unfold add_def) |
45 |
apply (rule rec_0) |
|
46 |
done |
|
47 |
||
61386 | 48 |
lemma add_Suc: "\<turnstile> Suc(m) + n = Suc(m + n)" |
21426 | 49 |
apply (unfold add_def) |
50 |
apply (rule rec_Suc) |
|
51 |
done |
|
52 |
||
53 |
declare add_0 [simp] add_Suc [simp] |
|
54 |
||
61386 | 55 |
lemma add_assoc: "\<turnstile> (k + m) + n = k + (m + n)" |
21426 | 56 |
apply (rule_tac n = "k" in induct) |
55230 | 57 |
apply simp_all |
21426 | 58 |
done |
59 |
||
61386 | 60 |
lemma add_0_right: "\<turnstile> m + 0 = m" |
21426 | 61 |
apply (rule_tac n = "m" in induct) |
55230 | 62 |
apply simp_all |
21426 | 63 |
done |
64 |
||
61386 | 65 |
lemma add_Suc_right: "\<turnstile> m + Suc(n) = Suc(m + n)" |
21426 | 66 |
apply (rule_tac n = "m" in induct) |
55230 | 67 |
apply simp_all |
21426 | 68 |
done |
69 |
||
61386 | 70 |
lemma "(\<And>n. \<turnstile> f(Suc(n)) = Suc(f(n))) \<Longrightarrow> \<turnstile> f(i + j) = i + f(j)" |
21426 | 71 |
apply (rule_tac n = "i" in induct) |
55230 | 72 |
apply simp_all |
21426 | 73 |
done |
17481 | 74 |
|
7091 | 75 |
end |