| 37936 |      1 | (*  Title:      ZF/UNITY/WFair.thy
 | 
| 11479 |      2 |     Author:     Sidi Ehmety, Computer Laboratory
 | 
|  |      3 |     Copyright   1998  University of Cambridge
 | 
|  |      4 | *)
 | 
|  |      5 | 
 | 
| 60770 |      6 | section\<open>Progress under Weak Fairness\<close>
 | 
| 15634 |      7 | 
 | 
|  |      8 | theory WFair
 | 
|  |      9 | imports UNITY Main_ZFC
 | 
|  |     10 | begin
 | 
|  |     11 | 
 | 
| 60770 |     12 | text\<open>This theory defines the operators transient, ensures and leadsTo,
 | 
| 15634 |     13 | assuming weak fairness. From Misra, "A Logic for Concurrent Programming",
 | 
| 60770 |     14 | 1994.\<close>
 | 
| 15634 |     15 | 
 | 
| 24893 |     16 | definition
 | 
| 12195 |     17 |   (* This definition specifies weak fairness.  The rest of the theory
 | 
| 46953 |     18 |     is generic to all forms of fairness.*)
 | 
| 24893 |     19 |   transient :: "i=>i"  where
 | 
| 46953 |     20 |   "transient(A) =={F \<in> program. (\<exists>act\<in>Acts(F). A<=domain(act) &
 | 
| 46823 |     21 |                                act``A \<subseteq> state-A) & st_set(A)}"
 | 
| 11479 |     22 | 
 | 
| 24893 |     23 | definition
 | 
|  |     24 |   ensures :: "[i,i] => i"       (infixl "ensures" 60)  where
 | 
| 46823 |     25 |   "A ensures B == ((A-B) co (A \<union> B)) \<inter> transient(A-B)"
 | 
| 46953 |     26 | 
 | 
| 11479 |     27 | consts
 | 
|  |     28 | 
 | 
|  |     29 |   (*LEADS-TO constant for the inductive definition*)
 | 
| 12195 |     30 |   leads :: "[i, i]=>i"
 | 
| 11479 |     31 | 
 | 
| 46953 |     32 | inductive
 | 
| 11479 |     33 |   domains
 | 
| 46823 |     34 |      "leads(D, F)" \<subseteq> "Pow(D)*Pow(D)"
 | 
| 46953 |     35 |   intros
 | 
|  |     36 |     Basis:  "[| F \<in> A ensures B;  A \<in> Pow(D); B \<in> Pow(D) |] ==> <A,B>:leads(D, F)"
 | 
| 46823 |     37 |     Trans:  "[| <A,B> \<in> leads(D, F); <B,C> \<in> leads(D, F) |] ==>  <A,C>:leads(D, F)"
 | 
| 46953 |     38 |     Union:   "[| S \<in> Pow({A \<in> S. <A, B>:leads(D, F)}); B \<in> Pow(D); S \<in> Pow(Pow(D)) |] ==>
 | 
| 46823 |     39 |               <\<Union>(S),B>:leads(D, F)"
 | 
| 11479 |     40 | 
 | 
|  |     41 |   monos        Pow_mono
 | 
| 15634 |     42 |   type_intros  Union_Pow_iff [THEN iffD2] UnionI PowI
 | 
| 46953 |     43 | 
 | 
| 24893 |     44 | definition
 | 
| 12195 |     45 |   (* The Visible version of the LEADS-TO relation*)
 | 
| 24893 |     46 |   leadsTo :: "[i, i] => i"       (infixl "leadsTo" 60)  where
 | 
| 46953 |     47 |   "A leadsTo B == {F \<in> program. <A,B>:leads(state, F)}"
 | 
|  |     48 | 
 | 
| 24893 |     49 | definition
 | 
| 12195 |     50 |   (* wlt(F, B) is the largest set that leads to B*)
 | 
| 24893 |     51 |   wlt :: "[i, i] => i"  where
 | 
| 46953 |     52 |     "wlt(F, B) == \<Union>({A \<in> Pow(state). F \<in> A leadsTo B})"
 | 
| 11479 |     53 | 
 | 
| 24893 |     54 | notation (xsymbols)
 | 
|  |     55 |   leadsTo  (infixl "\<longmapsto>" 60)
 | 
| 15634 |     56 | 
 | 
|  |     57 | (** Ad-hoc set-theory rules **)
 | 
|  |     58 | 
 | 
| 46823 |     59 | lemma Int_Union_Union: "\<Union>(B) \<inter> A = (\<Union>b \<in> B. b \<inter> A)"
 | 
| 15634 |     60 | by auto
 | 
|  |     61 | 
 | 
| 46823 |     62 | lemma Int_Union_Union2: "A \<inter> \<Union>(B) = (\<Union>b \<in> B. A \<inter> b)"
 | 
| 15634 |     63 | by auto
 | 
|  |     64 | 
 | 
|  |     65 | (*** transient ***)
 | 
|  |     66 | 
 | 
|  |     67 | lemma transient_type: "transient(A)<=program"
 | 
|  |     68 | by (unfold transient_def, auto)
 | 
|  |     69 | 
 | 
| 46953 |     70 | lemma transientD2:
 | 
| 15634 |     71 | "F \<in> transient(A) ==> F \<in> program & st_set(A)"
 | 
|  |     72 | apply (unfold transient_def, auto)
 | 
|  |     73 | done
 | 
|  |     74 | 
 | 
|  |     75 | lemma stable_transient_empty: "[| F \<in> stable(A); F \<in> transient(A) |] ==> A = 0"
 | 
|  |     76 | by (simp add: stable_def constrains_def transient_def, fast)
 | 
|  |     77 | 
 | 
|  |     78 | lemma transient_strengthen: "[|F \<in> transient(A); B<=A|] ==> F \<in> transient(B)"
 | 
|  |     79 | apply (simp add: transient_def st_set_def, clarify)
 | 
|  |     80 | apply (blast intro!: rev_bexI)
 | 
|  |     81 | done
 | 
|  |     82 | 
 | 
| 46953 |     83 | lemma transientI:
 | 
|  |     84 | "[|act \<in> Acts(F); A \<subseteq> domain(act); act``A \<subseteq> state-A;
 | 
| 15634 |     85 |     F \<in> program; st_set(A)|] ==> F \<in> transient(A)"
 | 
|  |     86 | by (simp add: transient_def, blast)
 | 
|  |     87 | 
 | 
| 46953 |     88 | lemma transientE:
 | 
|  |     89 |      "[| F \<in> transient(A);
 | 
| 46823 |     90 |          !!act. [| act \<in> Acts(F);  A \<subseteq> domain(act); act``A \<subseteq> state-A|]==>P|]
 | 
| 15634 |     91 |       ==>P"
 | 
|  |     92 | by (simp add: transient_def, blast)
 | 
|  |     93 | 
 | 
|  |     94 | lemma transient_state: "transient(state) = 0"
 | 
|  |     95 | apply (simp add: transient_def)
 | 
| 46953 |     96 | apply (rule equalityI, auto)
 | 
| 15634 |     97 | apply (cut_tac F = x in Acts_type)
 | 
|  |     98 | apply (simp add: Diff_cancel)
 | 
|  |     99 | apply (auto intro: st0_in_state)
 | 
|  |    100 | done
 | 
|  |    101 | 
 | 
|  |    102 | lemma transient_state2: "state<=B ==> transient(B) = 0"
 | 
|  |    103 | apply (simp add: transient_def st_set_def)
 | 
|  |    104 | apply (rule equalityI, auto)
 | 
|  |    105 | apply (cut_tac F = x in Acts_type)
 | 
|  |    106 | apply (subgoal_tac "B=state")
 | 
|  |    107 | apply (auto intro: st0_in_state)
 | 
|  |    108 | done
 | 
|  |    109 | 
 | 
|  |    110 | lemma transient_empty: "transient(0) = program"
 | 
|  |    111 | by (auto simp add: transient_def)
 | 
|  |    112 | 
 | 
|  |    113 | declare transient_empty [simp] transient_state [simp] transient_state2 [simp]
 | 
|  |    114 | 
 | 
|  |    115 | (*** ensures ***)
 | 
|  |    116 | 
 | 
|  |    117 | lemma ensures_type: "A ensures B <=program"
 | 
|  |    118 | by (simp add: ensures_def constrains_def, auto)
 | 
|  |    119 | 
 | 
| 46953 |    120 | lemma ensuresI:
 | 
| 46823 |    121 | "[|F:(A-B) co (A \<union> B); F \<in> transient(A-B)|]==>F \<in> A ensures B"
 | 
| 15634 |    122 | apply (unfold ensures_def)
 | 
|  |    123 | apply (auto simp add: transient_type [THEN subsetD])
 | 
|  |    124 | done
 | 
|  |    125 | 
 | 
|  |    126 | (* Added by Sidi, from Misra's notes, Progress chapter, exercise 4 *)
 | 
| 46823 |    127 | lemma ensuresI2: "[| F \<in> A co A \<union> B; F \<in> transient(A) |] ==> F \<in> A ensures B"
 | 
| 15634 |    128 | apply (drule_tac B = "A-B" in constrains_weaken_L)
 | 
|  |    129 | apply (drule_tac [2] B = "A-B" in transient_strengthen)
 | 
|  |    130 | apply (auto simp add: ensures_def transient_type [THEN subsetD])
 | 
|  |    131 | done
 | 
|  |    132 | 
 | 
| 46823 |    133 | lemma ensuresD: "F \<in> A ensures B ==> F:(A-B) co (A \<union> B) & F \<in> transient (A-B)"
 | 
| 15634 |    134 | by (unfold ensures_def, auto)
 | 
|  |    135 | 
 | 
|  |    136 | lemma ensures_weaken_R: "[|F \<in> A ensures A'; A'<=B' |] ==> F \<in> A ensures B'"
 | 
|  |    137 | apply (unfold ensures_def)
 | 
|  |    138 | apply (blast intro: transient_strengthen constrains_weaken)
 | 
|  |    139 | done
 | 
|  |    140 | 
 | 
| 46953 |    141 | (*The L-version (precondition strengthening) fails, but we have this*)
 | 
|  |    142 | lemma stable_ensures_Int:
 | 
| 46823 |    143 |      "[| F \<in> stable(C);  F \<in> A ensures B |] ==> F:(C \<inter> A) ensures (C \<inter> B)"
 | 
| 46953 |    144 | 
 | 
| 15634 |    145 | apply (unfold ensures_def)
 | 
|  |    146 | apply (simp (no_asm) add: Int_Un_distrib [symmetric] Diff_Int_distrib [symmetric])
 | 
|  |    147 | apply (blast intro: transient_strengthen stable_constrains_Int constrains_weaken)
 | 
|  |    148 | done
 | 
|  |    149 | 
 | 
| 46823 |    150 | lemma stable_transient_ensures: "[|F \<in> stable(A);  F \<in> transient(C); A<=B \<union> C|] ==> F \<in> A ensures B"
 | 
| 15634 |    151 | apply (frule stable_type [THEN subsetD])
 | 
|  |    152 | apply (simp add: ensures_def stable_def)
 | 
|  |    153 | apply (blast intro: transient_strengthen constrains_weaken)
 | 
|  |    154 | done
 | 
|  |    155 | 
 | 
| 46823 |    156 | lemma ensures_eq: "(A ensures B) = (A unless B) \<inter> transient (A-B)"
 | 
| 15634 |    157 | by (auto simp add: ensures_def unless_def)
 | 
|  |    158 | 
 | 
|  |    159 | lemma subset_imp_ensures: "[| F \<in> program; A<=B  |] ==> F \<in> A ensures B"
 | 
|  |    160 | by (auto simp add: ensures_def constrains_def transient_def st_set_def)
 | 
|  |    161 | 
 | 
|  |    162 | (*** leadsTo ***)
 | 
|  |    163 | lemmas leads_left = leads.dom_subset [THEN subsetD, THEN SigmaD1]
 | 
|  |    164 | lemmas leads_right = leads.dom_subset [THEN subsetD, THEN SigmaD2]
 | 
|  |    165 | 
 | 
| 46823 |    166 | lemma leadsTo_type: "A leadsTo B \<subseteq> program"
 | 
| 15634 |    167 | by (unfold leadsTo_def, auto)
 | 
|  |    168 | 
 | 
| 46953 |    169 | lemma leadsToD2:
 | 
| 15634 |    170 | "F \<in> A leadsTo B ==> F \<in> program & st_set(A) & st_set(B)"
 | 
|  |    171 | apply (unfold leadsTo_def st_set_def)
 | 
|  |    172 | apply (blast dest: leads_left leads_right)
 | 
|  |    173 | done
 | 
|  |    174 | 
 | 
| 46953 |    175 | lemma leadsTo_Basis:
 | 
| 15634 |    176 |     "[|F \<in> A ensures B; st_set(A); st_set(B)|] ==> F \<in> A leadsTo B"
 | 
|  |    177 | apply (unfold leadsTo_def st_set_def)
 | 
|  |    178 | apply (cut_tac ensures_type)
 | 
|  |    179 | apply (auto intro: leads.Basis)
 | 
|  |    180 | done
 | 
|  |    181 | declare leadsTo_Basis [intro]
 | 
|  |    182 | 
 | 
|  |    183 | (* Added by Sidi, from Misra's notes, Progress chapter, exercise number 4 *)
 | 
|  |    184 | (* [| F \<in> program; A<=B;  st_set(A); st_set(B) |] ==> A leadsTo B *)
 | 
| 45602 |    185 | lemmas subset_imp_leadsTo = subset_imp_ensures [THEN leadsTo_Basis]
 | 
| 15634 |    186 | 
 | 
|  |    187 | lemma leadsTo_Trans: "[|F \<in> A leadsTo B;  F \<in> B leadsTo C |]==>F \<in> A leadsTo C"
 | 
|  |    188 | apply (unfold leadsTo_def)
 | 
|  |    189 | apply (auto intro: leads.Trans)
 | 
|  |    190 | done
 | 
|  |    191 | 
 | 
|  |    192 | (* Better when used in association with leadsTo_weaken_R *)
 | 
|  |    193 | lemma transient_imp_leadsTo: "F \<in> transient(A) ==> F \<in> A leadsTo (state-A)"
 | 
|  |    194 | apply (unfold transient_def)
 | 
|  |    195 | apply (blast intro: ensuresI [THEN leadsTo_Basis] constrains_weaken transientI)
 | 
|  |    196 | done
 | 
|  |    197 | 
 | 
|  |    198 | (*Useful with cancellation, disjunction*)
 | 
| 46823 |    199 | lemma leadsTo_Un_duplicate: "F \<in> A leadsTo (A' \<union> A') ==> F \<in> A leadsTo A'"
 | 
| 15634 |    200 | by simp
 | 
|  |    201 | 
 | 
|  |    202 | lemma leadsTo_Un_duplicate2:
 | 
| 46823 |    203 |      "F \<in> A leadsTo (A' \<union> C \<union> C) ==> F \<in> A leadsTo (A' \<union> C)"
 | 
| 15634 |    204 | by (simp add: Un_ac)
 | 
|  |    205 | 
 | 
|  |    206 | (*The Union introduction rule as we should have liked to state it*)
 | 
| 46953 |    207 | lemma leadsTo_Union:
 | 
| 15634 |    208 |     "[|!!A. A \<in> S ==> F \<in> A leadsTo B; F \<in> program; st_set(B)|]
 | 
| 46823 |    209 |      ==> F \<in> \<Union>(S) leadsTo B"
 | 
| 15634 |    210 | apply (unfold leadsTo_def st_set_def)
 | 
|  |    211 | apply (blast intro: leads.Union dest: leads_left)
 | 
|  |    212 | done
 | 
|  |    213 | 
 | 
| 46953 |    214 | lemma leadsTo_Union_Int:
 | 
|  |    215 |     "[|!!A. A \<in> S ==>F \<in> (A \<inter> C) leadsTo B; F \<in> program; st_set(B)|]
 | 
| 46823 |    216 |      ==> F \<in> (\<Union>(S)Int C)leadsTo B"
 | 
| 15634 |    217 | apply (unfold leadsTo_def st_set_def)
 | 
|  |    218 | apply (simp only: Int_Union_Union)
 | 
|  |    219 | apply (blast dest: leads_left intro: leads.Union)
 | 
|  |    220 | done
 | 
|  |    221 | 
 | 
| 46953 |    222 | lemma leadsTo_UN:
 | 
| 15634 |    223 |     "[| !!i. i \<in> I ==> F \<in> A(i) leadsTo B; F \<in> program; st_set(B)|]
 | 
|  |    224 |      ==> F:(\<Union>i \<in> I. A(i)) leadsTo B"
 | 
|  |    225 | apply (simp add: Int_Union_Union leadsTo_def st_set_def)
 | 
|  |    226 | apply (blast dest: leads_left intro: leads.Union)
 | 
|  |    227 | done
 | 
|  |    228 | 
 | 
|  |    229 | (* Binary union introduction rule *)
 | 
|  |    230 | lemma leadsTo_Un:
 | 
| 46823 |    231 |      "[| F \<in> A leadsTo C; F \<in> B leadsTo C |] ==> F \<in> (A \<union> B) leadsTo C"
 | 
| 15634 |    232 | apply (subst Un_eq_Union)
 | 
|  |    233 | apply (blast intro: leadsTo_Union dest: leadsToD2)
 | 
|  |    234 | done
 | 
|  |    235 | 
 | 
|  |    236 | lemma single_leadsTo_I:
 | 
| 46953 |    237 |     "[|!!x. x \<in> A==> F:{x} leadsTo B; F \<in> program; st_set(B) |]
 | 
| 15634 |    238 |      ==> F \<in> A leadsTo B"
 | 
|  |    239 | apply (rule_tac b = A in UN_singleton [THEN subst])
 | 
| 46953 |    240 | apply (rule leadsTo_UN, auto)
 | 
| 15634 |    241 | done
 | 
|  |    242 | 
 | 
|  |    243 | lemma leadsTo_refl: "[| F \<in> program; st_set(A) |] ==> F \<in> A leadsTo A"
 | 
|  |    244 | by (blast intro: subset_imp_leadsTo)
 | 
|  |    245 | 
 | 
| 46823 |    246 | lemma leadsTo_refl_iff: "F \<in> A leadsTo A \<longleftrightarrow> F \<in> program & st_set(A)"
 | 
| 15634 |    247 | by (auto intro: leadsTo_refl dest: leadsToD2)
 | 
|  |    248 | 
 | 
| 46823 |    249 | lemma empty_leadsTo: "F \<in> 0 leadsTo B \<longleftrightarrow> (F \<in> program & st_set(B))"
 | 
| 15634 |    250 | by (auto intro: subset_imp_leadsTo dest: leadsToD2)
 | 
|  |    251 | declare empty_leadsTo [iff]
 | 
|  |    252 | 
 | 
| 46823 |    253 | lemma leadsTo_state: "F \<in> A leadsTo state \<longleftrightarrow> (F \<in> program & st_set(A))"
 | 
| 15634 |    254 | by (auto intro: subset_imp_leadsTo dest: leadsToD2 st_setD)
 | 
|  |    255 | declare leadsTo_state [iff]
 | 
|  |    256 | 
 | 
|  |    257 | lemma leadsTo_weaken_R: "[| F \<in> A leadsTo A'; A'<=B'; st_set(B') |] ==> F \<in> A leadsTo B'"
 | 
|  |    258 | by (blast dest: leadsToD2 intro: subset_imp_leadsTo leadsTo_Trans)
 | 
|  |    259 | 
 | 
|  |    260 | lemma leadsTo_weaken_L: "[| F \<in> A leadsTo A'; B<=A |] ==> F \<in> B leadsTo A'"
 | 
|  |    261 | apply (frule leadsToD2)
 | 
|  |    262 | apply (blast intro: leadsTo_Trans subset_imp_leadsTo st_set_subset)
 | 
|  |    263 | done
 | 
|  |    264 | 
 | 
|  |    265 | lemma leadsTo_weaken: "[| F \<in> A leadsTo A'; B<=A; A'<=B'; st_set(B')|]==> F \<in> B leadsTo B'"
 | 
|  |    266 | apply (frule leadsToD2)
 | 
|  |    267 | apply (blast intro: leadsTo_weaken_R leadsTo_weaken_L leadsTo_Trans leadsTo_refl)
 | 
|  |    268 | done
 | 
|  |    269 | 
 | 
|  |    270 | (* This rule has a nicer conclusion *)
 | 
|  |    271 | lemma transient_imp_leadsTo2: "[| F \<in> transient(A); state-A<=B; st_set(B)|] ==> F \<in> A leadsTo B"
 | 
|  |    272 | apply (frule transientD2)
 | 
|  |    273 | apply (rule leadsTo_weaken_R)
 | 
|  |    274 | apply (auto simp add: transient_imp_leadsTo)
 | 
|  |    275 | done
 | 
|  |    276 | 
 | 
|  |    277 | (*Distributes over binary unions*)
 | 
| 46823 |    278 | lemma leadsTo_Un_distrib: "F:(A \<union> B) leadsTo C  \<longleftrightarrow>  (F \<in> A leadsTo C & F \<in> B leadsTo C)"
 | 
| 15634 |    279 | by (blast intro: leadsTo_Un leadsTo_weaken_L)
 | 
|  |    280 | 
 | 
| 46953 |    281 | lemma leadsTo_UN_distrib:
 | 
| 46823 |    282 | "(F:(\<Union>i \<in> I. A(i)) leadsTo B)\<longleftrightarrow> ((\<forall>i \<in> I. F \<in> A(i) leadsTo B) & F \<in> program & st_set(B))"
 | 
| 15634 |    283 | apply (blast dest: leadsToD2 intro: leadsTo_UN leadsTo_weaken_L)
 | 
|  |    284 | done
 | 
|  |    285 | 
 | 
| 46823 |    286 | lemma leadsTo_Union_distrib: "(F \<in> \<Union>(S) leadsTo B) \<longleftrightarrow>  (\<forall>A \<in> S. F \<in> A leadsTo B) & F \<in> program & st_set(B)"
 | 
| 15634 |    287 | by (blast dest: leadsToD2 intro: leadsTo_Union leadsTo_weaken_L)
 | 
|  |    288 | 
 | 
| 60770 |    289 | text\<open>Set difference: maybe combine with @{text leadsTo_weaken_L}??\<close>
 | 
| 15634 |    290 | lemma leadsTo_Diff:
 | 
|  |    291 |      "[| F: (A-B) leadsTo C; F \<in> B leadsTo C; st_set(C) |]
 | 
|  |    292 |       ==> F \<in> A leadsTo C"
 | 
|  |    293 | by (blast intro: leadsTo_Un leadsTo_weaken dest: leadsToD2)
 | 
|  |    294 | 
 | 
|  |    295 | lemma leadsTo_UN_UN:
 | 
| 46953 |    296 |     "[|!!i. i \<in> I ==> F \<in> A(i) leadsTo A'(i); F \<in> program |]
 | 
| 15634 |    297 |      ==> F: (\<Union>i \<in> I. A(i)) leadsTo (\<Union>i \<in> I. A'(i))"
 | 
|  |    298 | apply (rule leadsTo_Union)
 | 
| 46953 |    299 | apply (auto intro: leadsTo_weaken_R dest: leadsToD2)
 | 
| 15634 |    300 | done
 | 
|  |    301 | 
 | 
|  |    302 | (*Binary union version*)
 | 
| 46823 |    303 | lemma leadsTo_Un_Un: "[| F \<in> A leadsTo A'; F \<in> B leadsTo B' |] ==> F \<in> (A \<union> B) leadsTo (A' \<union> B')"
 | 
| 15634 |    304 | apply (subgoal_tac "st_set (A) & st_set (A') & st_set (B) & st_set (B') ")
 | 
|  |    305 | prefer 2 apply (blast dest: leadsToD2)
 | 
|  |    306 | apply (blast intro: leadsTo_Un leadsTo_weaken_R)
 | 
|  |    307 | done
 | 
|  |    308 | 
 | 
|  |    309 | (** The cancellation law **)
 | 
| 46823 |    310 | lemma leadsTo_cancel2: "[|F \<in> A leadsTo (A' \<union> B); F \<in> B leadsTo B'|] ==> F \<in> A leadsTo (A' \<union> B')"
 | 
| 15634 |    311 | apply (subgoal_tac "st_set (A) & st_set (A') & st_set (B) & st_set (B') &F \<in> program")
 | 
|  |    312 | prefer 2 apply (blast dest: leadsToD2)
 | 
|  |    313 | apply (blast intro: leadsTo_Trans leadsTo_Un_Un leadsTo_refl)
 | 
|  |    314 | done
 | 
|  |    315 | 
 | 
| 46823 |    316 | lemma leadsTo_cancel_Diff2: "[|F \<in> A leadsTo (A' \<union> B); F \<in> (B-A') leadsTo B'|]==> F \<in> A leadsTo (A' \<union> B')"
 | 
| 15634 |    317 | apply (rule leadsTo_cancel2)
 | 
|  |    318 | prefer 2 apply assumption
 | 
|  |    319 | apply (blast dest: leadsToD2 intro: leadsTo_weaken_R)
 | 
|  |    320 | done
 | 
|  |    321 | 
 | 
|  |    322 | 
 | 
| 46823 |    323 | lemma leadsTo_cancel1: "[| F \<in> A leadsTo (B \<union> A'); F \<in> B leadsTo B' |] ==> F \<in> A leadsTo (B' \<union> A')"
 | 
| 15634 |    324 | apply (simp add: Un_commute)
 | 
|  |    325 | apply (blast intro!: leadsTo_cancel2)
 | 
|  |    326 | done
 | 
|  |    327 | 
 | 
|  |    328 | lemma leadsTo_cancel_Diff1:
 | 
| 46823 |    329 |      "[|F \<in> A leadsTo (B \<union> A'); F: (B-A') leadsTo B'|]==> F \<in> A leadsTo (B' \<union> A')"
 | 
| 15634 |    330 | apply (rule leadsTo_cancel1)
 | 
|  |    331 | prefer 2 apply assumption
 | 
|  |    332 | apply (blast intro: leadsTo_weaken_R dest: leadsToD2)
 | 
|  |    333 | done
 | 
|  |    334 | 
 | 
|  |    335 | (*The INDUCTION rule as we should have liked to state it*)
 | 
|  |    336 | lemma leadsTo_induct:
 | 
|  |    337 |   assumes major: "F \<in> za leadsTo zb"
 | 
|  |    338 |       and basis: "!!A B. [|F \<in> A ensures B; st_set(A); st_set(B)|] ==> P(A,B)"
 | 
| 46953 |    339 |       and trans: "!!A B C. [| F \<in> A leadsTo B; P(A, B);
 | 
| 15634 |    340 |                               F \<in> B leadsTo C; P(B, C) |] ==> P(A,C)"
 | 
| 46953 |    341 |       and union: "!!B S. [| \<forall>A \<in> S. F \<in> A leadsTo B; \<forall>A \<in> S. P(A,B);
 | 
| 46823 |    342 |                            st_set(B); \<forall>A \<in> S. st_set(A)|] ==> P(\<Union>(S), B)"
 | 
| 15634 |    343 |   shows "P(za, zb)"
 | 
|  |    344 | apply (cut_tac major)
 | 
| 46953 |    345 | apply (unfold leadsTo_def, clarify)
 | 
|  |    346 | apply (erule leads.induct)
 | 
| 15634 |    347 |   apply (blast intro: basis [unfolded st_set_def])
 | 
| 46953 |    348 |  apply (blast intro: trans [unfolded leadsTo_def])
 | 
|  |    349 | apply (force intro: union [unfolded st_set_def leadsTo_def])
 | 
| 15634 |    350 | done
 | 
|  |    351 | 
 | 
|  |    352 | 
 | 
|  |    353 | (* Added by Sidi, an induction rule without ensures *)
 | 
|  |    354 | lemma leadsTo_induct2:
 | 
|  |    355 |   assumes major: "F \<in> za leadsTo zb"
 | 
|  |    356 |       and basis1: "!!A B. [| A<=B; st_set(B) |] ==> P(A, B)"
 | 
| 46953 |    357 |       and basis2: "!!A B. [| F \<in> A co A \<union> B; F \<in> transient(A); st_set(B) |]
 | 
| 15634 |    358 |                           ==> P(A, B)"
 | 
| 46953 |    359 |       and trans: "!!A B C. [| F \<in> A leadsTo B; P(A, B);
 | 
| 15634 |    360 |                               F \<in> B leadsTo C; P(B, C) |] ==> P(A,C)"
 | 
| 46953 |    361 |       and union: "!!B S. [| \<forall>A \<in> S. F \<in> A leadsTo B; \<forall>A \<in> S. P(A,B);
 | 
| 46823 |    362 |                            st_set(B); \<forall>A \<in> S. st_set(A)|] ==> P(\<Union>(S), B)"
 | 
| 15634 |    363 |   shows "P(za, zb)"
 | 
|  |    364 | apply (cut_tac major)
 | 
|  |    365 | apply (erule leadsTo_induct)
 | 
|  |    366 | apply (auto intro: trans union)
 | 
|  |    367 | apply (simp add: ensures_def, clarify)
 | 
|  |    368 | apply (frule constrainsD2)
 | 
| 46823 |    369 | apply (drule_tac B' = " (A-B) \<union> B" in constrains_weaken_R)
 | 
| 15634 |    370 | apply blast
 | 
|  |    371 | apply (frule ensuresI2 [THEN leadsTo_Basis])
 | 
|  |    372 | apply (drule_tac [4] basis2, simp_all)
 | 
|  |    373 | apply (frule_tac A1 = A and B = B in Int_lower2 [THEN basis1])
 | 
| 46823 |    374 | apply (subgoal_tac "A=\<Union>({A - B, A \<inter> B}) ")
 | 
| 15634 |    375 | prefer 2 apply blast
 | 
|  |    376 | apply (erule ssubst)
 | 
|  |    377 | apply (rule union)
 | 
|  |    378 | apply (auto intro: subset_imp_leadsTo)
 | 
|  |    379 | done
 | 
|  |    380 | 
 | 
|  |    381 | 
 | 
|  |    382 | (** Variant induction rule: on the preconditions for B **)
 | 
|  |    383 | (*Lemma is the weak version: can't see how to do it in one step*)
 | 
| 46953 |    384 | lemma leadsTo_induct_pre_aux:
 | 
|  |    385 |   "[| F \<in> za leadsTo zb;
 | 
|  |    386 |       P(zb);
 | 
|  |    387 |       !!A B. [| F \<in> A ensures B;  P(B); st_set(A); st_set(B) |] ==> P(A);
 | 
|  |    388 |       !!S. [| \<forall>A \<in> S. P(A); \<forall>A \<in> S. st_set(A) |] ==> P(\<Union>(S))
 | 
| 15634 |    389 |    |] ==> P(za)"
 | 
| 60770 |    390 | txt\<open>by induction on this formula\<close>
 | 
| 46823 |    391 | apply (subgoal_tac "P (zb) \<longrightarrow> P (za) ")
 | 
| 60770 |    392 | txt\<open>now solve first subgoal: this formula is sufficient\<close>
 | 
| 15634 |    393 | apply (blast intro: leadsTo_refl)
 | 
|  |    394 | apply (erule leadsTo_induct)
 | 
|  |    395 | apply (blast+)
 | 
|  |    396 | done
 | 
|  |    397 | 
 | 
|  |    398 | 
 | 
| 46953 |    399 | lemma leadsTo_induct_pre:
 | 
|  |    400 |   "[| F \<in> za leadsTo zb;
 | 
|  |    401 |       P(zb);
 | 
|  |    402 |       !!A B. [| F \<in> A ensures B;  F \<in> B leadsTo zb;  P(B); st_set(A) |] ==> P(A);
 | 
|  |    403 |       !!S. \<forall>A \<in> S. F \<in> A leadsTo zb & P(A) & st_set(A) ==> P(\<Union>(S))
 | 
| 15634 |    404 |    |] ==> P(za)"
 | 
|  |    405 | apply (subgoal_tac " (F \<in> za leadsTo zb) & P (za) ")
 | 
|  |    406 | apply (erule conjunct2)
 | 
| 46953 |    407 | apply (frule leadsToD2)
 | 
| 15634 |    408 | apply (erule leadsTo_induct_pre_aux)
 | 
|  |    409 | prefer 3 apply (blast dest: leadsToD2 intro: leadsTo_Union)
 | 
|  |    410 | prefer 2 apply (blast intro: leadsTo_Trans leadsTo_Basis)
 | 
|  |    411 | apply (blast intro: leadsTo_refl)
 | 
|  |    412 | done
 | 
|  |    413 | 
 | 
|  |    414 | (** The impossibility law **)
 | 
| 46953 |    415 | lemma leadsTo_empty:
 | 
| 15634 |    416 |    "F \<in> A leadsTo 0 ==> A=0"
 | 
|  |    417 | apply (erule leadsTo_induct_pre)
 | 
|  |    418 | apply (auto simp add: ensures_def constrains_def transient_def st_set_def)
 | 
|  |    419 | apply (drule bspec, assumption)+
 | 
|  |    420 | apply blast
 | 
|  |    421 | done
 | 
|  |    422 | declare leadsTo_empty [simp]
 | 
|  |    423 | 
 | 
| 60770 |    424 | subsection\<open>PSP: Progress-Safety-Progress\<close>
 | 
| 15634 |    425 | 
 | 
| 60770 |    426 | text\<open>Special case of PSP: Misra's "stable conjunction"\<close>
 | 
| 15634 |    427 | 
 | 
| 46953 |    428 | lemma psp_stable:
 | 
| 46823 |    429 |    "[| F \<in> A leadsTo A'; F \<in> stable(B) |] ==> F:(A \<inter> B) leadsTo (A' \<inter> B)"
 | 
| 15634 |    430 | apply (unfold stable_def)
 | 
| 46953 |    431 | apply (frule leadsToD2)
 | 
| 15634 |    432 | apply (erule leadsTo_induct)
 | 
|  |    433 | prefer 3 apply (blast intro: leadsTo_Union_Int)
 | 
|  |    434 | prefer 2 apply (blast intro: leadsTo_Trans)
 | 
|  |    435 | apply (rule leadsTo_Basis)
 | 
|  |    436 | apply (simp add: ensures_def Diff_Int_distrib2 [symmetric] Int_Un_distrib2 [symmetric])
 | 
|  |    437 | apply (auto intro: transient_strengthen constrains_Int)
 | 
|  |    438 | done
 | 
|  |    439 | 
 | 
|  |    440 | 
 | 
| 46823 |    441 | lemma psp_stable2: "[|F \<in> A leadsTo A'; F \<in> stable(B) |]==>F: (B \<inter> A) leadsTo (B \<inter> A')"
 | 
| 15634 |    442 | apply (simp (no_asm_simp) add: psp_stable Int_ac)
 | 
|  |    443 | done
 | 
|  |    444 | 
 | 
| 46953 |    445 | lemma psp_ensures:
 | 
| 46823 |    446 | "[| F \<in> A ensures A'; F \<in> B co B' |]==> F: (A \<inter> B') ensures ((A' \<inter> B) \<union> (B' - B))"
 | 
| 15634 |    447 | apply (unfold ensures_def constrains_def st_set_def)
 | 
|  |    448 | (*speeds up the proof*)
 | 
|  |    449 | apply clarify
 | 
|  |    450 | apply (blast intro: transient_strengthen)
 | 
|  |    451 | done
 | 
|  |    452 | 
 | 
| 46953 |    453 | lemma psp:
 | 
| 46823 |    454 | "[|F \<in> A leadsTo A'; F \<in> B co B'; st_set(B')|]==> F:(A \<inter> B') leadsTo ((A' \<inter> B) \<union> (B' - B))"
 | 
| 15634 |    455 | apply (subgoal_tac "F \<in> program & st_set (A) & st_set (A') & st_set (B) ")
 | 
|  |    456 | prefer 2 apply (blast dest!: constrainsD2 leadsToD2)
 | 
|  |    457 | apply (erule leadsTo_induct)
 | 
|  |    458 | prefer 3 apply (blast intro: leadsTo_Union_Int)
 | 
| 60770 |    459 |  txt\<open>Basis case\<close>
 | 
| 15634 |    460 |  apply (blast intro: psp_ensures leadsTo_Basis)
 | 
| 60770 |    461 | txt\<open>Transitivity case has a delicate argument involving "cancellation"\<close>
 | 
| 15634 |    462 | apply (rule leadsTo_Un_duplicate2)
 | 
|  |    463 | apply (erule leadsTo_cancel_Diff1)
 | 
|  |    464 | apply (simp add: Int_Diff Diff_triv)
 | 
|  |    465 | apply (blast intro: leadsTo_weaken_L dest: constrains_imp_subset)
 | 
|  |    466 | done
 | 
|  |    467 | 
 | 
|  |    468 | 
 | 
| 46953 |    469 | lemma psp2: "[| F \<in> A leadsTo A'; F \<in> B co B'; st_set(B') |]
 | 
| 46823 |    470 |     ==> F \<in> (B' \<inter> A) leadsTo ((B \<inter> A') \<union> (B' - B))"
 | 
| 15634 |    471 | by (simp (no_asm_simp) add: psp Int_ac)
 | 
|  |    472 | 
 | 
| 46953 |    473 | lemma psp_unless:
 | 
|  |    474 |    "[| F \<in> A leadsTo A';  F \<in> B unless B'; st_set(B); st_set(B') |]
 | 
| 46823 |    475 |     ==> F \<in> (A \<inter> B) leadsTo ((A' \<inter> B) \<union> B')"
 | 
| 15634 |    476 | apply (unfold unless_def)
 | 
|  |    477 | apply (subgoal_tac "st_set (A) &st_set (A') ")
 | 
|  |    478 | prefer 2 apply (blast dest: leadsToD2)
 | 
|  |    479 | apply (drule psp, assumption, blast)
 | 
|  |    480 | apply (blast intro: leadsTo_weaken)
 | 
|  |    481 | done
 | 
|  |    482 | 
 | 
|  |    483 | 
 | 
| 60770 |    484 | subsection\<open>Proving the induction rules\<close>
 | 
| 15634 |    485 | 
 | 
|  |    486 | (** The most general rule \<in> r is any wf relation; f is any variant function **)
 | 
| 46953 |    487 | lemma leadsTo_wf_induct_aux: "[| wf(r);
 | 
|  |    488 |          m \<in> I;
 | 
|  |    489 |          field(r)<=I;
 | 
|  |    490 |          F \<in> program; st_set(B);
 | 
|  |    491 |          \<forall>m \<in> I. F \<in> (A \<inter> f-``{m}) leadsTo
 | 
|  |    492 |                     ((A \<inter> f-``(converse(r)``{m})) \<union> B) |]
 | 
| 46823 |    493 |       ==> F \<in> (A \<inter> f-``{m}) leadsTo B"
 | 
| 15634 |    494 | apply (erule_tac a = m in wf_induct2, simp_all)
 | 
| 46823 |    495 | apply (subgoal_tac "F \<in> (A \<inter> (f-`` (converse (r) ``{x}))) leadsTo B")
 | 
| 15634 |    496 |  apply (blast intro: leadsTo_cancel1 leadsTo_Un_duplicate)
 | 
|  |    497 | apply (subst vimage_eq_UN)
 | 
|  |    498 | apply (simp del: UN_simps add: Int_UN_distrib)
 | 
|  |    499 | apply (auto intro: leadsTo_UN simp del: UN_simps simp add: Int_UN_distrib)
 | 
|  |    500 | done
 | 
|  |    501 | 
 | 
|  |    502 | (** Meta or object quantifier ? **)
 | 
| 46953 |    503 | lemma leadsTo_wf_induct: "[| wf(r);
 | 
|  |    504 |          field(r)<=I;
 | 
|  |    505 |          A<=f-``I;
 | 
|  |    506 |          F \<in> program; st_set(A); st_set(B);
 | 
|  |    507 |          \<forall>m \<in> I. F \<in> (A \<inter> f-``{m}) leadsTo
 | 
|  |    508 |                     ((A \<inter> f-``(converse(r)``{m})) \<union> B) |]
 | 
| 15634 |    509 |       ==> F \<in> A leadsTo B"
 | 
|  |    510 | apply (rule_tac b = A in subst)
 | 
|  |    511 |  defer 1
 | 
|  |    512 |  apply (rule_tac I = I in leadsTo_UN)
 | 
| 46953 |    513 |  apply (erule_tac I = I in leadsTo_wf_induct_aux, assumption+, best)
 | 
| 15634 |    514 | done
 | 
|  |    515 | 
 | 
|  |    516 | lemma nat_measure_field: "field(measure(nat, %x. x)) = nat"
 | 
|  |    517 | apply (unfold field_def)
 | 
|  |    518 | apply (simp add: measure_def)
 | 
|  |    519 | apply (rule equalityI, force, clarify)
 | 
| 59788 |    520 | apply (erule_tac V = "x\<notin>range (y)" for y in thin_rl)
 | 
| 15634 |    521 | apply (erule nat_induct)
 | 
|  |    522 | apply (rule_tac [2] b = "succ (succ (xa))" in domainI)
 | 
|  |    523 | apply (rule_tac b = "succ (0) " in domainI)
 | 
|  |    524 | apply simp_all
 | 
|  |    525 | done
 | 
|  |    526 | 
 | 
|  |    527 | 
 | 
|  |    528 | lemma Image_inverse_lessThan: "k<A ==> measure(A, %x. x) -`` {k} = k"
 | 
|  |    529 | apply (rule equalityI)
 | 
|  |    530 | apply (auto simp add: measure_def)
 | 
|  |    531 | apply (blast intro: ltD)
 | 
|  |    532 | apply (rule vimageI)
 | 
|  |    533 | prefer 2 apply blast
 | 
|  |    534 | apply (simp add: lt_Ord lt_Ord2 Ord_mem_iff_lt)
 | 
|  |    535 | apply (blast intro: lt_trans)
 | 
|  |    536 | done
 | 
|  |    537 | 
 | 
| 46823 |    538 | (*Alternative proof is via the lemma F \<in> (A \<inter> f-`(lessThan m)) leadsTo B*)
 | 
| 46953 |    539 | lemma lessThan_induct:
 | 
|  |    540 |  "[| A<=f-``nat;
 | 
|  |    541 |      F \<in> program; st_set(A); st_set(B);
 | 
|  |    542 |      \<forall>m \<in> nat. F:(A \<inter> f-``{m}) leadsTo ((A \<inter> f -`` m) \<union> B) |]
 | 
| 15634 |    543 |       ==> F \<in> A leadsTo B"
 | 
| 46953 |    544 | apply (rule_tac A1 = nat and f1 = "%x. x" in wf_measure [THEN leadsTo_wf_induct])
 | 
| 15634 |    545 | apply (simp_all add: nat_measure_field)
 | 
|  |    546 | apply (simp add: ltI Image_inverse_lessThan vimage_def [symmetric])
 | 
|  |    547 | done
 | 
|  |    548 | 
 | 
|  |    549 | 
 | 
|  |    550 | (*** wlt ****)
 | 
|  |    551 | 
 | 
|  |    552 | (*Misra's property W3*)
 | 
|  |    553 | lemma wlt_type: "wlt(F,B) <=state"
 | 
|  |    554 | by (unfold wlt_def, auto)
 | 
|  |    555 | 
 | 
|  |    556 | lemma wlt_st_set: "st_set(wlt(F, B))"
 | 
|  |    557 | apply (unfold st_set_def)
 | 
|  |    558 | apply (rule wlt_type)
 | 
|  |    559 | done
 | 
|  |    560 | declare wlt_st_set [iff]
 | 
|  |    561 | 
 | 
| 46823 |    562 | lemma wlt_leadsTo_iff: "F \<in> wlt(F, B) leadsTo B \<longleftrightarrow> (F \<in> program & st_set(B))"
 | 
| 15634 |    563 | apply (unfold wlt_def)
 | 
|  |    564 | apply (blast dest: leadsToD2 intro!: leadsTo_Union)
 | 
|  |    565 | done
 | 
|  |    566 | 
 | 
|  |    567 | (* [| F \<in> program;  st_set(B) |] ==> F \<in> wlt(F, B) leadsTo B  *)
 | 
| 45602 |    568 | lemmas wlt_leadsTo = conjI [THEN wlt_leadsTo_iff [THEN iffD2]]
 | 
| 15634 |    569 | 
 | 
| 46823 |    570 | lemma leadsTo_subset: "F \<in> A leadsTo B ==> A \<subseteq> wlt(F, B)"
 | 
| 15634 |    571 | apply (unfold wlt_def)
 | 
|  |    572 | apply (frule leadsToD2)
 | 
|  |    573 | apply (auto simp add: st_set_def)
 | 
|  |    574 | done
 | 
|  |    575 | 
 | 
|  |    576 | (*Misra's property W2*)
 | 
| 46823 |    577 | lemma leadsTo_eq_subset_wlt: "F \<in> A leadsTo B \<longleftrightarrow> (A \<subseteq> wlt(F,B) & F \<in> program & st_set(B))"
 | 
| 15634 |    578 | apply auto
 | 
|  |    579 | apply (blast dest: leadsToD2 leadsTo_subset intro: leadsTo_weaken_L wlt_leadsTo)+
 | 
|  |    580 | done
 | 
|  |    581 | 
 | 
|  |    582 | (*Misra's property W4*)
 | 
| 46823 |    583 | lemma wlt_increasing: "[| F \<in> program; st_set(B) |] ==> B \<subseteq> wlt(F,B)"
 | 
| 15634 |    584 | apply (rule leadsTo_subset)
 | 
|  |    585 | apply (simp (no_asm_simp) add: leadsTo_eq_subset_wlt [THEN iff_sym] subset_imp_leadsTo)
 | 
|  |    586 | done
 | 
|  |    587 | 
 | 
|  |    588 | (*Used in the Trans case below*)
 | 
| 46953 |    589 | lemma leadsTo_123_aux:
 | 
|  |    590 |    "[| B \<subseteq> A2;
 | 
|  |    591 |        F \<in> (A1 - B) co (A1 \<union> B);
 | 
|  |    592 |        F \<in> (A2 - C) co (A2 \<union> C) |]
 | 
| 46823 |    593 |     ==> F \<in> (A1 \<union> A2 - C) co (A1 \<union> A2 \<union> C)"
 | 
| 15634 |    594 | apply (unfold constrains_def st_set_def, blast)
 | 
|  |    595 | done
 | 
|  |    596 | 
 | 
|  |    597 | (*Lemma (1,2,3) of Misra's draft book, Chapter 4, "Progress"*)
 | 
|  |    598 | (* slightly different from the HOL one \<in> B here is bounded *)
 | 
| 46953 |    599 | lemma leadsTo_123: "F \<in> A leadsTo A'
 | 
| 46823 |    600 |       ==> \<exists>B \<in> Pow(state). A<=B & F \<in> B leadsTo A' & F \<in> (B-A') co (B \<union> A')"
 | 
| 15634 |    601 | apply (frule leadsToD2)
 | 
|  |    602 | apply (erule leadsTo_induct)
 | 
| 60770 |    603 |   txt\<open>Basis\<close>
 | 
| 15634 |    604 |   apply (blast dest: ensuresD constrainsD2 st_setD)
 | 
| 60770 |    605 |  txt\<open>Trans\<close>
 | 
| 15634 |    606 |  apply clarify
 | 
| 46823 |    607 |  apply (rule_tac x = "Ba \<union> Bb" in bexI)
 | 
| 15634 |    608 |  apply (blast intro: leadsTo_123_aux leadsTo_Un_Un leadsTo_cancel1 leadsTo_Un_duplicate, blast)
 | 
| 60770 |    609 | txt\<open>Union\<close>
 | 
| 15634 |    610 | apply (clarify dest!: ball_conj_distrib [THEN iffD1])
 | 
| 46823 |    611 | apply (subgoal_tac "\<exists>y. y \<in> Pi (S, %A. {Ba \<in> Pow (state) . A<=Ba & F \<in> Ba leadsTo B & F \<in> Ba - B co Ba \<union> B}) ")
 | 
| 15634 |    612 | defer 1
 | 
|  |    613 | apply (rule AC_ball_Pi, safe)
 | 
|  |    614 | apply (rotate_tac 1)
 | 
| 46953 |    615 | apply (drule_tac x = x in bspec, blast, blast)
 | 
| 15634 |    616 | apply (rule_tac x = "\<Union>A \<in> S. y`A" in bexI, safe)
 | 
|  |    617 | apply (rule_tac [3] I1 = S in constrains_UN [THEN constrains_weaken])
 | 
|  |    618 | apply (rule_tac [2] leadsTo_Union)
 | 
|  |    619 | prefer 5 apply (blast dest!: apply_type, simp_all)
 | 
|  |    620 | apply (force dest!: apply_type)+
 | 
|  |    621 | done
 | 
|  |    622 | 
 | 
|  |    623 | 
 | 
|  |    624 | (*Misra's property W5*)
 | 
|  |    625 | lemma wlt_constrains_wlt: "[| F \<in> program; st_set(B) |] ==>F \<in> (wlt(F, B) - B) co (wlt(F,B))"
 | 
|  |    626 | apply (cut_tac F = F in wlt_leadsTo [THEN leadsTo_123], assumption, blast)
 | 
|  |    627 | apply clarify
 | 
|  |    628 | apply (subgoal_tac "Ba = wlt (F,B) ")
 | 
|  |    629 | prefer 2 apply (blast dest: leadsTo_eq_subset_wlt [THEN iffD1], clarify)
 | 
|  |    630 | apply (simp add: wlt_increasing [THEN subset_Un_iff2 [THEN iffD1]])
 | 
|  |    631 | done
 | 
|  |    632 | 
 | 
|  |    633 | 
 | 
| 60770 |    634 | subsection\<open>Completion: Binary and General Finite versions\<close>
 | 
| 15634 |    635 | 
 | 
| 46953 |    636 | lemma completion_aux: "[| W = wlt(F, (B' \<union> C));
 | 
|  |    637 |        F \<in> A leadsTo (A' \<union> C);  F \<in> A' co (A' \<union> C);
 | 
|  |    638 |        F \<in> B leadsTo (B' \<union> C);  F \<in> B' co (B' \<union> C) |]
 | 
| 46823 |    639 |     ==> F \<in> (A \<inter> B) leadsTo ((A' \<inter> B') \<union> C)"
 | 
| 15634 |    640 | apply (subgoal_tac "st_set (C) &st_set (W) &st_set (W-C) &st_set (A') &st_set (A) & st_set (B) & st_set (B') & F \<in> program")
 | 
| 46953 |    641 |  prefer 2
 | 
|  |    642 |  apply simp
 | 
| 15634 |    643 |  apply (blast dest!: leadsToD2)
 | 
| 46823 |    644 | apply (subgoal_tac "F \<in> (W-C) co (W \<union> B' \<union> C) ")
 | 
| 15634 |    645 |  prefer 2
 | 
|  |    646 |  apply (blast intro!: constrains_weaken [OF constrains_Un [OF _ wlt_constrains_wlt]])
 | 
|  |    647 | apply (subgoal_tac "F \<in> (W-C) co W")
 | 
|  |    648 |  prefer 2
 | 
|  |    649 |  apply (simp add: wlt_increasing [THEN subset_Un_iff2 [THEN iffD1]] Un_assoc)
 | 
| 46823 |    650 | apply (subgoal_tac "F \<in> (A \<inter> W - C) leadsTo (A' \<inter> W \<union> C) ")
 | 
| 15634 |    651 |  prefer 2 apply (blast intro: wlt_leadsTo psp [THEN leadsTo_weaken])
 | 
|  |    652 | (** step 13 **)
 | 
| 46823 |    653 | apply (subgoal_tac "F \<in> (A' \<inter> W \<union> C) leadsTo (A' \<inter> B' \<union> C) ")
 | 
| 15634 |    654 | apply (drule leadsTo_Diff)
 | 
|  |    655 | apply (blast intro: subset_imp_leadsTo dest: leadsToD2 constrainsD2)
 | 
|  |    656 | apply (force simp add: st_set_def)
 | 
| 46823 |    657 | apply (subgoal_tac "A \<inter> B \<subseteq> A \<inter> W")
 | 
| 15634 |    658 | prefer 2 apply (blast dest!: leadsTo_subset intro!: subset_refl [THEN Int_mono])
 | 
|  |    659 | apply (blast intro: leadsTo_Trans subset_imp_leadsTo)
 | 
| 60770 |    660 | txt\<open>last subgoal\<close>
 | 
| 15634 |    661 | apply (rule_tac leadsTo_Un_duplicate2)
 | 
|  |    662 | apply (rule_tac leadsTo_Un_Un)
 | 
|  |    663 |  prefer 2 apply (blast intro: leadsTo_refl)
 | 
| 46823 |    664 | apply (rule_tac A'1 = "B' \<union> C" in wlt_leadsTo[THEN psp2, THEN leadsTo_weaken])
 | 
| 15634 |    665 | apply blast+
 | 
|  |    666 | done
 | 
|  |    667 | 
 | 
| 45602 |    668 | lemmas completion = refl [THEN completion_aux]
 | 
| 15634 |    669 | 
 | 
|  |    670 | lemma finite_completion_aux:
 | 
| 46953 |    671 |      "[| I \<in> Fin(X); F \<in> program; st_set(C) |] ==>
 | 
|  |    672 |        (\<forall>i \<in> I. F \<in> (A(i)) leadsTo (A'(i) \<union> C)) \<longrightarrow>
 | 
|  |    673 |                      (\<forall>i \<in> I. F \<in> (A'(i)) co (A'(i) \<union> C)) \<longrightarrow>
 | 
| 46823 |    674 |                    F \<in> (\<Inter>i \<in> I. A(i)) leadsTo ((\<Inter>i \<in> I. A'(i)) \<union> C)"
 | 
| 15634 |    675 | apply (erule Fin_induct)
 | 
|  |    676 | apply (auto simp add: Inter_0)
 | 
|  |    677 | apply (rule completion)
 | 
|  |    678 | apply (auto simp del: INT_simps simp add: INT_extend_simps)
 | 
|  |    679 | apply (blast intro: constrains_INT)
 | 
|  |    680 | done
 | 
|  |    681 | 
 | 
| 46953 |    682 | lemma finite_completion:
 | 
|  |    683 |      "[| I \<in> Fin(X);
 | 
|  |    684 |          !!i. i \<in> I ==> F \<in> A(i) leadsTo (A'(i) \<union> C);
 | 
|  |    685 |          !!i. i \<in> I ==> F \<in> A'(i) co (A'(i) \<union> C); F \<in> program; st_set(C)|]
 | 
| 46823 |    686 |       ==> F \<in> (\<Inter>i \<in> I. A(i)) leadsTo ((\<Inter>i \<in> I. A'(i)) \<union> C)"
 | 
| 15634 |    687 | by (blast intro: finite_completion_aux [THEN mp, THEN mp])
 | 
|  |    688 | 
 | 
| 46953 |    689 | lemma stable_completion:
 | 
|  |    690 |      "[| F \<in> A leadsTo A';  F \<in> stable(A');
 | 
|  |    691 |          F \<in> B leadsTo B';  F \<in> stable(B') |]
 | 
| 46823 |    692 |     ==> F \<in> (A \<inter> B) leadsTo (A' \<inter> B')"
 | 
| 15634 |    693 | apply (unfold stable_def)
 | 
|  |    694 | apply (rule_tac C1 = 0 in completion [THEN leadsTo_weaken_R], simp+)
 | 
|  |    695 | apply (blast dest: leadsToD2)
 | 
|  |    696 | done
 | 
|  |    697 | 
 | 
|  |    698 | 
 | 
| 46953 |    699 | lemma finite_stable_completion:
 | 
|  |    700 |      "[| I \<in> Fin(X);
 | 
|  |    701 |          (!!i. i \<in> I ==> F \<in> A(i) leadsTo A'(i));
 | 
|  |    702 |          (!!i. i \<in> I ==> F \<in> stable(A'(i)));  F \<in> program |]
 | 
| 15634 |    703 |       ==> F \<in> (\<Inter>i \<in> I. A(i)) leadsTo (\<Inter>i \<in> I. A'(i))"
 | 
|  |    704 | apply (unfold stable_def)
 | 
|  |    705 | apply (subgoal_tac "st_set (\<Inter>i \<in> I. A' (i))")
 | 
|  |    706 | prefer 2 apply (blast dest: leadsToD2)
 | 
| 46953 |    707 | apply (rule_tac C1 = 0 in finite_completion [THEN leadsTo_weaken_R], auto)
 | 
| 15634 |    708 | done
 | 
|  |    709 | 
 | 
| 11479 |    710 | end
 |