| 
43141
 | 
     1  | 
(* Author: Gerwin Klein, Tobias Nipkow *)
  | 
| 
 | 
     2  | 
  | 
| 
 | 
     3  | 
theory Big_Step imports Com begin
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
subsection "Big-Step Semantics of Commands"
  | 
| 
 | 
     6  | 
  | 
| 
49191
 | 
     7  | 
text_raw{*\snip{BigStepdef}{0}{1}{% *}
 | 
| 
43141
 | 
     8  | 
inductive
  | 
| 
 | 
     9  | 
  big_step :: "com \<times> state \<Rightarrow> state \<Rightarrow> bool" (infix "\<Rightarrow>" 55)
  | 
| 
 | 
    10  | 
where
  | 
| 
 | 
    11  | 
Skip:    "(SKIP,s) \<Rightarrow> s" |
  | 
| 
 | 
    12  | 
Assign:  "(x ::= a,s) \<Rightarrow> s(x := aval a s)" |
  | 
| 
47818
 | 
    13  | 
Seq:     "\<lbrakk> (c\<^isub>1,s\<^isub>1) \<Rightarrow> s\<^isub>2;  (c\<^isub>2,s\<^isub>2) \<Rightarrow> s\<^isub>3 \<rbrakk> \<Longrightarrow>
  | 
| 
43141
 | 
    14  | 
          (c\<^isub>1;c\<^isub>2, s\<^isub>1) \<Rightarrow> s\<^isub>3" |
  | 
| 
 | 
    15  | 
  | 
| 
 | 
    16  | 
IfTrue:  "\<lbrakk> bval b s;  (c\<^isub>1,s) \<Rightarrow> t \<rbrakk> \<Longrightarrow>
  | 
| 
50054
 | 
    17  | 
          (IF b THEN c\<^isub>1 ELSE c\<^isub>2, s) \<Rightarrow> t" |
  | 
| 
43141
 | 
    18  | 
IfFalse: "\<lbrakk> \<not>bval b s;  (c\<^isub>2,s) \<Rightarrow> t \<rbrakk> \<Longrightarrow>
  | 
| 
50054
 | 
    19  | 
          (IF b THEN c\<^isub>1 ELSE c\<^isub>2, s) \<Rightarrow> t" |
  | 
| 
43141
 | 
    20  | 
  | 
| 
 | 
    21  | 
WhileFalse: "\<not>bval b s \<Longrightarrow> (WHILE b DO c,s) \<Rightarrow> s" |
  | 
| 
 | 
    22  | 
WhileTrue:  "\<lbrakk> bval b s\<^isub>1;  (c,s\<^isub>1) \<Rightarrow> s\<^isub>2;  (WHILE b DO c, s\<^isub>2) \<Rightarrow> s\<^isub>3 \<rbrakk> \<Longrightarrow>
  | 
| 
50054
 | 
    23  | 
                (WHILE b DO c, s\<^isub>1) \<Rightarrow> s\<^isub>3"
  | 
| 
49191
 | 
    24  | 
text_raw{*}%endsnip*}
 | 
| 
43141
 | 
    25  | 
  | 
| 
49191
 | 
    26  | 
text_raw{*\snip{BigStepEx}{1}{2}{% *}
 | 
| 
43141
 | 
    27  | 
schematic_lemma ex: "(''x'' ::= N 5; ''y'' ::= V ''x'', s) \<Rightarrow> ?t"
 | 
| 
47818
 | 
    28  | 
apply(rule Seq)
  | 
| 
43141
 | 
    29  | 
apply(rule Assign)
  | 
| 
 | 
    30  | 
apply simp
  | 
| 
 | 
    31  | 
apply(rule Assign)
  | 
| 
 | 
    32  | 
done
  | 
| 
49191
 | 
    33  | 
text_raw{*}%endsnip*}
 | 
| 
43141
 | 
    34  | 
  | 
| 
 | 
    35  | 
thm ex[simplified]
  | 
| 
 | 
    36  | 
  | 
| 
 | 
    37  | 
text{* We want to execute the big-step rules: *}
 | 
| 
 | 
    38  | 
  | 
| 
 | 
    39  | 
code_pred big_step .
  | 
| 
 | 
    40  | 
  | 
| 
 | 
    41  | 
text{* For inductive definitions we need command
 | 
| 
 | 
    42  | 
       \texttt{values} instead of \texttt{value}. *}
 | 
| 
 | 
    43  | 
  | 
| 
44923
 | 
    44  | 
values "{t. (SKIP, \<lambda>_. 0) \<Rightarrow> t}"
 | 
| 
43141
 | 
    45  | 
  | 
| 
 | 
    46  | 
text{* We need to translate the result state into a list
 | 
| 
 | 
    47  | 
to display it. *}
  | 
| 
 | 
    48  | 
  | 
| 
44036
 | 
    49  | 
values "{map t [''x''] |t. (SKIP, <''x'' := 42>) \<Rightarrow> t}"
 | 
| 
43141
 | 
    50  | 
  | 
| 
44036
 | 
    51  | 
values "{map t [''x''] |t. (''x'' ::= N 2, <''x'' := 42>) \<Rightarrow> t}"
 | 
| 
43141
 | 
    52  | 
  | 
| 
 | 
    53  | 
values "{map t [''x'',''y''] |t.
 | 
| 
 | 
    54  | 
  (WHILE Less (V ''x'') (V ''y'') DO (''x'' ::= Plus (V ''x'') (N 5)),
 | 
| 
44036
 | 
    55  | 
   <''x'' := 0, ''y'' := 13>) \<Rightarrow> t}"
  | 
| 
43141
 | 
    56  | 
  | 
| 
 | 
    57  | 
  | 
| 
 | 
    58  | 
text{* Proof automation: *}
 | 
| 
 | 
    59  | 
  | 
| 
 | 
    60  | 
declare big_step.intros [intro]
  | 
| 
 | 
    61  | 
  | 
| 
 | 
    62  | 
text{* The standard induction rule 
 | 
| 
 | 
    63  | 
@{thm [display] big_step.induct [no_vars]} *}
 | 
| 
 | 
    64  | 
  | 
| 
 | 
    65  | 
thm big_step.induct
  | 
| 
 | 
    66  | 
  | 
| 
 | 
    67  | 
text{* A customized induction rule for (c,s) pairs: *}
 | 
| 
 | 
    68  | 
  | 
| 
 | 
    69  | 
lemmas big_step_induct = big_step.induct[split_format(complete)]
  | 
| 
 | 
    70  | 
thm big_step_induct
  | 
| 
 | 
    71  | 
text {*
 | 
| 
 | 
    72  | 
@{thm [display] big_step_induct [no_vars]}
 | 
| 
 | 
    73  | 
*}
  | 
| 
 | 
    74  | 
  | 
| 
 | 
    75  | 
  | 
| 
 | 
    76  | 
subsection "Rule inversion"
  | 
| 
 | 
    77  | 
  | 
| 
 | 
    78  | 
text{* What can we deduce from @{prop "(SKIP,s) \<Rightarrow> t"} ?
 | 
| 
 | 
    79  | 
That @{prop "s = t"}. This is how we can automatically prove it: *}
 | 
| 
 | 
    80  | 
  | 
| 
 | 
    81  | 
inductive_cases skipE[elim!]: "(SKIP,s) \<Rightarrow> t"
  | 
| 
 | 
    82  | 
thm skipE
  | 
| 
 | 
    83  | 
  | 
| 
 | 
    84  | 
text{* This is an \emph{elimination rule}. The [elim] attribute tells auto,
 | 
| 
 | 
    85  | 
blast and friends (but not simp!) to use it automatically; [elim!] means that
  | 
| 
 | 
    86  | 
it is applied eagerly.
  | 
| 
 | 
    87  | 
  | 
| 
 | 
    88  | 
Similarly for the other commands: *}
  | 
| 
 | 
    89  | 
  | 
| 
 | 
    90  | 
inductive_cases AssignE[elim!]: "(x ::= a,s) \<Rightarrow> t"
  | 
| 
 | 
    91  | 
thm AssignE
  | 
| 
47818
 | 
    92  | 
inductive_cases SeqE[elim!]: "(c1;c2,s1) \<Rightarrow> s3"
  | 
| 
 | 
    93  | 
thm SeqE
  | 
| 
43141
 | 
    94  | 
inductive_cases IfE[elim!]: "(IF b THEN c1 ELSE c2,s) \<Rightarrow> t"
  | 
| 
 | 
    95  | 
thm IfE
  | 
| 
 | 
    96  | 
  | 
| 
 | 
    97  | 
inductive_cases WhileE[elim]: "(WHILE b DO c,s) \<Rightarrow> t"
  | 
| 
 | 
    98  | 
thm WhileE
  | 
| 
 | 
    99  | 
text{* Only [elim]: [elim!] would not terminate. *}
 | 
| 
 | 
   100  | 
  | 
| 
 | 
   101  | 
text{* An automatic example: *}
 | 
| 
 | 
   102  | 
  | 
| 
 | 
   103  | 
lemma "(IF b THEN SKIP ELSE SKIP, s) \<Rightarrow> t \<Longrightarrow> t = s"
  | 
| 
 | 
   104  | 
by blast
  | 
| 
 | 
   105  | 
  | 
| 
 | 
   106  | 
text{* Rule inversion by hand via the ``cases'' method: *}
 | 
| 
 | 
   107  | 
  | 
| 
 | 
   108  | 
lemma assumes "(IF b THEN SKIP ELSE SKIP, s) \<Rightarrow> t"
  | 
| 
 | 
   109  | 
shows "t = s"
  | 
| 
 | 
   110  | 
proof-
  | 
| 
 | 
   111  | 
  from assms show ?thesis
  | 
| 
 | 
   112  | 
  proof cases  --"inverting assms"
  | 
| 
 | 
   113  | 
    case IfTrue thm IfTrue
  | 
| 
 | 
   114  | 
    thus ?thesis by blast
  | 
| 
 | 
   115  | 
  next
  | 
| 
 | 
   116  | 
    case IfFalse thus ?thesis by blast
  | 
| 
 | 
   117  | 
  qed
  | 
| 
 | 
   118  | 
qed
  | 
| 
 | 
   119  | 
  | 
| 
44070
 | 
   120  | 
(* Using rule inversion to prove simplification rules: *)
  | 
| 
 | 
   121  | 
lemma assign_simp:
  | 
| 
 | 
   122  | 
  "(x ::= a,s) \<Rightarrow> s' \<longleftrightarrow> (s' = s(x := aval a s))"
  | 
| 
 | 
   123  | 
  by auto
  | 
| 
43141
 | 
   124  | 
  | 
| 
 | 
   125  | 
subsection "Command Equivalence"
  | 
| 
 | 
   126  | 
  | 
| 
 | 
   127  | 
text {*
 | 
| 
 | 
   128  | 
  We call two statements @{text c} and @{text c'} equivalent wrt.\ the
 | 
| 
 | 
   129  | 
  big-step semantics when \emph{@{text c} started in @{text s} terminates
 | 
| 
 | 
   130  | 
  in @{text s'} iff @{text c'} started in the same @{text s} also terminates
 | 
| 
 | 
   131  | 
  in the same @{text s'}}. Formally:
 | 
| 
 | 
   132  | 
*}
  | 
| 
49191
 | 
   133  | 
text_raw{*\snip{BigStepEquiv}{0}{1}{% *}
 | 
| 
43141
 | 
   134  | 
abbreviation
  | 
| 
 | 
   135  | 
  equiv_c :: "com \<Rightarrow> com \<Rightarrow> bool" (infix "\<sim>" 50) where
  | 
| 
 | 
   136  | 
  "c \<sim> c' == (\<forall>s t. (c,s) \<Rightarrow> t  =  (c',s) \<Rightarrow> t)"
  | 
| 
49191
 | 
   137  | 
text_raw{*}%endsnip*}
 | 
| 
43141
 | 
   138  | 
  | 
| 
 | 
   139  | 
text {*
 | 
| 
 | 
   140  | 
Warning: @{text"\<sim>"} is the symbol written \verb!\ < s i m >! (without spaces).
 | 
| 
 | 
   141  | 
  | 
| 
 | 
   142  | 
  As an example, we show that loop unfolding is an equivalence
  | 
| 
 | 
   143  | 
  transformation on programs:
  | 
| 
 | 
   144  | 
*}
  | 
| 
 | 
   145  | 
lemma unfold_while:
  | 
| 
 | 
   146  | 
  "(WHILE b DO c) \<sim> (IF b THEN c; WHILE b DO c ELSE SKIP)" (is "?w \<sim> ?iw")
  | 
| 
 | 
   147  | 
proof -
  | 
| 
 | 
   148  | 
  -- "to show the equivalence, we look at the derivation tree for"
  | 
| 
 | 
   149  | 
  -- "each side and from that construct a derivation tree for the other side"
  | 
| 
 | 
   150  | 
  { fix s t assume "(?w, s) \<Rightarrow> t"
 | 
| 
 | 
   151  | 
    -- "as a first thing we note that, if @{text b} is @{text False} in state @{text s},"
 | 
| 
 | 
   152  | 
    -- "then both statements do nothing:"
  | 
| 
 | 
   153  | 
    { assume "\<not>bval b s"
 | 
| 
 | 
   154  | 
      hence "t = s" using `(?w,s) \<Rightarrow> t` by blast
  | 
| 
 | 
   155  | 
      hence "(?iw, s) \<Rightarrow> t" using `\<not>bval b s` by blast
  | 
| 
 | 
   156  | 
    }
  | 
| 
 | 
   157  | 
    moreover
  | 
| 
 | 
   158  | 
    -- "on the other hand, if @{text b} is @{text True} in state @{text s},"
 | 
| 
 | 
   159  | 
    -- {* then only the @{text WhileTrue} rule can have been used to derive @{text "(?w, s) \<Rightarrow> t"} *}
 | 
| 
 | 
   160  | 
    { assume "bval b s"
 | 
| 
 | 
   161  | 
      with `(?w, s) \<Rightarrow> t` obtain s' where
  | 
| 
 | 
   162  | 
        "(c, s) \<Rightarrow> s'" and "(?w, s') \<Rightarrow> t" by auto
  | 
| 
 | 
   163  | 
      -- "now we can build a derivation tree for the @{text IF}"
 | 
| 
 | 
   164  | 
      -- "first, the body of the True-branch:"
  | 
| 
47818
 | 
   165  | 
      hence "(c; ?w, s) \<Rightarrow> t" by (rule Seq)
  | 
| 
43141
 | 
   166  | 
      -- "then the whole @{text IF}"
 | 
| 
 | 
   167  | 
      with `bval b s` have "(?iw, s) \<Rightarrow> t" by (rule IfTrue)
  | 
| 
 | 
   168  | 
    }
  | 
| 
 | 
   169  | 
    ultimately
  | 
| 
 | 
   170  | 
    -- "both cases together give us what we want:"
  | 
| 
 | 
   171  | 
    have "(?iw, s) \<Rightarrow> t" by blast
  | 
| 
 | 
   172  | 
  }
  | 
| 
 | 
   173  | 
  moreover
  | 
| 
 | 
   174  | 
  -- "now the other direction:"
  | 
| 
 | 
   175  | 
  { fix s t assume "(?iw, s) \<Rightarrow> t"
 | 
| 
 | 
   176  | 
    -- "again, if @{text b} is @{text False} in state @{text s}, then the False-branch"
 | 
| 
 | 
   177  | 
    -- "of the @{text IF} is executed, and both statements do nothing:"
 | 
| 
 | 
   178  | 
    { assume "\<not>bval b s"
 | 
| 
 | 
   179  | 
      hence "s = t" using `(?iw, s) \<Rightarrow> t` by blast
  | 
| 
 | 
   180  | 
      hence "(?w, s) \<Rightarrow> t" using `\<not>bval b s` by blast
  | 
| 
 | 
   181  | 
    }
  | 
| 
 | 
   182  | 
    moreover
  | 
| 
 | 
   183  | 
    -- "on the other hand, if @{text b} is @{text True} in state @{text s},"
 | 
| 
 | 
   184  | 
    -- {* then this time only the @{text IfTrue} rule can have be used *}
 | 
| 
 | 
   185  | 
    { assume "bval b s"
 | 
| 
 | 
   186  | 
      with `(?iw, s) \<Rightarrow> t` have "(c; ?w, s) \<Rightarrow> t" by auto
  | 
| 
47818
 | 
   187  | 
      -- "and for this, only the Seq-rule is applicable:"
  | 
| 
43141
 | 
   188  | 
      then obtain s' where
  | 
| 
 | 
   189  | 
        "(c, s) \<Rightarrow> s'" and "(?w, s') \<Rightarrow> t" by auto
  | 
| 
 | 
   190  | 
      -- "with this information, we can build a derivation tree for the @{text WHILE}"
 | 
| 
 | 
   191  | 
      with `bval b s`
  | 
| 
 | 
   192  | 
      have "(?w, s) \<Rightarrow> t" by (rule WhileTrue)
  | 
| 
 | 
   193  | 
    }
  | 
| 
 | 
   194  | 
    ultimately
  | 
| 
 | 
   195  | 
    -- "both cases together again give us what we want:"
  | 
| 
 | 
   196  | 
    have "(?w, s) \<Rightarrow> t" by blast
  | 
| 
 | 
   197  | 
  }
  | 
| 
 | 
   198  | 
  ultimately
  | 
| 
 | 
   199  | 
  show ?thesis by blast
  | 
| 
 | 
   200  | 
qed
  | 
| 
 | 
   201  | 
  | 
| 
 | 
   202  | 
text {* Luckily, such lengthy proofs are seldom necessary.  Isabelle can
 | 
| 
 | 
   203  | 
prove many such facts automatically.  *}
  | 
| 
 | 
   204  | 
  | 
| 
45321
 | 
   205  | 
lemma while_unfold:
  | 
| 
43141
 | 
   206  | 
  "(WHILE b DO c) \<sim> (IF b THEN c; WHILE b DO c ELSE SKIP)"
  | 
| 
 | 
   207  | 
by blast
  | 
| 
 | 
   208  | 
  | 
| 
 | 
   209  | 
lemma triv_if:
  | 
| 
 | 
   210  | 
  "(IF b THEN c ELSE c) \<sim> c"
  | 
| 
 | 
   211  | 
by blast
  | 
| 
 | 
   212  | 
  | 
| 
 | 
   213  | 
lemma commute_if:
  | 
| 
 | 
   214  | 
  "(IF b1 THEN (IF b2 THEN c11 ELSE c12) ELSE c2) 
  | 
| 
 | 
   215  | 
   \<sim> 
  | 
| 
 | 
   216  | 
   (IF b2 THEN (IF b1 THEN c11 ELSE c2) ELSE (IF b1 THEN c12 ELSE c2))"
  | 
| 
 | 
   217  | 
by blast
  | 
| 
 | 
   218  | 
  | 
| 
 | 
   219  | 
  | 
| 
 | 
   220  | 
subsection "Execution is deterministic"
  | 
| 
 | 
   221  | 
  | 
| 
 | 
   222  | 
text {* This proof is automatic. *}
 | 
| 
49191
 | 
   223  | 
text_raw{*\snip{BigStepDeterministic}{0}{1}{% *}
 | 
| 
43141
 | 
   224  | 
theorem big_step_determ: "\<lbrakk> (c,s) \<Rightarrow> t; (c,s) \<Rightarrow> u \<rbrakk> \<Longrightarrow> u = t"
  | 
| 
45321
 | 
   225  | 
  by (induction arbitrary: u rule: big_step.induct) blast+
  | 
| 
49191
 | 
   226  | 
text_raw{*}%endsnip*}
 | 
| 
45321
 | 
   227  | 
  | 
| 
43141
 | 
   228  | 
  | 
| 
 | 
   229  | 
text {*
 | 
| 
 | 
   230  | 
  This is the proof as you might present it in a lecture. The remaining
  | 
| 
 | 
   231  | 
  cases are simple enough to be proved automatically:
  | 
| 
 | 
   232  | 
*}
  | 
| 
49191
 | 
   233  | 
text_raw{*\snip{BigStepDetLong}{0}{2}{% *}
 | 
| 
43141
 | 
   234  | 
theorem
  | 
| 
 | 
   235  | 
  "(c,s) \<Rightarrow> t  \<Longrightarrow>  (c,s) \<Rightarrow> t'  \<Longrightarrow>  t' = t"
  | 
| 
45015
 | 
   236  | 
proof (induction arbitrary: t' rule: big_step.induct)
  | 
| 
43141
 | 
   237  | 
  -- "the only interesting case, @{text WhileTrue}:"
 | 
| 
 | 
   238  | 
  fix b c s s1 t t'
  | 
| 
 | 
   239  | 
  -- "The assumptions of the rule:"
  | 
| 
 | 
   240  | 
  assume "bval b s" and "(c,s) \<Rightarrow> s1" and "(WHILE b DO c,s1) \<Rightarrow> t"
  | 
| 
 | 
   241  | 
  -- {* Ind.Hyp; note the @{text"\<And>"} because of arbitrary: *}
 | 
| 
 | 
   242  | 
  assume IHc: "\<And>t'. (c,s) \<Rightarrow> t' \<Longrightarrow> t' = s1"
  | 
| 
 | 
   243  | 
  assume IHw: "\<And>t'. (WHILE b DO c,s1) \<Rightarrow> t' \<Longrightarrow> t' = t"
  | 
| 
 | 
   244  | 
  -- "Premise of implication:"
  | 
| 
 | 
   245  | 
  assume "(WHILE b DO c,s) \<Rightarrow> t'"
  | 
| 
 | 
   246  | 
  with `bval b s` obtain s1' where
  | 
| 
 | 
   247  | 
      c: "(c,s) \<Rightarrow> s1'" and
  | 
| 
 | 
   248  | 
      w: "(WHILE b DO c,s1') \<Rightarrow> t'"
  | 
| 
 | 
   249  | 
    by auto
  | 
| 
 | 
   250  | 
  from c IHc have "s1' = s1" by blast
  | 
| 
 | 
   251  | 
  with w IHw show "t' = t" by blast
  | 
| 
 | 
   252  | 
qed blast+ -- "prove the rest automatically"
  | 
| 
49191
 | 
   253  | 
text_raw{*}%endsnip*}
 | 
| 
43141
 | 
   254  | 
  | 
| 
 | 
   255  | 
end
  |