| 
32556
 | 
     1  | 
  | 
| 
 | 
     2  | 
header {* Various examples for transfer procedure *}
 | 
| 
 | 
     3  | 
  | 
| 
 | 
     4  | 
theory Transfer_Ex
  | 
| 
35685
 | 
     5  | 
imports Main
  | 
| 
32556
 | 
     6  | 
begin
  | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
lemma ex1: "(x::nat) + y = y + x"
  | 
| 
 | 
     9  | 
  by auto
  | 
| 
 | 
    10  | 
  | 
| 
35685
 | 
    11  | 
lemma "(0\<Colon>int) \<le> (y\<Colon>int) \<Longrightarrow> (0\<Colon>int) \<le> (x\<Colon>int) \<Longrightarrow> x + y = y + x"
  | 
| 
 | 
    12  | 
  by (fact ex1 [transferred])
  | 
| 
32556
 | 
    13  | 
  | 
| 
 | 
    14  | 
lemma ex2: "(a::nat) div b * b + a mod b = a"
  | 
| 
 | 
    15  | 
  by (rule mod_div_equality)
  | 
| 
 | 
    16  | 
  | 
| 
35685
 | 
    17  | 
lemma "(0\<Colon>int) \<le> (b\<Colon>int) \<Longrightarrow> (0\<Colon>int) \<le> (a\<Colon>int) \<Longrightarrow> a div b * b + a mod b = a"
  | 
| 
 | 
    18  | 
  by (fact ex2 [transferred])
  | 
| 
32556
 | 
    19  | 
  | 
| 
 | 
    20  | 
lemma ex3: "ALL (x::nat). ALL y. EX z. z >= x + y"
  | 
| 
 | 
    21  | 
  by auto
  | 
| 
 | 
    22  | 
  | 
| 
35685
 | 
    23  | 
lemma "\<forall>x\<ge>0\<Colon>int. \<forall>y\<ge>0\<Colon>int. \<exists>xa\<ge>0\<Colon>int. x + y \<le> xa"
  | 
| 
 | 
    24  | 
  by (fact ex3 [transferred nat_int])
  | 
| 
32556
 | 
    25  | 
  | 
| 
 | 
    26  | 
lemma ex4: "(x::nat) >= y \<Longrightarrow> (x - y) + y = x"
  | 
| 
 | 
    27  | 
  by auto
  | 
| 
 | 
    28  | 
  | 
| 
35685
 | 
    29  | 
lemma "(0\<Colon>int) \<le> (x\<Colon>int) \<Longrightarrow> (0\<Colon>int) \<le> (y\<Colon>int) \<Longrightarrow> y \<le> x \<Longrightarrow> tsub x y + y = x"
  | 
| 
 | 
    30  | 
  by (fact ex4 [transferred])
  | 
| 
32556
 | 
    31  | 
  | 
| 
35685
 | 
    32  | 
lemma ex5: "(2::nat) * \<Sum>{..n} = n * (n + 1)"
 | 
| 
32556
 | 
    33  | 
  by (induct n rule: nat_induct, auto)
  | 
| 
 | 
    34  | 
  | 
| 
35685
 | 
    35  | 
lemma "(0\<Colon>int) \<le> (n\<Colon>int) \<Longrightarrow> (2\<Colon>int) * \<Sum>{0\<Colon>int..n} = n * (n + (1\<Colon>int))"
 | 
| 
 | 
    36  | 
  by (fact ex5 [transferred])
  | 
| 
 | 
    37  | 
  | 
| 
 | 
    38  | 
lemma "(0\<Colon>nat) \<le> (n\<Colon>nat) \<Longrightarrow> (2\<Colon>nat) * \<Sum>{0\<Colon>nat..n} = n * (n + (1\<Colon>nat))"
 | 
| 
 | 
    39  | 
  by (fact ex5 [transferred, transferred])
  | 
| 
32556
 | 
    40  | 
  | 
| 
 | 
    41  | 
theorem ex6: "0 <= (n::int) \<Longrightarrow> 2 * \<Sum>{0..n} = n * (n + 1)"
 | 
| 
 | 
    42  | 
  by (rule ex5 [transferred])
  | 
| 
 | 
    43  | 
  | 
| 
35685
 | 
    44  | 
lemma "(0\<Colon>nat) \<le> (n\<Colon>nat) \<Longrightarrow> (2\<Colon>nat) * \<Sum>{0\<Colon>nat..n} = n * (n + (1\<Colon>nat))"
 | 
| 
 | 
    45  | 
  by (fact ex6 [transferred])
  | 
| 
32556
 | 
    46  | 
  | 
| 
 | 
    47  | 
end  |