| 7096 |      1 | (*  Title:      LK/modal.ML
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
 | 
|  |      4 |     Copyright   1992  University of Cambridge
 | 
|  |      5 | 
 | 
|  |      6 | Simple modal reasoner
 | 
|  |      7 | *)
 | 
|  |      8 | 
 | 
|  |      9 | 
 | 
|  |     10 | signature MODAL_PROVER_RULE =
 | 
|  |     11 | sig
 | 
|  |     12 |     val rewrite_rls      : thm list
 | 
|  |     13 |     val safe_rls         : thm list
 | 
|  |     14 |     val unsafe_rls       : thm list
 | 
|  |     15 |     val bound_rls        : thm list
 | 
|  |     16 |     val aside_rls        : thm list
 | 
|  |     17 | end;
 | 
|  |     18 | 
 | 
|  |     19 | signature MODAL_PROVER = 
 | 
|  |     20 | sig
 | 
|  |     21 |     val rule_tac   : thm list -> int ->tactic
 | 
|  |     22 |     val step_tac   : int -> tactic
 | 
|  |     23 |     val solven_tac : int -> int -> tactic
 | 
|  |     24 |     val solve_tac  : int -> tactic
 | 
|  |     25 | end;
 | 
|  |     26 | 
 | 
|  |     27 | functor Modal_ProverFun (Modal_Rule: MODAL_PROVER_RULE) : MODAL_PROVER = 
 | 
|  |     28 | struct
 | 
|  |     29 | local open Modal_Rule
 | 
|  |     30 | in 
 | 
|  |     31 | 
 | 
|  |     32 | (*Returns the list of all formulas in the sequent*)
 | 
|  |     33 | fun forms_of_seq (Const("SeqO",_) $ P $ u) = P :: forms_of_seq u
 | 
|  |     34 |   | forms_of_seq (H $ u) = forms_of_seq u
 | 
|  |     35 |   | forms_of_seq _ = [];
 | 
|  |     36 | 
 | 
|  |     37 | (*Tests whether two sequences (left or right sides) could be resolved.
 | 
|  |     38 |   seqp is a premise (subgoal), seqc is a conclusion of an object-rule.
 | 
|  |     39 |   Assumes each formula in seqc is surrounded by sequence variables
 | 
|  |     40 |   -- checks that each concl formula looks like some subgoal formula.*)
 | 
|  |     41 | fun could_res (seqp,seqc) =
 | 
|  |     42 |       forall (fn Qc => exists (fn Qp => could_unify (Qp,Qc)) 
 | 
|  |     43 |                               (forms_of_seq seqp))
 | 
|  |     44 |              (forms_of_seq seqc);
 | 
|  |     45 | 
 | 
|  |     46 | (*Tests whether two sequents G|-H could be resolved, comparing each side.*)
 | 
|  |     47 | fun could_resolve_seq (prem,conc) =
 | 
|  |     48 |   case (prem,conc) of
 | 
|  |     49 |       (_ $ Abs(_,_,leftp) $ Abs(_,_,rightp),
 | 
|  |     50 |        _ $ Abs(_,_,leftc) $ Abs(_,_,rightc)) =>
 | 
|  |     51 |           could_res (leftp,leftc)  andalso  could_res (rightp,rightc)
 | 
|  |     52 |     | _ => false;
 | 
|  |     53 | 
 | 
|  |     54 | (*Like filt_resolve_tac, using could_resolve_seq
 | 
|  |     55 |   Much faster than resolve_tac when there are many rules.
 | 
|  |     56 |   Resolve subgoal i using the rules, unless more than maxr are compatible. *)
 | 
|  |     57 | fun filseq_resolve_tac rules maxr = SUBGOAL(fn (prem,i) =>
 | 
|  |     58 |   let val rls = filter_thms could_resolve_seq (maxr+1, prem, rules)
 | 
|  |     59 |   in  if length rls > maxr  then  no_tac  else resolve_tac rls i
 | 
|  |     60 |   end);
 | 
|  |     61 | 
 | 
|  |     62 | fun fresolve_tac rls n = filseq_resolve_tac rls 999 n;
 | 
|  |     63 | 
 | 
|  |     64 | (* NB No back tracking possible with aside rules *)
 | 
|  |     65 | 
 | 
|  |     66 | fun aside_tac n = DETERM(REPEAT (filt_resolve_tac aside_rls 999 n));
 | 
|  |     67 | fun rule_tac rls n = fresolve_tac rls n THEN aside_tac n;
 | 
|  |     68 | 
 | 
|  |     69 | val fres_safe_tac = fresolve_tac safe_rls;
 | 
|  |     70 | val fres_unsafe_tac = fresolve_tac unsafe_rls THEN' aside_tac;
 | 
|  |     71 | val fres_bound_tac = fresolve_tac bound_rls;
 | 
|  |     72 | 
 | 
|  |     73 | fun UPTOGOAL n tf = let fun tac i = if i<n then all_tac
 | 
|  |     74 |                                     else tf(i) THEN tac(i-1)
 | 
|  |     75 |                     in fn st => tac (nprems_of st) st end;
 | 
|  |     76 | 
 | 
|  |     77 | (* Depth first search bounded by d *)
 | 
|  |     78 | fun solven_tac d n state = state |>
 | 
|  |     79 |        (if d<0 then no_tac
 | 
|  |     80 |         else if (nprems_of state = 0) then all_tac 
 | 
|  |     81 |         else (DETERM(fres_safe_tac n) THEN UPTOGOAL n (solven_tac d)) ORELSE
 | 
|  |     82 |                  ((fres_unsafe_tac n  THEN UPTOGOAL n (solven_tac d)) APPEND
 | 
|  |     83 |                    (fres_bound_tac n  THEN UPTOGOAL n (solven_tac (d-1)))));
 | 
|  |     84 | 
 | 
|  |     85 | fun solve_tac d = rewrite_goals_tac rewrite_rls THEN solven_tac d 1;
 | 
|  |     86 | 
 | 
|  |     87 | fun step_tac n = 
 | 
|  |     88 |     COND (has_fewer_prems 1) all_tac 
 | 
|  |     89 |          (DETERM(fres_safe_tac n) ORELSE 
 | 
|  |     90 | 	  (fres_unsafe_tac n APPEND fres_bound_tac n));
 | 
|  |     91 | 
 | 
|  |     92 | end;
 | 
|  |     93 | end;
 |