author | huffman |
Wed, 12 Oct 2005 03:01:09 +0200 | |
changeset 17838 | 3032e90c4975 |
parent 16898 | 543ee8fabe1a |
child 18391 | 2e901da7cd3a |
permissions | -rw-r--r-- |
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
1 |
(* Title: HOL/ex/set.thy |
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
2 |
ID: $Id$ |
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
3 |
Author: Tobias Nipkow and Lawrence C Paulson |
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
4 |
Copyright 1991 University of Cambridge |
13107 | 5 |
*) |
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
6 |
|
13107 | 7 |
header {* Set Theory examples: Cantor's Theorem, Schröder-Berstein Theorem, etc. *} |
9100 | 8 |
|
16417 | 9 |
theory set imports Main begin |
9100 | 10 |
|
13107 | 11 |
text{* |
12 |
These two are cited in Benzmueller and Kohlhase's system description |
|
13 |
of LEO, CADE-15, 1998 (pages 139-143) as theorems LEO could not |
|
14 |
prove. |
|
15 |
*} |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
16 |
|
13107 | 17 |
lemma "(X = Y \<union> Z) = |
18 |
(Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" |
|
19 |
by blast |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
20 |
|
13107 | 21 |
lemma "(X = Y \<inter> Z) = |
22 |
(X \<subseteq> Y \<and> X \<subseteq> Z \<and> (\<forall>V. V \<subseteq> Y \<and> V \<subseteq> Z \<longrightarrow> V \<subseteq> X))" |
|
23 |
by blast |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
24 |
|
13107 | 25 |
text {* |
26 |
Trivial example of term synthesis: apparently hard for some provers! |
|
27 |
*} |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
28 |
|
13107 | 29 |
lemma "a \<noteq> b \<Longrightarrow> a \<in> ?X \<and> b \<notin> ?X" |
30 |
by blast |
|
31 |
||
32 |
||
33 |
subsection {* Examples for the @{text blast} paper *} |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
34 |
|
13107 | 35 |
lemma "(\<Union>x \<in> C. f x \<union> g x) = \<Union>(f ` C) \<union> \<Union>(g ` C)" |
36 |
-- {* Union-image, called @{text Un_Union_image} in Main HOL *} |
|
37 |
by blast |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
38 |
|
13107 | 39 |
lemma "(\<Inter>x \<in> C. f x \<inter> g x) = \<Inter>(f ` C) \<inter> \<Inter>(g ` C)" |
40 |
-- {* Inter-image, called @{text Int_Inter_image} in Main HOL *} |
|
41 |
by blast |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
42 |
|
16898 | 43 |
text{*Both of the singleton examples can be proved very quickly by @{text |
44 |
"blast del: UNIV_I"} but not by @{text blast} alone. For some reason, @{text |
|
45 |
UNIV_I} greatly increases the search space.*} |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
46 |
|
16898 | 47 |
lemma singleton_example_1: |
48 |
"\<And>S::'a set set. \<forall>x \<in> S. \<forall>y \<in> S. x \<subseteq> y \<Longrightarrow> \<exists>z. S \<subseteq> {z}" |
|
49 |
by (meson subsetI subset_antisym insertCI) |
|
50 |
||
51 |
lemma singleton_example_2: |
|
52 |
"\<forall>x \<in> S. \<Union>S \<subseteq> x \<Longrightarrow> \<exists>z. S \<subseteq> {z}" |
|
53 |
-- {*Variant of the problem above. *} |
|
54 |
by (meson subsetI subset_antisym insertCI UnionI) |
|
55 |
||
13107 | 56 |
|
57 |
lemma "\<exists>!x. f (g x) = x \<Longrightarrow> \<exists>!y. g (f y) = y" |
|
58 |
-- {* A unique fixpoint theorem --- @{text fast}/@{text best}/@{text meson} all fail. *} |
|
59 |
apply (erule ex1E, rule ex1I, erule arg_cong) |
|
60 |
apply (rule subst, assumption, erule allE, rule arg_cong, erule mp) |
|
61 |
apply (erule arg_cong) |
|
62 |
done |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
63 |
|
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
64 |
|
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
65 |
|
13107 | 66 |
subsection {* Cantor's Theorem: There is no surjection from a set to its powerset *} |
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
67 |
|
13107 | 68 |
lemma cantor1: "\<not> (\<exists>f:: 'a \<Rightarrow> 'a set. \<forall>S. \<exists>x. f x = S)" |
69 |
-- {* Requires best-first search because it is undirectional. *} |
|
70 |
by best |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
71 |
|
13107 | 72 |
lemma "\<forall>f:: 'a \<Rightarrow> 'a set. \<forall>x. f x \<noteq> ?S f" |
73 |
-- {*This form displays the diagonal term. *} |
|
74 |
by best |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
75 |
|
13107 | 76 |
lemma "?S \<notin> range (f :: 'a \<Rightarrow> 'a set)" |
77 |
-- {* This form exploits the set constructs. *} |
|
78 |
by (rule notI, erule rangeE, best) |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
79 |
|
13107 | 80 |
lemma "?S \<notin> range (f :: 'a \<Rightarrow> 'a set)" |
81 |
-- {* Or just this! *} |
|
82 |
by best |
|
83 |
||
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
84 |
|
13107 | 85 |
subsection {* The Schröder-Berstein Theorem *} |
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
86 |
|
13107 | 87 |
lemma disj_lemma: "- (f ` X) = g ` (-X) \<Longrightarrow> f a = g b \<Longrightarrow> a \<in> X \<Longrightarrow> b \<in> X" |
88 |
by blast |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
89 |
|
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
90 |
lemma surj_if_then_else: |
13107 | 91 |
"-(f ` X) = g ` (-X) \<Longrightarrow> surj (\<lambda>z. if z \<in> X then f z else g z)" |
92 |
by (simp add: surj_def) blast |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
93 |
|
13107 | 94 |
lemma bij_if_then_else: |
95 |
"inj_on f X \<Longrightarrow> inj_on g (-X) \<Longrightarrow> -(f ` X) = g ` (-X) \<Longrightarrow> |
|
96 |
h = (\<lambda>z. if z \<in> X then f z else g z) \<Longrightarrow> inj h \<and> surj h" |
|
97 |
apply (unfold inj_on_def) |
|
98 |
apply (simp add: surj_if_then_else) |
|
99 |
apply (blast dest: disj_lemma sym) |
|
100 |
done |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
101 |
|
13107 | 102 |
lemma decomposition: "\<exists>X. X = - (g ` (- (f ` X)))" |
103 |
apply (rule exI) |
|
104 |
apply (rule lfp_unfold) |
|
105 |
apply (rule monoI, blast) |
|
106 |
done |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
107 |
|
13107 | 108 |
theorem Schroeder_Bernstein: |
109 |
"inj (f :: 'a \<Rightarrow> 'b) \<Longrightarrow> inj (g :: 'b \<Rightarrow> 'a) |
|
110 |
\<Longrightarrow> \<exists>h:: 'a \<Rightarrow> 'b. inj h \<and> surj h" |
|
15488 | 111 |
apply (rule decomposition [where f=f and g=g, THEN exE]) |
112 |
apply (rule_tac x = "(\<lambda>z. if z \<in> x then f z else inv g z)" in exI) |
|
113 |
--{*The term above can be synthesized by a sufficiently detailed proof.*} |
|
13107 | 114 |
apply (rule bij_if_then_else) |
115 |
apply (rule_tac [4] refl) |
|
116 |
apply (rule_tac [2] inj_on_inv) |
|
15306 | 117 |
apply (erule subset_inj_on [OF _ subset_UNIV]) |
15488 | 118 |
apply blast |
119 |
apply (erule ssubst, subst double_complement, erule inv_image_comp [symmetric]) |
|
13107 | 120 |
done |
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
121 |
|
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
122 |
|
13107 | 123 |
text {* |
124 |
From W. W. Bledsoe and Guohui Feng, SET-VAR. JAR 11 (3), 1993, pages |
|
125 |
293-314. |
|
126 |
||
127 |
Isabelle can prove the easy examples without any special mechanisms, |
|
128 |
but it can't prove the hard ones. |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
129 |
*} |
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
130 |
|
13107 | 131 |
lemma "\<exists>A. (\<forall>x \<in> A. x \<le> (0::int))" |
132 |
-- {* Example 1, page 295. *} |
|
133 |
by force |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
134 |
|
13107 | 135 |
lemma "D \<in> F \<Longrightarrow> \<exists>G. \<forall>A \<in> G. \<exists>B \<in> F. A \<subseteq> B" |
136 |
-- {* Example 2. *} |
|
137 |
by force |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
138 |
|
13107 | 139 |
lemma "P a \<Longrightarrow> \<exists>A. (\<forall>x \<in> A. P x) \<and> (\<exists>y. y \<in> A)" |
140 |
-- {* Example 3. *} |
|
141 |
by force |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
142 |
|
13107 | 143 |
lemma "a < b \<and> b < (c::int) \<Longrightarrow> \<exists>A. a \<notin> A \<and> b \<in> A \<and> c \<notin> A" |
144 |
-- {* Example 4. *} |
|
145 |
by force |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
146 |
|
13107 | 147 |
lemma "P (f b) \<Longrightarrow> \<exists>s A. (\<forall>x \<in> A. P x) \<and> f s \<in> A" |
148 |
-- {*Example 5, page 298. *} |
|
149 |
by force |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
150 |
|
13107 | 151 |
lemma "P (f b) \<Longrightarrow> \<exists>s A. (\<forall>x \<in> A. P x) \<and> f s \<in> A" |
152 |
-- {* Example 6. *} |
|
153 |
by force |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
154 |
|
13107 | 155 |
lemma "\<exists>A. a \<notin> A" |
156 |
-- {* Example 7. *} |
|
157 |
by force |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
158 |
|
13107 | 159 |
lemma "(\<forall>u v. u < (0::int) \<longrightarrow> u \<noteq> abs v) |
160 |
\<longrightarrow> (\<exists>A::int set. (\<forall>y. abs y \<notin> A) \<and> -2 \<in> A)" |
|
14353
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents:
13107
diff
changeset
|
161 |
-- {* Example 8 now needs a small hint. *} |
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents:
13107
diff
changeset
|
162 |
by (simp add: abs_if, force) |
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents:
13107
diff
changeset
|
163 |
-- {* not @{text blast}, which can't simplify @{text "-2 < 0"} *} |
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
164 |
|
13107 | 165 |
text {* Example 9 omitted (requires the reals). *} |
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
166 |
|
13107 | 167 |
text {* The paper has no Example 10! *} |
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
168 |
|
13107 | 169 |
lemma "(\<forall>A. 0 \<in> A \<and> (\<forall>x \<in> A. Suc x \<in> A) \<longrightarrow> n \<in> A) \<and> |
170 |
P 0 \<and> (\<forall>x. P x \<longrightarrow> P (Suc x)) \<longrightarrow> P n" |
|
171 |
-- {* Example 11: needs a hint. *} |
|
172 |
apply clarify |
|
173 |
apply (drule_tac x = "{x. P x}" in spec) |
|
174 |
apply force |
|
175 |
done |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
176 |
|
13107 | 177 |
lemma |
178 |
"(\<forall>A. (0, 0) \<in> A \<and> (\<forall>x y. (x, y) \<in> A \<longrightarrow> (Suc x, Suc y) \<in> A) \<longrightarrow> (n, m) \<in> A) |
|
179 |
\<and> P n \<longrightarrow> P m" |
|
180 |
-- {* Example 12. *} |
|
181 |
by auto |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
182 |
|
13107 | 183 |
lemma |
184 |
"(\<forall>x. (\<exists>u. x = 2 * u) = (\<not> (\<exists>v. Suc x = 2 * v))) \<longrightarrow> |
|
185 |
(\<exists>A. \<forall>x. (x \<in> A) = (Suc x \<notin> A))" |
|
186 |
-- {* Example EO1: typo in article, and with the obvious fix it seems |
|
187 |
to require arithmetic reasoning. *} |
|
188 |
apply clarify |
|
189 |
apply (rule_tac x = "{x. \<exists>u. x = 2 * u}" in exI, auto) |
|
190 |
apply (case_tac v, auto) |
|
191 |
apply (drule_tac x = "Suc v" and P = "\<lambda>x. ?a x \<noteq> ?b x" in spec, force) |
|
192 |
done |
|
13058
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
paulson
parents:
9100
diff
changeset
|
193 |
|
9100 | 194 |
end |