| author | haftmann |
| Sun, 26 Apr 2009 20:17:50 +0200 | |
| changeset 30997 | 081e825c2218 |
| parent 30686 | 47a32dd1b86e |
| child 31066 | 972c870da225 |
| permissions | -rw-r--r-- |
| 23193 | 1 |
(* Title: HOL/ex/Arith_Examples.thy |
2 |
Author: Tjark Weber |
|
3 |
*) |
|
4 |
||
| 23218 | 5 |
header {* Arithmetic *}
|
| 23193 | 6 |
|
7 |
theory Arith_Examples imports Main begin |
|
8 |
||
9 |
text {*
|
|
| 23218 | 10 |
The @{text arith} method is used frequently throughout the Isabelle
|
| 23193 | 11 |
distribution. This file merely contains some additional tests and special |
12 |
corner cases. Some rather technical remarks: |
|
13 |
||
| 23218 | 14 |
@{ML fast_arith_tac} is a very basic version of the tactic. It performs no
|
| 23193 | 15 |
meta-to-object-logic conversion, and only some splitting of operators. |
|
30686
47a32dd1b86e
moved generic arith_tac (formerly silent_arith_tac), verbose_arith_tac (formerly arith_tac) to Arith_Data; simple_arith-tac now named linear_arith_tac
haftmann
parents:
24328
diff
changeset
|
16 |
@{ML linear_arith_tac} performs meta-to-object-logic conversion, full
|
| 23218 | 17 |
splitting of operators, and NNF normalization of the goal. The @{text arith}
|
18 |
method combines them both, and tries other methods (e.g.~@{text presburger})
|
|
| 23193 | 19 |
as well. This is the one that you should use in your proofs! |
20 |
||
| 24093 | 21 |
An @{text arith}-based simproc is available as well (see @{ML
|
|
30686
47a32dd1b86e
moved generic arith_tac (formerly silent_arith_tac), verbose_arith_tac (formerly arith_tac) to Arith_Data; simple_arith-tac now named linear_arith_tac
haftmann
parents:
24328
diff
changeset
|
22 |
Lin_Arith.lin_arith_simproc}), which---for performance |
| 24093 | 23 |
reasons---however does even less splitting than @{ML fast_arith_tac}
|
24 |
at the moment (namely inequalities only). (On the other hand, it |
|
25 |
does take apart conjunctions, which @{ML fast_arith_tac} currently
|
|
26 |
does not do.) |
|
| 23193 | 27 |
*} |
28 |
||
| 23196 | 29 |
(* |
| 23193 | 30 |
ML {* set trace_arith; *}
|
| 23196 | 31 |
*) |
| 23193 | 32 |
|
| 23218 | 33 |
subsection {* Splitting of Operators: @{term max}, @{term min}, @{term abs},
|
| 23193 | 34 |
@{term HOL.minus}, @{term nat}, @{term Divides.mod},
|
35 |
@{term Divides.div} *}
|
|
36 |
||
37 |
lemma "(i::nat) <= max i j" |
|
| 24075 | 38 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 39 |
|
40 |
lemma "(i::int) <= max i j" |
|
| 24075 | 41 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 42 |
|
43 |
lemma "min i j <= (i::nat)" |
|
| 24075 | 44 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 45 |
|
46 |
lemma "min i j <= (i::int)" |
|
| 24075 | 47 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 48 |
|
49 |
lemma "min (i::nat) j <= max i j" |
|
| 24075 | 50 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 51 |
|
52 |
lemma "min (i::int) j <= max i j" |
|
| 24075 | 53 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 54 |
|
| 23208 | 55 |
lemma "min (i::nat) j + max i j = i + j" |
| 24075 | 56 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23208 | 57 |
|
58 |
lemma "min (i::int) j + max i j = i + j" |
|
| 24075 | 59 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23208 | 60 |
|
| 23193 | 61 |
lemma "(i::nat) < j ==> min i j < max i j" |
| 24075 | 62 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 63 |
|
64 |
lemma "(i::int) < j ==> min i j < max i j" |
|
| 24075 | 65 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 66 |
|
67 |
lemma "(0::int) <= abs i" |
|
| 24075 | 68 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 69 |
|
70 |
lemma "(i::int) <= abs i" |
|
| 24075 | 71 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 72 |
|
73 |
lemma "abs (abs (i::int)) = abs i" |
|
| 24075 | 74 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 75 |
|
76 |
text {* Also testing subgoals with bound variables. *}
|
|
77 |
||
78 |
lemma "!!x. (x::nat) <= y ==> x - y = 0" |
|
| 24075 | 79 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 80 |
|
81 |
lemma "!!x. (x::nat) - y = 0 ==> x <= y" |
|
| 24075 | 82 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 83 |
|
84 |
lemma "!!x. ((x::nat) <= y) = (x - y = 0)" |
|
|
30686
47a32dd1b86e
moved generic arith_tac (formerly silent_arith_tac), verbose_arith_tac (formerly arith_tac) to Arith_Data; simple_arith-tac now named linear_arith_tac
haftmann
parents:
24328
diff
changeset
|
85 |
by (tactic {* linear_arith_tac @{context} 1 *})
|
| 23193 | 86 |
|
87 |
lemma "[| (x::nat) < y; d < 1 |] ==> x - y = d" |
|
| 24075 | 88 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 89 |
|
90 |
lemma "[| (x::nat) < y; d < 1 |] ==> x - y - x = d - x" |
|
| 24075 | 91 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 92 |
|
93 |
lemma "(x::int) < y ==> x - y < 0" |
|
| 24075 | 94 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 95 |
|
96 |
lemma "nat (i + j) <= nat i + nat j" |
|
| 24075 | 97 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 98 |
|
99 |
lemma "i < j ==> nat (i - j) = 0" |
|
| 24075 | 100 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 101 |
|
102 |
lemma "(i::nat) mod 0 = i" |
|
| 23198 | 103 |
(* FIXME: need to replace 0 by its numeral representation *) |
104 |
apply (subst nat_numeral_0_eq_0 [symmetric]) |
|
| 24075 | 105 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23198 | 106 |
|
107 |
lemma "(i::nat) mod 1 = 0" |
|
108 |
(* FIXME: need to replace 1 by its numeral representation *) |
|
109 |
apply (subst nat_numeral_1_eq_1 [symmetric]) |
|
| 24075 | 110 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 111 |
|
| 23198 | 112 |
lemma "(i::nat) mod 42 <= 41" |
| 24075 | 113 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23198 | 114 |
|
115 |
lemma "(i::int) mod 0 = i" |
|
116 |
(* FIXME: need to replace 0 by its numeral representation *) |
|
117 |
apply (subst numeral_0_eq_0 [symmetric]) |
|
| 24075 | 118 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23198 | 119 |
|
120 |
lemma "(i::int) mod 1 = 0" |
|
121 |
(* FIXME: need to replace 1 by its numeral representation *) |
|
122 |
apply (subst numeral_1_eq_1 [symmetric]) |
|
123 |
(* FIXME: arith does not know about iszero *) |
|
| 24093 | 124 |
apply (tactic {* lin_arith_pre_tac @{context} 1 *})
|
| 23193 | 125 |
oops |
126 |
||
| 23198 | 127 |
lemma "(i::int) mod 42 <= 41" |
128 |
(* FIXME: arith does not know about iszero *) |
|
| 24093 | 129 |
apply (tactic {* lin_arith_pre_tac @{context} 1 *})
|
| 23193 | 130 |
oops |
131 |
||
|
24328
83afe527504d
fixed a bug in demult: -a in (-a * b) is no longer treated as atomic
webertj
parents:
24093
diff
changeset
|
132 |
lemma "-(i::int) * 1 = 0 ==> i = 0" |
|
83afe527504d
fixed a bug in demult: -a in (-a * b) is no longer treated as atomic
webertj
parents:
24093
diff
changeset
|
133 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
|
83afe527504d
fixed a bug in demult: -a in (-a * b) is no longer treated as atomic
webertj
parents:
24093
diff
changeset
|
134 |
|
|
83afe527504d
fixed a bug in demult: -a in (-a * b) is no longer treated as atomic
webertj
parents:
24093
diff
changeset
|
135 |
lemma "[| (0::int) < abs i; abs i * 1 < abs i * j |] ==> 1 < abs i * j" |
|
83afe527504d
fixed a bug in demult: -a in (-a * b) is no longer treated as atomic
webertj
parents:
24093
diff
changeset
|
136 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
|
83afe527504d
fixed a bug in demult: -a in (-a * b) is no longer treated as atomic
webertj
parents:
24093
diff
changeset
|
137 |
|
| 23218 | 138 |
|
139 |
subsection {* Meta-Logic *}
|
|
| 23193 | 140 |
|
141 |
lemma "x < Suc y == x <= y" |
|
|
30686
47a32dd1b86e
moved generic arith_tac (formerly silent_arith_tac), verbose_arith_tac (formerly arith_tac) to Arith_Data; simple_arith-tac now named linear_arith_tac
haftmann
parents:
24328
diff
changeset
|
142 |
by (tactic {* linear_arith_tac @{context} 1 *})
|
| 23193 | 143 |
|
144 |
lemma "((x::nat) == z ==> x ~= y) ==> x ~= y | z ~= y" |
|
|
30686
47a32dd1b86e
moved generic arith_tac (formerly silent_arith_tac), verbose_arith_tac (formerly arith_tac) to Arith_Data; simple_arith-tac now named linear_arith_tac
haftmann
parents:
24328
diff
changeset
|
145 |
by (tactic {* linear_arith_tac @{context} 1 *})
|
| 23193 | 146 |
|
| 23218 | 147 |
|
148 |
subsection {* Various Other Examples *}
|
|
| 23193 | 149 |
|
| 23198 | 150 |
lemma "(x < Suc y) = (x <= y)" |
|
30686
47a32dd1b86e
moved generic arith_tac (formerly silent_arith_tac), verbose_arith_tac (formerly arith_tac) to Arith_Data; simple_arith-tac now named linear_arith_tac
haftmann
parents:
24328
diff
changeset
|
151 |
by (tactic {* linear_arith_tac @{context} 1 *})
|
| 23198 | 152 |
|
| 23193 | 153 |
lemma "[| (x::nat) < y; y < z |] ==> x < z" |
| 24075 | 154 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 155 |
|
156 |
lemma "(x::nat) < y & y < z ==> x < z" |
|
|
30686
47a32dd1b86e
moved generic arith_tac (formerly silent_arith_tac), verbose_arith_tac (formerly arith_tac) to Arith_Data; simple_arith-tac now named linear_arith_tac
haftmann
parents:
24328
diff
changeset
|
157 |
by (tactic {* linear_arith_tac @{context} 1 *})
|
| 23193 | 158 |
|
| 23208 | 159 |
text {* This example involves no arithmetic at all, but is solved by
|
160 |
preprocessing (i.e. NNF normalization) alone. *} |
|
161 |
||
162 |
lemma "(P::bool) = Q ==> Q = P" |
|
|
30686
47a32dd1b86e
moved generic arith_tac (formerly silent_arith_tac), verbose_arith_tac (formerly arith_tac) to Arith_Data; simple_arith-tac now named linear_arith_tac
haftmann
parents:
24328
diff
changeset
|
163 |
by (tactic {* linear_arith_tac @{context} 1 *})
|
| 23208 | 164 |
|
165 |
lemma "[| P = (x = 0); (~P) = (y = 0) |] ==> min (x::nat) y = 0" |
|
|
30686
47a32dd1b86e
moved generic arith_tac (formerly silent_arith_tac), verbose_arith_tac (formerly arith_tac) to Arith_Data; simple_arith-tac now named linear_arith_tac
haftmann
parents:
24328
diff
changeset
|
166 |
by (tactic {* linear_arith_tac @{context} 1 *})
|
| 23208 | 167 |
|
168 |
lemma "[| P = (x = 0); (~P) = (y = 0) |] ==> max (x::nat) y = x + y" |
|
|
30686
47a32dd1b86e
moved generic arith_tac (formerly silent_arith_tac), verbose_arith_tac (formerly arith_tac) to Arith_Data; simple_arith-tac now named linear_arith_tac
haftmann
parents:
24328
diff
changeset
|
169 |
by (tactic {* linear_arith_tac @{context} 1 *})
|
| 23208 | 170 |
|
| 23193 | 171 |
lemma "[| (x::nat) ~= y; a + 2 = b; a < y; y < b; a < x; x < b |] ==> False" |
| 24075 | 172 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 173 |
|
174 |
lemma "[| (x::nat) > y; y > z; z > x |] ==> False" |
|
| 24075 | 175 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 176 |
|
177 |
lemma "(x::nat) - 5 > y ==> y < x" |
|
| 24075 | 178 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 179 |
|
180 |
lemma "(x::nat) ~= 0 ==> 0 < x" |
|
| 24075 | 181 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 182 |
|
183 |
lemma "[| (x::nat) ~= y; x <= y |] ==> x < y" |
|
| 24075 | 184 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 185 |
|
| 23196 | 186 |
lemma "[| (x::nat) < y; P (x - y) |] ==> P 0" |
|
30686
47a32dd1b86e
moved generic arith_tac (formerly silent_arith_tac), verbose_arith_tac (formerly arith_tac) to Arith_Data; simple_arith-tac now named linear_arith_tac
haftmann
parents:
24328
diff
changeset
|
187 |
by (tactic {* linear_arith_tac @{context} 1 *})
|
| 23193 | 188 |
|
189 |
lemma "(x - y) - (x::nat) = (x - x) - y" |
|
| 24075 | 190 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 191 |
|
192 |
lemma "[| (a::nat) < b; c < d |] ==> (a - b) = (c - d)" |
|
| 24075 | 193 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 194 |
|
195 |
lemma "((a::nat) - (b - (c - (d - e)))) = (a - (b - (c - (d - e))))" |
|
| 24075 | 196 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 197 |
|
| 23198 | 198 |
lemma "(n < m & m < n') | (n < m & m = n') | (n < n' & n' < m) | |
199 |
(n = n' & n' < m) | (n = m & m < n') | |
|
200 |
(n' < m & m < n) | (n' < m & m = n) | |
|
201 |
(n' < n & n < m) | (n' = n & n < m) | (n' = m & m < n) | |
|
202 |
(m < n & n < n') | (m < n & n' = n) | (m < n' & n' < n) | |
|
203 |
(m = n & n < n') | (m = n' & n' < n) | |
|
204 |
(n' = m & m = (n::nat))" |
|
205 |
(* FIXME: this should work in principle, but is extremely slow because *) |
|
206 |
(* preprocessing negates the goal and tries to compute its negation *) |
|
207 |
(* normal form, which creates lots of separate cases for this *) |
|
208 |
(* disjunction of conjunctions *) |
|
|
30686
47a32dd1b86e
moved generic arith_tac (formerly silent_arith_tac), verbose_arith_tac (formerly arith_tac) to Arith_Data; simple_arith-tac now named linear_arith_tac
haftmann
parents:
24328
diff
changeset
|
209 |
(* by (tactic {* linear_arith_tac 1 *}) *)
|
| 23198 | 210 |
oops |
211 |
||
212 |
lemma "2 * (x::nat) ~= 1" |
|
| 23208 | 213 |
(* FIXME: this is beyond the scope of the decision procedure at the moment, *) |
214 |
(* because its negation is satisfiable in the rationals? *) |
|
| 23198 | 215 |
(* by (tactic {* fast_arith_tac 1 *}) *)
|
216 |
oops |
|
217 |
||
218 |
text {* Constants. *}
|
|
219 |
||
220 |
lemma "(0::nat) < 1" |
|
| 24075 | 221 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23198 | 222 |
|
223 |
lemma "(0::int) < 1" |
|
| 24075 | 224 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23198 | 225 |
|
226 |
lemma "(47::nat) + 11 < 08 * 15" |
|
| 24075 | 227 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23198 | 228 |
|
229 |
lemma "(47::int) + 11 < 08 * 15" |
|
| 24075 | 230 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23198 | 231 |
|
| 23193 | 232 |
text {* Splitting of inequalities of different type. *}
|
233 |
||
234 |
lemma "[| (a::nat) ~= b; (i::int) ~= j; a < 2; b < 2 |] ==> |
|
235 |
a + b <= nat (max (abs i) (abs j))" |
|
| 24075 | 236 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 237 |
|
| 23198 | 238 |
text {* Again, but different order. *}
|
239 |
||
| 23193 | 240 |
lemma "[| (i::int) ~= j; (a::nat) ~= b; a < 2; b < 2 |] ==> |
241 |
a + b <= nat (max (abs i) (abs j))" |
|
| 24075 | 242 |
by (tactic {* fast_arith_tac @{context} 1 *})
|
| 23193 | 243 |
|
| 23196 | 244 |
(* |
| 23193 | 245 |
ML {* reset trace_arith; *}
|
| 23196 | 246 |
*) |
| 23193 | 247 |
|
248 |
end |