| 
34020
 | 
     1  | 
(*  Title:      HOL/Library/Executable_Set.thy
  | 
| 
 | 
     2  | 
    Author:     Stefan Berghofer, TU Muenchen
  | 
| 
33947
 | 
     3  | 
    Author:     Florian Haftmann, TU Muenchen
  | 
| 
 | 
     4  | 
*)
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
header {* A crude implementation of finite sets by lists -- avoid using this at any cost! *}
 | 
| 
 | 
     7  | 
  | 
| 
34020
 | 
     8  | 
theory Executable_Set
  | 
| 
33947
 | 
     9  | 
imports List_Set
  | 
| 
 | 
    10  | 
begin
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
declare mem_def [code del]
  | 
| 
 | 
    13  | 
declare Collect_def [code del]
  | 
| 
 | 
    14  | 
declare insert_code [code del]
  | 
| 
 | 
    15  | 
declare vimage_code [code del]
  | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
subsection {* Set representation *}
 | 
| 
 | 
    18  | 
  | 
| 
 | 
    19  | 
setup {*
 | 
| 
 | 
    20  | 
  Code.add_type_cmd "set"
  | 
| 
 | 
    21  | 
*}
  | 
| 
 | 
    22  | 
  | 
| 
 | 
    23  | 
definition Set :: "'a list \<Rightarrow> 'a set" where
  | 
| 
 | 
    24  | 
  [simp]: "Set = set"
  | 
| 
 | 
    25  | 
  | 
| 
 | 
    26  | 
definition Coset :: "'a list \<Rightarrow> 'a set" where
  | 
| 
 | 
    27  | 
  [simp]: "Coset xs = - set xs"
  | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
setup {*
 | 
| 
 | 
    30  | 
  Code.add_signature_cmd ("Set", "'a list \<Rightarrow> 'a set")
 | 
| 
 | 
    31  | 
  #> Code.add_signature_cmd ("Coset", "'a list \<Rightarrow> 'a set")
 | 
| 
 | 
    32  | 
  #> Code.add_signature_cmd ("set", "'a list \<Rightarrow> 'a set")
 | 
| 
 | 
    33  | 
  #> Code.add_signature_cmd ("op \<in>", "'a \<Rightarrow> 'a set \<Rightarrow> bool")
 | 
| 
 | 
    34  | 
*}
  | 
| 
 | 
    35  | 
  | 
| 
 | 
    36  | 
code_datatype Set Coset
  | 
| 
 | 
    37  | 
  | 
| 
34020
 | 
    38  | 
consts_code
  | 
| 
 | 
    39  | 
  Coset ("\<module>Coset")
 | 
| 
 | 
    40  | 
  Set ("\<module>Set")
 | 
| 
 | 
    41  | 
attach {*
 | 
| 
 | 
    42  | 
  datatype 'a set = Set of 'a list | Coset of 'a list;
  | 
| 
 | 
    43  | 
*} -- {* This assumes that there won't be a @{text Coset} without a @{text Set} *}
 | 
| 
 | 
    44  | 
  | 
| 
33947
 | 
    45  | 
  | 
| 
 | 
    46  | 
subsection {* Basic operations *}
 | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
lemma [code]:
  | 
| 
 | 
    49  | 
  "set xs = Set (remdups xs)"
  | 
| 
 | 
    50  | 
  by simp
  | 
| 
 | 
    51  | 
  | 
| 
 | 
    52  | 
lemma [code]:
  | 
| 
 | 
    53  | 
  "x \<in> Set xs \<longleftrightarrow> member x xs"
  | 
| 
 | 
    54  | 
  "x \<in> Coset xs \<longleftrightarrow> \<not> member x xs"
  | 
| 
 | 
    55  | 
  by (simp_all add: mem_iff)
  | 
| 
 | 
    56  | 
  | 
| 
 | 
    57  | 
definition is_empty :: "'a set \<Rightarrow> bool" where
  | 
| 
 | 
    58  | 
  [simp]: "is_empty A \<longleftrightarrow> A = {}"
 | 
| 
 | 
    59  | 
  | 
| 
34020
 | 
    60  | 
lemma [code_unfold]:
  | 
| 
33947
 | 
    61  | 
  "A = {} \<longleftrightarrow> is_empty A"
 | 
| 
 | 
    62  | 
  by simp
  | 
| 
 | 
    63  | 
  | 
| 
 | 
    64  | 
definition empty :: "'a set" where
  | 
| 
 | 
    65  | 
  [simp]: "empty = {}"
 | 
| 
 | 
    66  | 
  | 
| 
34020
 | 
    67  | 
lemma [code_unfold]:
  | 
| 
33947
 | 
    68  | 
  "{} = empty"
 | 
| 
 | 
    69  | 
  by simp
  | 
| 
 | 
    70  | 
  | 
| 
34020
 | 
    71  | 
lemma [code_unfold, code_inline del]:
  | 
| 
 | 
    72  | 
  "empty = Set []"
  | 
| 
 | 
    73  | 
  by simp -- {* Otherwise @{text \<eta>}-expansion produces funny things. *}
 | 
| 
 | 
    74  | 
  | 
| 
33947
 | 
    75  | 
setup {*
 | 
| 
 | 
    76  | 
  Code.add_signature_cmd ("is_empty", "'a set \<Rightarrow> bool")
 | 
| 
 | 
    77  | 
  #> Code.add_signature_cmd ("empty", "'a set")
 | 
| 
 | 
    78  | 
  #> Code.add_signature_cmd ("insert", "'a \<Rightarrow> 'a set \<Rightarrow> 'a set")
 | 
| 
 | 
    79  | 
  #> Code.add_signature_cmd ("List_Set.remove", "'a \<Rightarrow> 'a set \<Rightarrow> 'a set")
 | 
| 
 | 
    80  | 
  #> Code.add_signature_cmd ("image", "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set")
 | 
| 
 | 
    81  | 
  #> Code.add_signature_cmd ("List_Set.project", "('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set")
 | 
| 
 | 
    82  | 
  #> Code.add_signature_cmd ("Ball", "'a set \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool")
 | 
| 
 | 
    83  | 
  #> Code.add_signature_cmd ("Bex", "'a set \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool")
 | 
| 
 | 
    84  | 
  #> Code.add_signature_cmd ("card", "'a set \<Rightarrow> nat")
 | 
| 
 | 
    85  | 
*}
  | 
| 
 | 
    86  | 
  | 
| 
 | 
    87  | 
lemma is_empty_Set [code]:
  | 
| 
 | 
    88  | 
  "is_empty (Set xs) \<longleftrightarrow> null xs"
  | 
| 
 | 
    89  | 
  by (simp add: empty_null)
  | 
| 
 | 
    90  | 
  | 
| 
 | 
    91  | 
lemma empty_Set [code]:
  | 
| 
 | 
    92  | 
  "empty = Set []"
  | 
| 
 | 
    93  | 
  by simp
  | 
| 
 | 
    94  | 
  | 
| 
 | 
    95  | 
lemma insert_Set [code]:
  | 
| 
34980
 | 
    96  | 
  "insert x (Set xs) = Set (List.insert x xs)"
  | 
| 
 | 
    97  | 
  "insert x (Coset xs) = Coset (removeAll x xs)"
  | 
| 
 | 
    98  | 
  by (simp_all add: set_insert)
  | 
| 
33947
 | 
    99  | 
  | 
| 
 | 
   100  | 
lemma remove_Set [code]:
  | 
| 
34980
 | 
   101  | 
  "remove x (Set xs) = Set (removeAll x xs)"
  | 
| 
 | 
   102  | 
  "remove x (Coset xs) = Coset (List.insert x xs)"
  | 
| 
 | 
   103  | 
  by (auto simp add: set_insert remove_def)
  | 
| 
33947
 | 
   104  | 
  | 
| 
 | 
   105  | 
lemma image_Set [code]:
  | 
| 
 | 
   106  | 
  "image f (Set xs) = Set (remdups (map f xs))"
  | 
| 
 | 
   107  | 
  by simp
  | 
| 
 | 
   108  | 
  | 
| 
 | 
   109  | 
lemma project_Set [code]:
  | 
| 
 | 
   110  | 
  "project P (Set xs) = Set (filter P xs)"
  | 
| 
 | 
   111  | 
  by (simp add: project_set)
  | 
| 
 | 
   112  | 
  | 
| 
 | 
   113  | 
lemma Ball_Set [code]:
  | 
| 
 | 
   114  | 
  "Ball (Set xs) P \<longleftrightarrow> list_all P xs"
  | 
| 
 | 
   115  | 
  by (simp add: ball_set)
  | 
| 
 | 
   116  | 
  | 
| 
 | 
   117  | 
lemma Bex_Set [code]:
  | 
| 
 | 
   118  | 
  "Bex (Set xs) P \<longleftrightarrow> list_ex P xs"
  | 
| 
 | 
   119  | 
  by (simp add: bex_set)
  | 
| 
 | 
   120  | 
  | 
| 
 | 
   121  | 
lemma card_Set [code]:
  | 
| 
 | 
   122  | 
  "card (Set xs) = length (remdups xs)"
  | 
| 
 | 
   123  | 
proof -
  | 
| 
 | 
   124  | 
  have "card (set (remdups xs)) = length (remdups xs)"
  | 
| 
 | 
   125  | 
    by (rule distinct_card) simp
  | 
| 
 | 
   126  | 
  then show ?thesis by simp
  | 
| 
 | 
   127  | 
qed
  | 
| 
 | 
   128  | 
  | 
| 
 | 
   129  | 
  | 
| 
 | 
   130  | 
subsection {* Derived operations *}
 | 
| 
 | 
   131  | 
  | 
| 
 | 
   132  | 
definition set_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where
  | 
| 
 | 
   133  | 
  [simp]: "set_eq = op ="
  | 
| 
 | 
   134  | 
  | 
| 
34020
 | 
   135  | 
lemma [code_unfold]:
  | 
| 
33947
 | 
   136  | 
  "op = = set_eq"
  | 
| 
 | 
   137  | 
  by simp
  | 
| 
 | 
   138  | 
  | 
| 
 | 
   139  | 
definition subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where
  | 
| 
 | 
   140  | 
  [simp]: "subset_eq = op \<subseteq>"
  | 
| 
 | 
   141  | 
  | 
| 
34020
 | 
   142  | 
lemma [code_unfold]:
  | 
| 
33947
 | 
   143  | 
  "op \<subseteq> = subset_eq"
  | 
| 
 | 
   144  | 
  by simp
  | 
| 
 | 
   145  | 
  | 
| 
 | 
   146  | 
definition subset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where
  | 
| 
 | 
   147  | 
  [simp]: "subset = op \<subset>"
  | 
| 
 | 
   148  | 
  | 
| 
34020
 | 
   149  | 
lemma [code_unfold]:
  | 
| 
33947
 | 
   150  | 
  "op \<subset> = subset"
  | 
| 
 | 
   151  | 
  by simp
  | 
| 
 | 
   152  | 
  | 
| 
 | 
   153  | 
setup {*
 | 
| 
 | 
   154  | 
  Code.add_signature_cmd ("set_eq", "'a set \<Rightarrow> 'a set \<Rightarrow> bool")
 | 
| 
 | 
   155  | 
  #> Code.add_signature_cmd ("subset_eq", "'a set \<Rightarrow> 'a set \<Rightarrow> bool")
 | 
| 
 | 
   156  | 
  #> Code.add_signature_cmd ("subset", "'a set \<Rightarrow> 'a set \<Rightarrow> bool")
 | 
| 
 | 
   157  | 
*}
  | 
| 
 | 
   158  | 
  | 
| 
 | 
   159  | 
lemma set_eq_subset_eq [code]:
  | 
| 
 | 
   160  | 
  "set_eq A B \<longleftrightarrow> subset_eq A B \<and> subset_eq B A"
  | 
| 
 | 
   161  | 
  by auto
  | 
| 
 | 
   162  | 
  | 
| 
 | 
   163  | 
lemma subset_eq_forall [code]:
  | 
| 
 | 
   164  | 
  "subset_eq A B \<longleftrightarrow> (\<forall>x\<in>A. x \<in> B)"
  | 
| 
 | 
   165  | 
  by (simp add: subset_eq)
  | 
| 
 | 
   166  | 
  | 
| 
 | 
   167  | 
lemma subset_subset_eq [code]:
  | 
| 
 | 
   168  | 
  "subset A B \<longleftrightarrow> subset_eq A B \<and> \<not> subset_eq B A"
  | 
| 
 | 
   169  | 
  by (simp add: subset)
  | 
| 
 | 
   170  | 
  | 
| 
 | 
   171  | 
  | 
| 
 | 
   172  | 
subsection {* Functorial operations *}
 | 
| 
 | 
   173  | 
  | 
| 
 | 
   174  | 
definition inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" where
  | 
| 
 | 
   175  | 
  [simp]: "inter = op \<inter>"
  | 
| 
 | 
   176  | 
  | 
| 
34020
 | 
   177  | 
lemma [code_unfold]:
  | 
| 
33947
 | 
   178  | 
  "op \<inter> = inter"
  | 
| 
 | 
   179  | 
  by simp
  | 
| 
 | 
   180  | 
  | 
| 
 | 
   181  | 
definition subtract :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" where
  | 
| 
 | 
   182  | 
  [simp]: "subtract A B = B - A"
  | 
| 
 | 
   183  | 
  | 
| 
34020
 | 
   184  | 
lemma [code_unfold]:
  | 
| 
33947
 | 
   185  | 
  "B - A = subtract A B"
  | 
| 
 | 
   186  | 
  by simp
  | 
| 
 | 
   187  | 
  | 
| 
 | 
   188  | 
definition union :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" where
  | 
| 
 | 
   189  | 
  [simp]: "union = op \<union>"
  | 
| 
 | 
   190  | 
  | 
| 
34020
 | 
   191  | 
lemma [code_unfold]:
  | 
| 
33947
 | 
   192  | 
  "op \<union> = union"
  | 
| 
 | 
   193  | 
  by simp
  | 
| 
 | 
   194  | 
  | 
| 
 | 
   195  | 
definition Inf :: "'a::complete_lattice set \<Rightarrow> 'a" where
  | 
| 
 | 
   196  | 
  [simp]: "Inf = Complete_Lattice.Inf"
  | 
| 
 | 
   197  | 
  | 
| 
34020
 | 
   198  | 
lemma [code_unfold]:
  | 
| 
33947
 | 
   199  | 
  "Complete_Lattice.Inf = Inf"
  | 
| 
 | 
   200  | 
  by simp
  | 
| 
 | 
   201  | 
  | 
| 
 | 
   202  | 
definition Sup :: "'a::complete_lattice set \<Rightarrow> 'a" where
  | 
| 
 | 
   203  | 
  [simp]: "Sup = Complete_Lattice.Sup"
  | 
| 
 | 
   204  | 
  | 
| 
34020
 | 
   205  | 
lemma [code_unfold]:
  | 
| 
33947
 | 
   206  | 
  "Complete_Lattice.Sup = Sup"
  | 
| 
 | 
   207  | 
  by simp
  | 
| 
 | 
   208  | 
  | 
| 
 | 
   209  | 
definition Inter :: "'a set set \<Rightarrow> 'a set" where
  | 
| 
 | 
   210  | 
  [simp]: "Inter = Inf"
  | 
| 
 | 
   211  | 
  | 
| 
34020
 | 
   212  | 
lemma [code_unfold]:
  | 
| 
33947
 | 
   213  | 
  "Inf = Inter"
  | 
| 
 | 
   214  | 
  by simp
  | 
| 
 | 
   215  | 
  | 
| 
 | 
   216  | 
definition Union :: "'a set set \<Rightarrow> 'a set" where
  | 
| 
 | 
   217  | 
  [simp]: "Union = Sup"
  | 
| 
 | 
   218  | 
  | 
| 
34020
 | 
   219  | 
lemma [code_unfold]:
  | 
| 
33947
 | 
   220  | 
  "Sup = Union"
  | 
| 
 | 
   221  | 
  by simp
  | 
| 
 | 
   222  | 
  | 
| 
 | 
   223  | 
setup {*
 | 
| 
 | 
   224  | 
  Code.add_signature_cmd ("inter", "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set")
 | 
| 
 | 
   225  | 
  #> Code.add_signature_cmd ("subtract", "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set")
 | 
| 
 | 
   226  | 
  #> Code.add_signature_cmd ("union", "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set")
 | 
| 
 | 
   227  | 
  #> Code.add_signature_cmd ("Inf", "'a set \<Rightarrow> 'a")
 | 
| 
 | 
   228  | 
  #> Code.add_signature_cmd ("Sup", "'a set \<Rightarrow> 'a")
 | 
| 
 | 
   229  | 
  #> Code.add_signature_cmd ("Inter", "'a set set \<Rightarrow> 'a set")
 | 
| 
 | 
   230  | 
  #> Code.add_signature_cmd ("Union", "'a set set \<Rightarrow> 'a set")
 | 
| 
 | 
   231  | 
*}
  | 
| 
 | 
   232  | 
  | 
| 
 | 
   233  | 
lemma inter_project [code]:
  | 
| 
 | 
   234  | 
  "inter A (Set xs) = Set (List.filter (\<lambda>x. x \<in> A) xs)"
  | 
| 
 | 
   235  | 
  "inter A (Coset xs) = foldl (\<lambda>A x. remove x A) A xs"
  | 
| 
 | 
   236  | 
  by (simp add: inter project_def, simp add: Diff_eq [symmetric] minus_set)
  | 
| 
 | 
   237  | 
  | 
| 
 | 
   238  | 
lemma subtract_remove [code]:
  | 
| 
 | 
   239  | 
  "subtract (Set xs) A = foldl (\<lambda>A x. remove x A) A xs"
  | 
| 
 | 
   240  | 
  "subtract (Coset xs) A = Set (List.filter (\<lambda>x. x \<in> A) xs)"
  | 
| 
 | 
   241  | 
  by (auto simp add: minus_set)
  | 
| 
 | 
   242  | 
  | 
| 
 | 
   243  | 
lemma union_insert [code]:
  | 
| 
 | 
   244  | 
  "union (Set xs) A = foldl (\<lambda>A x. insert x A) A xs"
  | 
| 
 | 
   245  | 
  "union (Coset xs) A = Coset (List.filter (\<lambda>x. x \<notin> A) xs)"
  | 
| 
 | 
   246  | 
  by (auto simp add: union_set)
  | 
| 
 | 
   247  | 
  | 
| 
 | 
   248  | 
lemma Inf_inf [code]:
  | 
| 
 | 
   249  | 
  "Inf (Set xs) = foldl inf (top :: 'a::complete_lattice) xs"
  | 
| 
 | 
   250  | 
  "Inf (Coset []) = (bot :: 'a::complete_lattice)"
  | 
| 
34008
 | 
   251  | 
  by (simp_all add: Inf_UNIV Inf_set_fold)
  | 
| 
33947
 | 
   252  | 
  | 
| 
 | 
   253  | 
lemma Sup_sup [code]:
  | 
| 
 | 
   254  | 
  "Sup (Set xs) = foldl sup (bot :: 'a::complete_lattice) xs"
  | 
| 
 | 
   255  | 
  "Sup (Coset []) = (top :: 'a::complete_lattice)"
  | 
| 
34008
 | 
   256  | 
  by (simp_all add: Sup_UNIV Sup_set_fold)
  | 
| 
33947
 | 
   257  | 
  | 
| 
 | 
   258  | 
lemma Inter_inter [code]:
  | 
| 
 | 
   259  | 
  "Inter (Set xs) = foldl inter (Coset []) xs"
  | 
| 
 | 
   260  | 
  "Inter (Coset []) = empty"
  | 
| 
 | 
   261  | 
  unfolding Inter_def Inf_inf by simp_all
  | 
| 
 | 
   262  | 
  | 
| 
 | 
   263  | 
lemma Union_union [code]:
  | 
| 
 | 
   264  | 
  "Union (Set xs) = foldl union empty xs"
  | 
| 
 | 
   265  | 
  "Union (Coset []) = Coset []"
  | 
| 
 | 
   266  | 
  unfolding Union_def Sup_sup by simp_all
  | 
| 
 | 
   267  | 
  | 
| 
 | 
   268  | 
hide (open) const is_empty empty remove
  | 
| 
 | 
   269  | 
  set_eq subset_eq subset inter union subtract Inf Sup Inter Union
  | 
| 
 | 
   270  | 
  | 
| 
 | 
   271  | 
end
  |