src/HOL/NumberTheory/IntPrimes.thy
author bulwahn
Mon, 11 May 2009 09:18:42 +0200
changeset 31106 9a1178204dc0
parent 30242 aea5d7fa7ef5
permissions -rw-r--r--
Added pred_code command
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
     1
(*  Title:      HOL/NumberTheory/IntPrimes.thy
9508
4d01dbf6ded7 Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff changeset
     2
    ID:         $Id$
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
     3
    Author:     Thomas M. Rasmussen
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
     4
    Copyright   2000  University of Cambridge
9508
4d01dbf6ded7 Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff changeset
     5
*)
4d01dbf6ded7 Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff changeset
     6
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
     7
header {* Divisibility and prime numbers (on integers) *}
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
     8
25596
ad9e3594f3f3 tuned header
haftmann
parents: 24759
diff changeset
     9
theory IntPrimes
27368
9f90ac19e32b established Plain theory and image
haftmann
parents: 25596
diff changeset
    10
imports Main Primes
25596
ad9e3594f3f3 tuned header
haftmann
parents: 24759
diff changeset
    11
begin
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    12
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    13
text {*
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    14
  The @{text dvd} relation, GCD, Euclid's extended algorithm, primes,
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    15
  congruences (all on the Integers).  Comparable to theory @{text
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    16
  Primes}, but @{text dvd} is included here as it is not present in
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    17
  main HOL.  Also includes extended GCD and congruences not present in
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    18
  @{text Primes}.
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    19
*}
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    20
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    21
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    22
subsection {* Definitions *}
9508
4d01dbf6ded7 Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff changeset
    23
4d01dbf6ded7 Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff changeset
    24
consts
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    25
  xzgcda :: "int * int * int * int * int * int * int * int => int * int * int"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    26
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    27
recdef xzgcda
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    28
  "measure ((\<lambda>(m, n, r', r, s', s, t', t). nat r)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    29
    :: int * int * int * int *int * int * int * int => nat)"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    30
  "xzgcda (m, n, r', r, s', s, t', t) =
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
    31
	(if r \<le> 0 then (r', s', t')
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
    32
	 else xzgcda (m, n, r, r' mod r, 
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
    33
		      s, s' - (r' div r) * s, 
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
    34
		      t, t' - (r' div r) * t))"
9508
4d01dbf6ded7 Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff changeset
    35
19670
2e4a143c73c5 prefer 'definition' over low-level defs;
wenzelm
parents: 18369
diff changeset
    36
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 19670
diff changeset
    37
  zprime :: "int \<Rightarrow> bool" where
19670
2e4a143c73c5 prefer 'definition' over low-level defs;
wenzelm
parents: 18369
diff changeset
    38
  "zprime p = (1 < p \<and> (\<forall>m. 0 <= m & m dvd p --> m = 1 \<or> m = p))"
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
    39
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 19670
diff changeset
    40
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 19670
diff changeset
    41
  xzgcd :: "int => int => int * int * int" where
19670
2e4a143c73c5 prefer 'definition' over low-level defs;
wenzelm
parents: 18369
diff changeset
    42
  "xzgcd m n = xzgcda (m, n, m, n, 1, 0, 0, 1)"
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
    43
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 19670
diff changeset
    44
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 19670
diff changeset
    45
  zcong :: "int => int => int => bool"  ("(1[_ = _] '(mod _'))") where
19670
2e4a143c73c5 prefer 'definition' over low-level defs;
wenzelm
parents: 18369
diff changeset
    46
  "[a = b] (mod m) = (m dvd (a - b))"
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    47
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    48
subsection {* Euclid's Algorithm and GCD *}
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    49
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    50
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
    51
lemma zrelprime_zdvd_zmult_aux:
27556
292098f2efdf unified curried gcd, lcm, zgcd, zlcm
haftmann
parents: 27368
diff changeset
    52
     "zgcd n k = 1 ==> k dvd m * n ==> 0 \<le> m ==> k dvd m"
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 30034
diff changeset
    53
    by (metis abs_of_nonneg dvd_triv_right zgcd_greatest_iff zgcd_zmult_distrib2_abs zmult_1_right)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    54
27556
292098f2efdf unified curried gcd, lcm, zgcd, zlcm
haftmann
parents: 27368
diff changeset
    55
lemma zrelprime_zdvd_zmult: "zgcd n k = 1 ==> k dvd m * n ==> k dvd m"
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11701
diff changeset
    56
  apply (case_tac "0 \<le> m")
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 13517
diff changeset
    57
   apply (blast intro: zrelprime_zdvd_zmult_aux)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    58
  apply (subgoal_tac "k dvd -m")
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
    59
   apply (rule_tac [2] zrelprime_zdvd_zmult_aux, auto)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    60
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    61
27556
292098f2efdf unified curried gcd, lcm, zgcd, zlcm
haftmann
parents: 27368
diff changeset
    62
lemma zgcd_geq_zero: "0 <= zgcd x y"
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
    63
  by (auto simp add: zgcd_def)
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
    64
13837
8dd150d36c65 Reorganized, moving many results about the integer dvd relation from IntPrimes
paulson
parents: 13833
diff changeset
    65
text{*This is merely a sanity check on zprime, since the previous version
8dd150d36c65 Reorganized, moving many results about the integer dvd relation from IntPrimes
paulson
parents: 13833
diff changeset
    66
      denoted the empty set.*}
16663
13e9c402308b prime is a predicate now.
nipkow
parents: 16417
diff changeset
    67
lemma "zprime 2"
13837
8dd150d36c65 Reorganized, moving many results about the integer dvd relation from IntPrimes
paulson
parents: 13833
diff changeset
    68
  apply (auto simp add: zprime_def) 
8dd150d36c65 Reorganized, moving many results about the integer dvd relation from IntPrimes
paulson
parents: 13833
diff changeset
    69
  apply (frule zdvd_imp_le, simp) 
8dd150d36c65 Reorganized, moving many results about the integer dvd relation from IntPrimes
paulson
parents: 13833
diff changeset
    70
  apply (auto simp add: order_le_less dvd_def) 
8dd150d36c65 Reorganized, moving many results about the integer dvd relation from IntPrimes
paulson
parents: 13833
diff changeset
    71
  done
8dd150d36c65 Reorganized, moving many results about the integer dvd relation from IntPrimes
paulson
parents: 13833
diff changeset
    72
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    73
lemma zprime_imp_zrelprime:
27556
292098f2efdf unified curried gcd, lcm, zgcd, zlcm
haftmann
parents: 27368
diff changeset
    74
    "zprime p ==> \<not> p dvd n ==> zgcd n p = 1"
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
    75
  apply (auto simp add: zprime_def)
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 30034
diff changeset
    76
  apply (metis zgcd_geq_zero zgcd_zdvd1 zgcd_zdvd2)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    77
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    78
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    79
lemma zless_zprime_imp_zrelprime:
27556
292098f2efdf unified curried gcd, lcm, zgcd, zlcm
haftmann
parents: 27368
diff changeset
    80
    "zprime p ==> 0 < n ==> n < p ==> zgcd n p = 1"
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    81
  apply (erule zprime_imp_zrelprime)
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
    82
  apply (erule zdvd_not_zless, assumption)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    83
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    84
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    85
lemma zprime_zdvd_zmult:
16663
13e9c402308b prime is a predicate now.
nipkow
parents: 16417
diff changeset
    86
    "0 \<le> (m::int) ==> zprime p ==> p dvd m * n ==> p dvd m \<or> p dvd n"
27569
c8419e8a2d83 Simple theorems about zgcd moved to GCD.thy
chaieb
parents: 27556
diff changeset
    87
  by (metis zgcd_zdvd1 zgcd_zdvd2 zgcd_pos zprime_def zrelprime_dvd_mult)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    88
27556
292098f2efdf unified curried gcd, lcm, zgcd, zlcm
haftmann
parents: 27368
diff changeset
    89
lemma zgcd_zadd_zmult [simp]: "zgcd (m + n * k) n = zgcd m n"
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    90
  apply (rule zgcd_eq [THEN trans])
29948
cdf12a1cb963 Cleaned up IntDiv and removed subsumed lemmas.
nipkow
parents: 29925
diff changeset
    91
  apply (simp add: mod_add_eq)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    92
  apply (rule zgcd_eq [symmetric])
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    93
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    94
27556
292098f2efdf unified curried gcd, lcm, zgcd, zlcm
haftmann
parents: 27368
diff changeset
    95
lemma zgcd_zdvd_zgcd_zmult: "zgcd m n dvd zgcd (k * m) n"
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 30034
diff changeset
    96
by (simp add: zgcd_greatest_iff)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    97
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
    98
lemma zgcd_zmult_zdvd_zgcd:
27569
c8419e8a2d83 Simple theorems about zgcd moved to GCD.thy
chaieb
parents: 27556
diff changeset
    99
    "zgcd k n = 1 ==> zgcd (k * m) n dvd zgcd m n"
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   100
  apply (simp add: zgcd_greatest_iff)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   101
  apply (rule_tac n = k in zrelprime_zdvd_zmult)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   102
   prefer 2
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   103
   apply (simp add: zmult_commute)
23839
d9fa0f457d9a tidying using metis
paulson
parents: 21404
diff changeset
   104
  apply (metis zgcd_1 zgcd_commute zgcd_left_commute)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   105
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   106
27556
292098f2efdf unified curried gcd, lcm, zgcd, zlcm
haftmann
parents: 27368
diff changeset
   107
lemma zgcd_zmult_cancel: "zgcd k n = 1 ==> zgcd (k * m) n = zgcd m n"
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   108
  by (simp add: zgcd_def nat_abs_mult_distrib gcd_mult_cancel)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   109
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   110
lemma zgcd_zgcd_zmult:
27569
c8419e8a2d83 Simple theorems about zgcd moved to GCD.thy
chaieb
parents: 27556
diff changeset
   111
    "zgcd k m = 1 ==> zgcd n m = 1 ==> zgcd (k * n) m = 1"
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   112
  by (simp add: zgcd_zmult_cancel)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   113
27556
292098f2efdf unified curried gcd, lcm, zgcd, zlcm
haftmann
parents: 27368
diff changeset
   114
lemma zdvd_iff_zgcd: "0 < m ==> m dvd n \<longleftrightarrow> zgcd n m = m"
23839
d9fa0f457d9a tidying using metis
paulson
parents: 21404
diff changeset
   115
  by (metis abs_of_pos zdvd_mult_div_cancel zgcd_0 zgcd_commute zgcd_geq_zero zgcd_zdvd2 zgcd_zmult_eq_self)
d9fa0f457d9a tidying using metis
paulson
parents: 21404
diff changeset
   116
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   117
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   118
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   119
subsection {* Congruences *}
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   120
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11701
diff changeset
   121
lemma zcong_1 [simp]: "[a = b] (mod 1)"
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   122
  by (unfold zcong_def, auto)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   123
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   124
lemma zcong_refl [simp]: "[k = k] (mod m)"
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   125
  by (unfold zcong_def, auto)
9508
4d01dbf6ded7 Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff changeset
   126
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   127
lemma zcong_sym: "[a = b] (mod m) = [b = a] (mod m)"
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 30034
diff changeset
   128
  unfolding zcong_def minus_diff_eq [of a, symmetric] dvd_minus_iff ..
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   129
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   130
lemma zcong_zadd:
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   131
    "[a = b] (mod m) ==> [c = d] (mod m) ==> [a + c = b + d] (mod m)"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   132
  apply (unfold zcong_def)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   133
  apply (rule_tac s = "(a - b) + (c - d)" in subst)
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 30034
diff changeset
   134
   apply (rule_tac [2] dvd_add, auto)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   135
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   136
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   137
lemma zcong_zdiff:
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   138
    "[a = b] (mod m) ==> [c = d] (mod m) ==> [a - c = b - d] (mod m)"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   139
  apply (unfold zcong_def)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   140
  apply (rule_tac s = "(a - b) - (c - d)" in subst)
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 30034
diff changeset
   141
   apply (rule_tac [2] dvd_diff, auto)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   142
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   143
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   144
lemma zcong_trans:
29925
17d1e32ef867 dvd and setprod lemmas
nipkow
parents: 29667
diff changeset
   145
  "[a = b] (mod m) ==> [b = c] (mod m) ==> [a = c] (mod m)"
17d1e32ef867 dvd and setprod lemmas
nipkow
parents: 29667
diff changeset
   146
unfolding zcong_def by (auto elim!: dvdE simp add: algebra_simps)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   147
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   148
lemma zcong_zmult:
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   149
    "[a = b] (mod m) ==> [c = d] (mod m) ==> [a * c = b * d] (mod m)"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   150
  apply (rule_tac b = "b * c" in zcong_trans)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   151
   apply (unfold zcong_def)
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 30034
diff changeset
   152
  apply (metis zdiff_zmult_distrib2 dvd_mult zmult_commute)
31039ee583fa Removed subsumed lemmas
nipkow
parents: 30034
diff changeset
   153
  apply (metis zdiff_zmult_distrib2 dvd_mult)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   154
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   155
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   156
lemma zcong_scalar: "[a = b] (mod m) ==> [a * k = b * k] (mod m)"
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   157
  by (rule zcong_zmult, simp_all)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   158
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   159
lemma zcong_scalar2: "[a = b] (mod m) ==> [k * a = k * b] (mod m)"
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   160
  by (rule zcong_zmult, simp_all)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   161
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   162
lemma zcong_zmult_self: "[a * m = b * m] (mod m)"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   163
  apply (unfold zcong_def)
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 30034
diff changeset
   164
  apply (rule dvd_diff, simp_all)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   165
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   166
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   167
lemma zcong_square:
16663
13e9c402308b prime is a predicate now.
nipkow
parents: 16417
diff changeset
   168
   "[| zprime p;  0 < a;  [a * a = 1] (mod p)|]
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11701
diff changeset
   169
    ==> [a = 1] (mod p) \<or> [a = p - 1] (mod p)"
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   170
  apply (unfold zcong_def)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   171
  apply (rule zprime_zdvd_zmult)
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11701
diff changeset
   172
    apply (rule_tac [3] s = "a * a - 1 + p * (1 - a)" in subst)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   173
     prefer 4
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   174
     apply (simp add: zdvd_reduce)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   175
    apply (simp_all add: zdiff_zmult_distrib zmult_commute zdiff_zmult_distrib2)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   176
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   177
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   178
lemma zcong_cancel:
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11701
diff changeset
   179
  "0 \<le> m ==>
27556
292098f2efdf unified curried gcd, lcm, zgcd, zlcm
haftmann
parents: 27368
diff changeset
   180
    zgcd k m = 1 ==> [a * k = b * k] (mod m) = [a = b] (mod m)"
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   181
  apply safe
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   182
   prefer 2
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   183
   apply (blast intro: zcong_scalar)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   184
  apply (case_tac "b < a")
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   185
   prefer 2
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   186
   apply (subst zcong_sym)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   187
   apply (unfold zcong_def)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   188
   apply (rule_tac [!] zrelprime_zdvd_zmult)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   189
     apply (simp_all add: zdiff_zmult_distrib)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   190
  apply (subgoal_tac "m dvd (-(a * k - b * k))")
14271
8ed6989228bb Simplification of the development of Integers
paulson
parents: 14174
diff changeset
   191
   apply simp
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 30034
diff changeset
   192
  apply (subst dvd_minus_iff, assumption)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   193
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   194
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   195
lemma zcong_cancel2:
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11701
diff changeset
   196
  "0 \<le> m ==>
27556
292098f2efdf unified curried gcd, lcm, zgcd, zlcm
haftmann
parents: 27368
diff changeset
   197
    zgcd k m = 1 ==> [k * a = k * b] (mod m) = [a = b] (mod m)"
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   198
  by (simp add: zmult_commute zcong_cancel)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   199
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   200
lemma zcong_zgcd_zmult_zmod:
27556
292098f2efdf unified curried gcd, lcm, zgcd, zlcm
haftmann
parents: 27368
diff changeset
   201
  "[a = b] (mod m) ==> [a = b] (mod n) ==> zgcd m n = 1
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   202
    ==> [a = b] (mod m * n)"
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27569
diff changeset
   203
  apply (auto simp add: zcong_def dvd_def)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   204
  apply (subgoal_tac "m dvd n * ka")
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   205
   apply (subgoal_tac "m dvd ka")
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11701
diff changeset
   206
    apply (case_tac [2] "0 \<le> ka")
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 30034
diff changeset
   207
  apply (metis zdvd_mult_div_cancel dvd_refl dvd_mult_left zmult_commute zrelprime_zdvd_zmult)
31039ee583fa Removed subsumed lemmas
nipkow
parents: 30034
diff changeset
   208
  apply (metis abs_dvd_iff abs_of_nonneg zadd_0 zgcd_0_left zgcd_commute zgcd_zadd_zmult zgcd_zdvd_zgcd_zmult zgcd_zmult_distrib2_abs zmult_1_right zmult_commute)
31039ee583fa Removed subsumed lemmas
nipkow
parents: 30034
diff changeset
   209
  apply (metis mult_le_0_iff  zdvd_mono zdvd_mult_cancel dvd_triv_left zero_le_mult_iff zle_anti_sym zle_linear zle_refl zmult_commute zrelprime_zdvd_zmult)
31039ee583fa Removed subsumed lemmas
nipkow
parents: 30034
diff changeset
   210
  apply (metis dvd_triv_left)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   211
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   212
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   213
lemma zcong_zless_imp_eq:
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11701
diff changeset
   214
  "0 \<le> a ==>
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11701
diff changeset
   215
    a < m ==> 0 \<le> b ==> b < m ==> [a = b] (mod m) ==> a = b"
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   216
  apply (unfold zcong_def dvd_def, auto)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   217
  apply (drule_tac f = "\<lambda>z. z mod m" in arg_cong)
30034
60f64f112174 removed redundant thms
nipkow
parents: 29948
diff changeset
   218
  apply (metis diff_add_cancel mod_pos_pos_trivial zadd_0 zadd_commute zmod_eq_0_iff mod_add_right_eq)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   219
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   220
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   221
lemma zcong_square_zless:
16663
13e9c402308b prime is a predicate now.
nipkow
parents: 16417
diff changeset
   222
  "zprime p ==> 0 < a ==> a < p ==>
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11701
diff changeset
   223
    [a * a = 1] (mod p) ==> a = 1 \<or> a = p - 1"
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   224
  apply (cut_tac p = p and a = a in zcong_square)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   225
     apply (simp add: zprime_def)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   226
    apply (auto intro: zcong_zless_imp_eq)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   227
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   228
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   229
lemma zcong_not:
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11701
diff changeset
   230
    "0 < a ==> a < m ==> 0 < b ==> b < a ==> \<not> [a = b] (mod m)"
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   231
  apply (unfold zcong_def)
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   232
  apply (rule zdvd_not_zless, auto)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   233
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   234
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   235
lemma zcong_zless_0:
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11701
diff changeset
   236
    "0 \<le> a ==> a < m ==> [a = 0] (mod m) ==> a = 0"
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   237
  apply (unfold zcong_def dvd_def, auto)
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 30034
diff changeset
   238
  apply (metis div_pos_pos_trivial linorder_not_less div_mult_self1_is_id)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   239
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   240
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   241
lemma zcong_zless_unique:
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11701
diff changeset
   242
    "0 < m ==> (\<exists>!b. 0 \<le> b \<and> b < m \<and> [a = b] (mod m))"
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   243
  apply auto
23839
d9fa0f457d9a tidying using metis
paulson
parents: 21404
diff changeset
   244
   prefer 2 apply (metis zcong_sym zcong_trans zcong_zless_imp_eq)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   245
  apply (unfold zcong_def dvd_def)
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   246
  apply (rule_tac x = "a mod m" in exI, auto)
23839
d9fa0f457d9a tidying using metis
paulson
parents: 21404
diff changeset
   247
  apply (metis zmult_div_cancel)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   248
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   249
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   250
lemma zcong_iff_lin: "([a = b] (mod m)) = (\<exists>k. b = a + m * k)"
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27569
diff changeset
   251
  unfolding zcong_def
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29412
diff changeset
   252
  apply (auto elim!: dvdE simp add: algebra_simps)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27569
diff changeset
   253
  apply (rule_tac x = "-k" in exI) apply simp
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   254
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   255
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   256
lemma zgcd_zcong_zgcd:
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11701
diff changeset
   257
  "0 < m ==>
27556
292098f2efdf unified curried gcd, lcm, zgcd, zlcm
haftmann
parents: 27368
diff changeset
   258
    zgcd a m = 1 ==> [a = b] (mod m) ==> zgcd b m = 1"
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   259
  by (auto simp add: zcong_iff_lin)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   260
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   261
lemma zcong_zmod_aux:
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   262
     "a - b = (m::int) * (a div m - b div m) + (a mod m - b mod m)"
14271
8ed6989228bb Simplification of the development of Integers
paulson
parents: 14174
diff changeset
   263
  by(simp add: zdiff_zmult_distrib2 add_diff_eq eq_diff_eq add_ac)
13517
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13193
diff changeset
   264
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   265
lemma zcong_zmod: "[a = b] (mod m) = [a mod m = b mod m] (mod m)"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   266
  apply (unfold zcong_def)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   267
  apply (rule_tac t = "a - b" in ssubst)
14174
f3cafd2929d5 Methods rule_tac etc support static (Isar) contexts.
ballarin
parents: 13837
diff changeset
   268
  apply (rule_tac m = m in zcong_zmod_aux)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   269
  apply (rule trans)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   270
   apply (rule_tac [2] k = m and m = "a div m - b div m" in zdvd_reduce)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   271
  apply (simp add: zadd_commute)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   272
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   273
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11701
diff changeset
   274
lemma zcong_zmod_eq: "0 < m ==> [a = b] (mod m) = (a mod m = b mod m)"
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   275
  apply auto
23839
d9fa0f457d9a tidying using metis
paulson
parents: 21404
diff changeset
   276
  apply (metis pos_mod_conj zcong_zless_imp_eq zcong_zmod)
d9fa0f457d9a tidying using metis
paulson
parents: 21404
diff changeset
   277
  apply (metis zcong_refl zcong_zmod)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   278
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   279
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   280
lemma zcong_zminus [iff]: "[a = b] (mod -m) = [a = b] (mod m)"
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   281
  by (auto simp add: zcong_def)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   282
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11701
diff changeset
   283
lemma zcong_zero [iff]: "[a = b] (mod 0) = (a = b)"
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   284
  by (auto simp add: zcong_def)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   285
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   286
lemma "[a = b] (mod m) = (a mod m = b mod m)"
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   287
  apply (case_tac "m = 0", simp add: DIVISION_BY_ZERO)
13193
d5234c261813 finished an incomplete proof
paulson
parents: 13187
diff changeset
   288
  apply (simp add: linorder_neq_iff)
d5234c261813 finished an incomplete proof
paulson
parents: 13187
diff changeset
   289
  apply (erule disjE)  
d5234c261813 finished an incomplete proof
paulson
parents: 13187
diff changeset
   290
   prefer 2 apply (simp add: zcong_zmod_eq)
d5234c261813 finished an incomplete proof
paulson
parents: 13187
diff changeset
   291
  txt{*Remainding case: @{term "m<0"}*}
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   292
  apply (rule_tac t = m in zminus_zminus [THEN subst])
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   293
  apply (subst zcong_zminus)
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   294
  apply (subst zcong_zmod_eq, arith)
13193
d5234c261813 finished an incomplete proof
paulson
parents: 13187
diff changeset
   295
  apply (frule neg_mod_bound [of _ a], frule neg_mod_bound [of _ b]) 
13788
fd03c4ab89d4 pos/neg_mod_sign/bound are now simp rules.
nipkow
parents: 13630
diff changeset
   296
  apply (simp add: zmod_zminus2_eq_if del: neg_mod_bound)
13193
d5234c261813 finished an incomplete proof
paulson
parents: 13187
diff changeset
   297
  done
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   298
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   299
subsection {* Modulo *}
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   300
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   301
lemma zmod_zdvd_zmod:
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11701
diff changeset
   302
    "0 < (m::int) ==> m dvd b ==> (a mod b mod m) = (a mod m)"
30034
60f64f112174 removed redundant thms
nipkow
parents: 29948
diff changeset
   303
  by (rule mod_mod_cancel) 
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   304
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   305
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   306
subsection {* Extended GCD *}
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   307
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   308
declare xzgcda.simps [simp del]
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   309
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 13517
diff changeset
   310
lemma xzgcd_correct_aux1:
27556
292098f2efdf unified curried gcd, lcm, zgcd, zlcm
haftmann
parents: 27368
diff changeset
   311
  "zgcd r' r = k --> 0 < r -->
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   312
    (\<exists>sn tn. xzgcda (m, n, r', r, s', s, t', t) = (k, sn, tn))"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   313
  apply (rule_tac u = m and v = n and w = r' and x = r and y = s' and
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   314
    z = s and aa = t' and ab = t in xzgcda.induct)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   315
  apply (subst zgcd_eq)
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   316
  apply (subst xzgcda.simps, auto)
24759
b448f94b1c88 fixed metis proof (Why did it stop working?);
wenzelm
parents: 24181
diff changeset
   317
  apply (case_tac "r' mod r = 0")
b448f94b1c88 fixed metis proof (Why did it stop working?);
wenzelm
parents: 24181
diff changeset
   318
   prefer 2
b448f94b1c88 fixed metis proof (Why did it stop working?);
wenzelm
parents: 24181
diff changeset
   319
   apply (frule_tac a = "r'" in pos_mod_sign, auto)
b448f94b1c88 fixed metis proof (Why did it stop working?);
wenzelm
parents: 24181
diff changeset
   320
  apply (rule exI)
b448f94b1c88 fixed metis proof (Why did it stop working?);
wenzelm
parents: 24181
diff changeset
   321
  apply (rule exI)
b448f94b1c88 fixed metis proof (Why did it stop working?);
wenzelm
parents: 24181
diff changeset
   322
  apply (subst xzgcda.simps, auto)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   323
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   324
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 13517
diff changeset
   325
lemma xzgcd_correct_aux2:
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11701
diff changeset
   326
  "(\<exists>sn tn. xzgcda (m, n, r', r, s', s, t', t) = (k, sn, tn)) --> 0 < r -->
27556
292098f2efdf unified curried gcd, lcm, zgcd, zlcm
haftmann
parents: 27368
diff changeset
   327
    zgcd r' r = k"
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   328
  apply (rule_tac u = m and v = n and w = r' and x = r and y = s' and
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   329
    z = s and aa = t' and ab = t in xzgcda.induct)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   330
  apply (subst zgcd_eq)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   331
  apply (subst xzgcda.simps)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   332
  apply (auto simp add: linorder_not_le)
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11701
diff changeset
   333
  apply (case_tac "r' mod r = 0")
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   334
   prefer 2
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   335
   apply (frule_tac a = "r'" in pos_mod_sign, auto)
23839
d9fa0f457d9a tidying using metis
paulson
parents: 21404
diff changeset
   336
  apply (metis Pair_eq simps zle_refl)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   337
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   338
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   339
lemma xzgcd_correct:
27569
c8419e8a2d83 Simple theorems about zgcd moved to GCD.thy
chaieb
parents: 27556
diff changeset
   340
    "0 < n ==> (zgcd m n = k) = (\<exists>s t. xzgcd m n = (k, s, t))"
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   341
  apply (unfold xzgcd_def)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   342
  apply (rule iffI)
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 13517
diff changeset
   343
   apply (rule_tac [2] xzgcd_correct_aux2 [THEN mp, THEN mp])
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   344
    apply (rule xzgcd_correct_aux1 [THEN mp, THEN mp], auto)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   345
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   346
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   347
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   348
text {* \medskip @{term xzgcd} linear *}
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   349
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 13517
diff changeset
   350
lemma xzgcda_linear_aux1:
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   351
  "(a - r * b) * m + (c - r * d) * (n::int) =
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   352
   (a * m + c * n) - r * (b * m + d * n)"
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   353
  by (simp add: zdiff_zmult_distrib zadd_zmult_distrib2 zmult_assoc)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   354
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 13517
diff changeset
   355
lemma xzgcda_linear_aux2:
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   356
  "r' = s' * m + t' * n ==> r = s * m + t * n
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   357
    ==> (r' mod r) = (s' - (r' div r) * s) * m + (t' - (r' div r) * t) * (n::int)"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   358
  apply (rule trans)
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 13517
diff changeset
   359
   apply (rule_tac [2] xzgcda_linear_aux1 [symmetric])
14271
8ed6989228bb Simplification of the development of Integers
paulson
parents: 14174
diff changeset
   360
  apply (simp add: eq_diff_eq mult_commute)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   361
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   362
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   363
lemma order_le_neq_implies_less: "(x::'a::order) \<le> y ==> x \<noteq> y ==> x < y"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   364
  by (rule iffD2 [OF order_less_le conjI])
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   365
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   366
lemma xzgcda_linear [rule_format]:
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11701
diff changeset
   367
  "0 < r --> xzgcda (m, n, r', r, s', s, t', t) = (rn, sn, tn) -->
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   368
    r' = s' * m + t' * n -->  r = s * m + t * n --> rn = sn * m + tn * n"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   369
  apply (rule_tac u = m and v = n and w = r' and x = r and y = s' and
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   370
    z = s and aa = t' and ab = t in xzgcda.induct)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   371
  apply (subst xzgcda.simps)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   372
  apply (simp (no_asm))
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   373
  apply (rule impI)+
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11701
diff changeset
   374
  apply (case_tac "r' mod r = 0")
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   375
   apply (simp add: xzgcda.simps, clarify)
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11701
diff changeset
   376
  apply (subgoal_tac "0 < r' mod r")
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   377
   apply (rule_tac [2] order_le_neq_implies_less)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   378
   apply (rule_tac [2] pos_mod_sign)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   379
    apply (cut_tac m = m and n = n and r' = r' and r = r and s' = s' and
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   380
      s = s and t' = t' and t = t in xzgcda_linear_aux2, auto)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   381
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   382
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   383
lemma xzgcd_linear:
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11701
diff changeset
   384
    "0 < n ==> xzgcd m n = (r, s, t) ==> r = s * m + t * n"
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   385
  apply (unfold xzgcd_def)
13837
8dd150d36c65 Reorganized, moving many results about the integer dvd relation from IntPrimes
paulson
parents: 13833
diff changeset
   386
  apply (erule xzgcda_linear, assumption, auto)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   387
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   388
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   389
lemma zgcd_ex_linear:
27556
292098f2efdf unified curried gcd, lcm, zgcd, zlcm
haftmann
parents: 27368
diff changeset
   390
    "0 < n ==> zgcd m n = k ==> (\<exists>s t. k = s * m + t * n)"
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   391
  apply (simp add: xzgcd_correct, safe)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   392
  apply (rule exI)+
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   393
  apply (erule xzgcd_linear, auto)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   394
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   395
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   396
lemma zcong_lineq_ex:
27556
292098f2efdf unified curried gcd, lcm, zgcd, zlcm
haftmann
parents: 27368
diff changeset
   397
    "0 < n ==> zgcd a n = 1 ==> \<exists>x. [a * x = 1] (mod n)"
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   398
  apply (cut_tac m = a and n = n and k = 1 in zgcd_ex_linear, safe)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   399
  apply (rule_tac x = s in exI)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   400
  apply (rule_tac b = "s * a + t * n" in zcong_trans)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   401
   prefer 2
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   402
   apply simp
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   403
  apply (unfold zcong_def)
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 30034
diff changeset
   404
  apply (simp (no_asm) add: zmult_commute)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   405
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   406
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   407
lemma zcong_lineq_unique:
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11701
diff changeset
   408
  "0 < n ==>
27556
292098f2efdf unified curried gcd, lcm, zgcd, zlcm
haftmann
parents: 27368
diff changeset
   409
    zgcd a n = 1 ==> \<exists>!x. 0 \<le> x \<and> x < n \<and> [a * x = b] (mod n)"
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   410
  apply auto
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   411
   apply (rule_tac [2] zcong_zless_imp_eq)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   412
       apply (tactic {* stac (thm "zcong_cancel2" RS sym) 6 *})
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   413
         apply (rule_tac [8] zcong_trans)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   414
          apply (simp_all (no_asm_simp))
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   415
   prefer 2
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   416
   apply (simp add: zcong_sym)
13833
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   417
  apply (cut_tac a = a and n = n in zcong_lineq_ex, auto)
f8dcb1d9ea68 zprime_def fixes by Jeremy Avigad
paulson
parents: 13788
diff changeset
   418
  apply (rule_tac x = "x * b mod n" in exI, safe)
13788
fd03c4ab89d4 pos/neg_mod_sign/bound are now simp rules.
nipkow
parents: 13630
diff changeset
   419
    apply (simp_all (no_asm_simp))
23839
d9fa0f457d9a tidying using metis
paulson
parents: 21404
diff changeset
   420
  apply (metis zcong_scalar zcong_zmod zmod_zmult1_eq zmult_1 zmult_assoc)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 10147
diff changeset
   421
  done
9508
4d01dbf6ded7 Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff changeset
   422
4d01dbf6ded7 Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff changeset
   423
end