author | bulwahn |
Mon, 11 May 2009 09:18:42 +0200 | |
changeset 31106 | 9a1178204dc0 |
parent 30729 | 461ee3e49ad3 |
child 31076 | 99fe356cbbc2 |
permissions | -rw-r--r-- |
27409 | 1 |
(* Title: HOLCF/Algebraic.thy |
2 |
Author: Brian Huffman |
|
3 |
*) |
|
4 |
||
5 |
header {* Algebraic deflations *} |
|
6 |
||
7 |
theory Algebraic |
|
8 |
imports Completion Fix Eventual |
|
9 |
begin |
|
10 |
||
11 |
subsection {* Constructing finite deflations by iteration *} |
|
12 |
||
13 |
lemma finite_deflation_imp_deflation: |
|
14 |
"finite_deflation d \<Longrightarrow> deflation d" |
|
15 |
unfolding finite_deflation_def by simp |
|
16 |
||
17 |
lemma le_Suc_induct: |
|
18 |
assumes le: "i \<le> j" |
|
19 |
assumes step: "\<And>i. P i (Suc i)" |
|
20 |
assumes refl: "\<And>i. P i i" |
|
21 |
assumes trans: "\<And>i j k. \<lbrakk>P i j; P j k\<rbrakk> \<Longrightarrow> P i k" |
|
22 |
shows "P i j" |
|
23 |
proof (cases "i = j") |
|
24 |
assume "i = j" |
|
25 |
thus "P i j" by (simp add: refl) |
|
26 |
next |
|
27 |
assume "i \<noteq> j" |
|
28 |
with le have "i < j" by simp |
|
29 |
thus "P i j" using step trans by (rule less_Suc_induct) |
|
30 |
qed |
|
31 |
||
32 |
text {* A pre-deflation is like a deflation, but not idempotent. *} |
|
33 |
||
34 |
locale pre_deflation = |
|
35 |
fixes f :: "'a \<rightarrow> 'a::cpo" |
|
36 |
assumes less: "\<And>x. f\<cdot>x \<sqsubseteq> x" |
|
37 |
assumes finite_range: "finite (range (\<lambda>x. f\<cdot>x))" |
|
38 |
begin |
|
39 |
||
40 |
lemma iterate_less: "iterate i\<cdot>f\<cdot>x \<sqsubseteq> x" |
|
41 |
by (induct i, simp_all add: trans_less [OF less]) |
|
42 |
||
43 |
lemma iterate_fixed: "f\<cdot>x = x \<Longrightarrow> iterate i\<cdot>f\<cdot>x = x" |
|
44 |
by (induct i, simp_all) |
|
45 |
||
46 |
lemma antichain_iterate_app: "i \<le> j \<Longrightarrow> iterate j\<cdot>f\<cdot>x \<sqsubseteq> iterate i\<cdot>f\<cdot>x" |
|
47 |
apply (erule le_Suc_induct) |
|
48 |
apply (simp add: less) |
|
49 |
apply (rule refl_less) |
|
50 |
apply (erule (1) trans_less) |
|
51 |
done |
|
52 |
||
53 |
lemma finite_range_iterate_app: "finite (range (\<lambda>i. iterate i\<cdot>f\<cdot>x))" |
|
54 |
proof (rule finite_subset) |
|
55 |
show "range (\<lambda>i. iterate i\<cdot>f\<cdot>x) \<subseteq> insert x (range (\<lambda>x. f\<cdot>x))" |
|
56 |
by (clarify, case_tac i, simp_all) |
|
57 |
show "finite (insert x (range (\<lambda>x. f\<cdot>x)))" |
|
58 |
by (simp add: finite_range) |
|
59 |
qed |
|
60 |
||
61 |
lemma eventually_constant_iterate_app: |
|
62 |
"eventually_constant (\<lambda>i. iterate i\<cdot>f\<cdot>x)" |
|
63 |
unfolding eventually_constant_def MOST_nat_le |
|
64 |
proof - |
|
65 |
let ?Y = "\<lambda>i. iterate i\<cdot>f\<cdot>x" |
|
66 |
have "\<exists>j. \<forall>k. ?Y j \<sqsubseteq> ?Y k" |
|
67 |
apply (rule finite_range_has_max) |
|
68 |
apply (erule antichain_iterate_app) |
|
69 |
apply (rule finite_range_iterate_app) |
|
70 |
done |
|
71 |
then obtain j where j: "\<And>k. ?Y j \<sqsubseteq> ?Y k" by fast |
|
72 |
show "\<exists>z m. \<forall>n\<ge>m. ?Y n = z" |
|
73 |
proof (intro exI allI impI) |
|
74 |
fix k |
|
75 |
assume "j \<le> k" |
|
76 |
hence "?Y k \<sqsubseteq> ?Y j" by (rule antichain_iterate_app) |
|
77 |
also have "?Y j \<sqsubseteq> ?Y k" by (rule j) |
|
78 |
finally show "?Y k = ?Y j" . |
|
79 |
qed |
|
80 |
qed |
|
81 |
||
82 |
lemma eventually_constant_iterate: |
|
83 |
"eventually_constant (\<lambda>n. iterate n\<cdot>f)" |
|
84 |
proof - |
|
85 |
have "\<forall>y\<in>range (\<lambda>x. f\<cdot>x). eventually_constant (\<lambda>i. iterate i\<cdot>f\<cdot>y)" |
|
86 |
by (simp add: eventually_constant_iterate_app) |
|
87 |
hence "\<forall>y\<in>range (\<lambda>x. f\<cdot>x). MOST i. MOST j. iterate j\<cdot>f\<cdot>y = iterate i\<cdot>f\<cdot>y" |
|
88 |
unfolding eventually_constant_MOST_MOST . |
|
89 |
hence "MOST i. MOST j. \<forall>y\<in>range (\<lambda>x. f\<cdot>x). iterate j\<cdot>f\<cdot>y = iterate i\<cdot>f\<cdot>y" |
|
90 |
by (simp only: MOST_finite_Ball_distrib [OF finite_range]) |
|
91 |
hence "MOST i. MOST j. \<forall>x. iterate j\<cdot>f\<cdot>(f\<cdot>x) = iterate i\<cdot>f\<cdot>(f\<cdot>x)" |
|
92 |
by simp |
|
93 |
hence "MOST i. MOST j. \<forall>x. iterate (Suc j)\<cdot>f\<cdot>x = iterate (Suc i)\<cdot>f\<cdot>x" |
|
94 |
by (simp only: iterate_Suc2) |
|
95 |
hence "MOST i. MOST j. iterate (Suc j)\<cdot>f = iterate (Suc i)\<cdot>f" |
|
96 |
by (simp only: expand_cfun_eq) |
|
97 |
hence "eventually_constant (\<lambda>i. iterate (Suc i)\<cdot>f)" |
|
98 |
unfolding eventually_constant_MOST_MOST . |
|
99 |
thus "eventually_constant (\<lambda>i. iterate i\<cdot>f)" |
|
100 |
by (rule eventually_constant_SucD) |
|
101 |
qed |
|
102 |
||
103 |
abbreviation |
|
104 |
d :: "'a \<rightarrow> 'a" |
|
105 |
where |
|
106 |
"d \<equiv> eventual (\<lambda>n. iterate n\<cdot>f)" |
|
107 |
||
108 |
lemma MOST_d: "MOST n. P (iterate n\<cdot>f) \<Longrightarrow> P d" |
|
109 |
using eventually_constant_iterate by (rule MOST_eventual) |
|
110 |
||
111 |
lemma f_d: "f\<cdot>(d\<cdot>x) = d\<cdot>x" |
|
112 |
apply (rule MOST_d) |
|
113 |
apply (subst iterate_Suc [symmetric]) |
|
114 |
apply (rule eventually_constant_MOST_Suc_eq) |
|
115 |
apply (rule eventually_constant_iterate_app) |
|
116 |
done |
|
117 |
||
118 |
lemma d_fixed_iff: "d\<cdot>x = x \<longleftrightarrow> f\<cdot>x = x" |
|
119 |
proof |
|
120 |
assume "d\<cdot>x = x" |
|
121 |
with f_d [where x=x] |
|
122 |
show "f\<cdot>x = x" by simp |
|
123 |
next |
|
124 |
assume f: "f\<cdot>x = x" |
|
125 |
have "\<forall>n. iterate n\<cdot>f\<cdot>x = x" |
|
126 |
by (rule allI, rule nat.induct, simp, simp add: f) |
|
127 |
hence "MOST n. iterate n\<cdot>f\<cdot>x = x" |
|
128 |
by (rule ALL_MOST) |
|
129 |
thus "d\<cdot>x = x" |
|
130 |
by (rule MOST_d) |
|
131 |
qed |
|
132 |
||
133 |
lemma finite_deflation_d: "finite_deflation d" |
|
134 |
proof |
|
135 |
fix x :: 'a |
|
136 |
have "d \<in> range (\<lambda>n. iterate n\<cdot>f)" |
|
137 |
using eventually_constant_iterate |
|
138 |
by (rule eventual_mem_range) |
|
139 |
then obtain n where n: "d = iterate n\<cdot>f" .. |
|
140 |
have "iterate n\<cdot>f\<cdot>(d\<cdot>x) = d\<cdot>x" |
|
141 |
using f_d by (rule iterate_fixed) |
|
142 |
thus "d\<cdot>(d\<cdot>x) = d\<cdot>x" |
|
143 |
by (simp add: n) |
|
144 |
next |
|
145 |
fix x :: 'a |
|
146 |
show "d\<cdot>x \<sqsubseteq> x" |
|
147 |
by (rule MOST_d, simp add: iterate_less) |
|
148 |
next |
|
149 |
from finite_range |
|
150 |
have "finite {x. f\<cdot>x = x}" |
|
151 |
by (rule finite_range_imp_finite_fixes) |
|
152 |
thus "finite {x. d\<cdot>x = x}" |
|
153 |
by (simp add: d_fixed_iff) |
|
154 |
qed |
|
155 |
||
156 |
end |
|
157 |
||
158 |
lemma pre_deflation_d_f: |
|
28611 | 159 |
assumes "finite_deflation d" |
27409 | 160 |
assumes f: "\<And>x. f\<cdot>x \<sqsubseteq> x" |
161 |
shows "pre_deflation (d oo f)" |
|
162 |
proof |
|
29237 | 163 |
interpret d: finite_deflation d by fact |
27409 | 164 |
fix x |
165 |
show "\<And>x. (d oo f)\<cdot>x \<sqsubseteq> x" |
|
166 |
by (simp, rule trans_less [OF d.less f]) |
|
167 |
show "finite (range (\<lambda>x. (d oo f)\<cdot>x))" |
|
168 |
by (rule finite_subset [OF _ d.finite_range], auto) |
|
169 |
qed |
|
170 |
||
171 |
lemma eventual_iterate_oo_fixed_iff: |
|
28611 | 172 |
assumes "finite_deflation d" |
27409 | 173 |
assumes f: "\<And>x. f\<cdot>x \<sqsubseteq> x" |
174 |
shows "eventual (\<lambda>n. iterate n\<cdot>(d oo f))\<cdot>x = x \<longleftrightarrow> d\<cdot>x = x \<and> f\<cdot>x = x" |
|
175 |
proof - |
|
29237 | 176 |
interpret d: finite_deflation d by fact |
27409 | 177 |
let ?e = "d oo f" |
29237 | 178 |
interpret e: pre_deflation "d oo f" |
27409 | 179 |
using `finite_deflation d` f |
180 |
by (rule pre_deflation_d_f) |
|
181 |
let ?g = "eventual (\<lambda>n. iterate n\<cdot>?e)" |
|
182 |
show ?thesis |
|
183 |
apply (subst e.d_fixed_iff) |
|
184 |
apply simp |
|
185 |
apply safe |
|
186 |
apply (erule subst) |
|
187 |
apply (rule d.idem) |
|
188 |
apply (rule antisym_less) |
|
189 |
apply (rule f) |
|
190 |
apply (erule subst, rule d.less) |
|
191 |
apply simp |
|
192 |
done |
|
193 |
qed |
|
194 |
||
195 |
subsection {* Type constructor for finite deflations *} |
|
196 |
||
197 |
defaultsort profinite |
|
198 |
||
199 |
typedef (open) 'a fin_defl = "{d::'a \<rightarrow> 'a. finite_deflation d}" |
|
200 |
by (fast intro: finite_deflation_approx) |
|
201 |
||
202 |
instantiation fin_defl :: (profinite) sq_ord |
|
203 |
begin |
|
204 |
||
205 |
definition |
|
206 |
sq_le_fin_defl_def: |
|
207 |
"op \<sqsubseteq> \<equiv> \<lambda>x y. Rep_fin_defl x \<sqsubseteq> Rep_fin_defl y" |
|
208 |
||
209 |
instance .. |
|
210 |
end |
|
211 |
||
212 |
instance fin_defl :: (profinite) po |
|
213 |
by (rule typedef_po [OF type_definition_fin_defl sq_le_fin_defl_def]) |
|
214 |
||
215 |
lemma finite_deflation_Rep_fin_defl: "finite_deflation (Rep_fin_defl d)" |
|
216 |
using Rep_fin_defl by simp |
|
217 |
||
30729
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
wenzelm
parents:
29252
diff
changeset
|
218 |
interpretation Rep_fin_defl: finite_deflation "Rep_fin_defl d" |
27409 | 219 |
by (rule finite_deflation_Rep_fin_defl) |
220 |
||
221 |
lemma fin_defl_lessI: |
|
222 |
"(\<And>x. Rep_fin_defl a\<cdot>x = x \<Longrightarrow> Rep_fin_defl b\<cdot>x = x) \<Longrightarrow> a \<sqsubseteq> b" |
|
223 |
unfolding sq_le_fin_defl_def |
|
224 |
by (rule Rep_fin_defl.lessI) |
|
225 |
||
226 |
lemma fin_defl_lessD: |
|
227 |
"\<lbrakk>a \<sqsubseteq> b; Rep_fin_defl a\<cdot>x = x\<rbrakk> \<Longrightarrow> Rep_fin_defl b\<cdot>x = x" |
|
228 |
unfolding sq_le_fin_defl_def |
|
229 |
by (rule Rep_fin_defl.lessD) |
|
230 |
||
231 |
lemma fin_defl_eqI: |
|
232 |
"(\<And>x. Rep_fin_defl a\<cdot>x = x \<longleftrightarrow> Rep_fin_defl b\<cdot>x = x) \<Longrightarrow> a = b" |
|
233 |
apply (rule antisym_less) |
|
234 |
apply (rule fin_defl_lessI, simp) |
|
235 |
apply (rule fin_defl_lessI, simp) |
|
236 |
done |
|
237 |
||
238 |
lemma Abs_fin_defl_mono: |
|
239 |
"\<lbrakk>finite_deflation a; finite_deflation b; a \<sqsubseteq> b\<rbrakk> |
|
240 |
\<Longrightarrow> Abs_fin_defl a \<sqsubseteq> Abs_fin_defl b" |
|
241 |
unfolding sq_le_fin_defl_def |
|
242 |
by (simp add: Abs_fin_defl_inverse) |
|
243 |
||
244 |
||
245 |
subsection {* Take function for finite deflations *} |
|
246 |
||
247 |
definition |
|
248 |
fd_take :: "nat \<Rightarrow> 'a fin_defl \<Rightarrow> 'a fin_defl" |
|
249 |
where |
|
250 |
"fd_take i d = Abs_fin_defl (eventual (\<lambda>n. iterate n\<cdot>(approx i oo Rep_fin_defl d)))" |
|
251 |
||
252 |
lemma Rep_fin_defl_fd_take: |
|
253 |
"Rep_fin_defl (fd_take i d) = |
|
254 |
eventual (\<lambda>n. iterate n\<cdot>(approx i oo Rep_fin_defl d))" |
|
255 |
unfolding fd_take_def |
|
256 |
apply (rule Abs_fin_defl_inverse [unfolded mem_Collect_eq]) |
|
257 |
apply (rule pre_deflation.finite_deflation_d) |
|
258 |
apply (rule pre_deflation_d_f) |
|
259 |
apply (rule finite_deflation_approx) |
|
260 |
apply (rule Rep_fin_defl.less) |
|
261 |
done |
|
262 |
||
263 |
lemma fd_take_fixed_iff: |
|
264 |
"Rep_fin_defl (fd_take i d)\<cdot>x = x \<longleftrightarrow> |
|
265 |
approx i\<cdot>x = x \<and> Rep_fin_defl d\<cdot>x = x" |
|
266 |
unfolding Rep_fin_defl_fd_take |
|
267 |
by (rule eventual_iterate_oo_fixed_iff |
|
268 |
[OF finite_deflation_approx Rep_fin_defl.less]) |
|
269 |
||
270 |
lemma fd_take_less: "fd_take n d \<sqsubseteq> d" |
|
271 |
apply (rule fin_defl_lessI) |
|
272 |
apply (simp add: fd_take_fixed_iff) |
|
273 |
done |
|
274 |
||
275 |
lemma fd_take_idem: "fd_take n (fd_take n d) = fd_take n d" |
|
276 |
apply (rule fin_defl_eqI) |
|
277 |
apply (simp add: fd_take_fixed_iff) |
|
278 |
done |
|
279 |
||
280 |
lemma fd_take_mono: "a \<sqsubseteq> b \<Longrightarrow> fd_take n a \<sqsubseteq> fd_take n b" |
|
281 |
apply (rule fin_defl_lessI) |
|
282 |
apply (simp add: fd_take_fixed_iff) |
|
283 |
apply (simp add: fin_defl_lessD) |
|
284 |
done |
|
285 |
||
286 |
lemma approx_fixed_le_lemma: "\<lbrakk>i \<le> j; approx i\<cdot>x = x\<rbrakk> \<Longrightarrow> approx j\<cdot>x = x" |
|
287 |
by (erule subst, simp add: min_def) |
|
288 |
||
289 |
lemma fd_take_chain: "m \<le> n \<Longrightarrow> fd_take m a \<sqsubseteq> fd_take n a" |
|
290 |
apply (rule fin_defl_lessI) |
|
291 |
apply (simp add: fd_take_fixed_iff) |
|
292 |
apply (simp add: approx_fixed_le_lemma) |
|
293 |
done |
|
294 |
||
295 |
lemma finite_range_fd_take: "finite (range (fd_take n))" |
|
296 |
apply (rule finite_imageD [where f="\<lambda>a. {x. Rep_fin_defl a\<cdot>x = x}"]) |
|
297 |
apply (rule finite_subset [where B="Pow {x. approx n\<cdot>x = x}"]) |
|
298 |
apply (clarify, simp add: fd_take_fixed_iff) |
|
299 |
apply (simp add: finite_fixes_approx) |
|
300 |
apply (rule inj_onI, clarify) |
|
301 |
apply (simp add: expand_set_eq fin_defl_eqI) |
|
302 |
done |
|
303 |
||
304 |
lemma fd_take_covers: "\<exists>n. fd_take n a = a" |
|
305 |
apply (rule_tac x= |
|
306 |
"Max ((\<lambda>x. LEAST n. approx n\<cdot>x = x) ` {x. Rep_fin_defl a\<cdot>x = x})" in exI) |
|
307 |
apply (rule antisym_less) |
|
308 |
apply (rule fd_take_less) |
|
309 |
apply (rule fin_defl_lessI) |
|
310 |
apply (simp add: fd_take_fixed_iff) |
|
311 |
apply (rule approx_fixed_le_lemma) |
|
312 |
apply (rule Max_ge) |
|
313 |
apply (rule finite_imageI) |
|
314 |
apply (rule Rep_fin_defl.finite_fixes) |
|
315 |
apply (rule imageI) |
|
316 |
apply (erule CollectI) |
|
317 |
apply (rule LeastI_ex) |
|
318 |
apply (rule profinite_compact_eq_approx) |
|
319 |
apply (erule subst) |
|
320 |
apply (rule Rep_fin_defl.compact) |
|
321 |
done |
|
322 |
||
30729
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
wenzelm
parents:
29252
diff
changeset
|
323 |
interpretation fin_defl: basis_take sq_le fd_take |
27409 | 324 |
apply default |
325 |
apply (rule fd_take_less) |
|
326 |
apply (rule fd_take_idem) |
|
327 |
apply (erule fd_take_mono) |
|
328 |
apply (rule fd_take_chain, simp) |
|
329 |
apply (rule finite_range_fd_take) |
|
330 |
apply (rule fd_take_covers) |
|
331 |
done |
|
332 |
||
333 |
subsection {* Defining algebraic deflations by ideal completion *} |
|
334 |
||
335 |
typedef (open) 'a alg_defl = |
|
336 |
"{S::'a fin_defl set. sq_le.ideal S}" |
|
337 |
by (fast intro: sq_le.ideal_principal) |
|
338 |
||
339 |
instantiation alg_defl :: (profinite) sq_ord |
|
340 |
begin |
|
341 |
||
342 |
definition |
|
343 |
"x \<sqsubseteq> y \<longleftrightarrow> Rep_alg_defl x \<subseteq> Rep_alg_defl y" |
|
344 |
||
345 |
instance .. |
|
346 |
end |
|
347 |
||
348 |
instance alg_defl :: (profinite) po |
|
349 |
by (rule sq_le.typedef_ideal_po |
|
350 |
[OF type_definition_alg_defl sq_le_alg_defl_def]) |
|
351 |
||
352 |
instance alg_defl :: (profinite) cpo |
|
353 |
by (rule sq_le.typedef_ideal_cpo |
|
354 |
[OF type_definition_alg_defl sq_le_alg_defl_def]) |
|
355 |
||
356 |
lemma Rep_alg_defl_lub: |
|
357 |
"chain Y \<Longrightarrow> Rep_alg_defl (\<Squnion>i. Y i) = (\<Union>i. Rep_alg_defl (Y i))" |
|
358 |
by (rule sq_le.typedef_ideal_rep_contlub |
|
359 |
[OF type_definition_alg_defl sq_le_alg_defl_def]) |
|
360 |
||
361 |
lemma ideal_Rep_alg_defl: "sq_le.ideal (Rep_alg_defl xs)" |
|
362 |
by (rule Rep_alg_defl [unfolded mem_Collect_eq]) |
|
363 |
||
364 |
definition |
|
365 |
alg_defl_principal :: "'a fin_defl \<Rightarrow> 'a alg_defl" where |
|
366 |
"alg_defl_principal t = Abs_alg_defl {u. u \<sqsubseteq> t}" |
|
367 |
||
368 |
lemma Rep_alg_defl_principal: |
|
369 |
"Rep_alg_defl (alg_defl_principal t) = {u. u \<sqsubseteq> t}" |
|
370 |
unfolding alg_defl_principal_def |
|
371 |
by (simp add: Abs_alg_defl_inverse sq_le.ideal_principal) |
|
372 |
||
30729
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
wenzelm
parents:
29252
diff
changeset
|
373 |
interpretation alg_defl: |
29237 | 374 |
ideal_completion sq_le fd_take alg_defl_principal Rep_alg_defl |
27409 | 375 |
apply default |
376 |
apply (rule ideal_Rep_alg_defl) |
|
377 |
apply (erule Rep_alg_defl_lub) |
|
378 |
apply (rule Rep_alg_defl_principal) |
|
379 |
apply (simp only: sq_le_alg_defl_def) |
|
380 |
done |
|
381 |
||
382 |
text {* Algebraic deflations are pointed *} |
|
383 |
||
384 |
lemma finite_deflation_UU: "finite_deflation \<bottom>" |
|
385 |
by default simp_all |
|
386 |
||
387 |
lemma alg_defl_minimal: |
|
388 |
"alg_defl_principal (Abs_fin_defl \<bottom>) \<sqsubseteq> x" |
|
389 |
apply (induct x rule: alg_defl.principal_induct, simp) |
|
390 |
apply (rule alg_defl.principal_mono) |
|
391 |
apply (induct_tac a) |
|
392 |
apply (rule Abs_fin_defl_mono) |
|
393 |
apply (rule finite_deflation_UU) |
|
394 |
apply simp |
|
395 |
apply (rule minimal) |
|
396 |
done |
|
397 |
||
398 |
instance alg_defl :: (bifinite) pcpo |
|
399 |
by intro_classes (fast intro: alg_defl_minimal) |
|
400 |
||
401 |
lemma inst_alg_defl_pcpo: "\<bottom> = alg_defl_principal (Abs_fin_defl \<bottom>)" |
|
402 |
by (rule alg_defl_minimal [THEN UU_I, symmetric]) |
|
403 |
||
404 |
text {* Algebraic deflations are profinite *} |
|
405 |
||
406 |
instantiation alg_defl :: (profinite) profinite |
|
407 |
begin |
|
408 |
||
409 |
definition |
|
410 |
approx_alg_defl_def: "approx = alg_defl.completion_approx" |
|
411 |
||
412 |
instance |
|
413 |
apply (intro_classes, unfold approx_alg_defl_def) |
|
414 |
apply (rule alg_defl.chain_completion_approx) |
|
415 |
apply (rule alg_defl.lub_completion_approx) |
|
416 |
apply (rule alg_defl.completion_approx_idem) |
|
417 |
apply (rule alg_defl.finite_fixes_completion_approx) |
|
418 |
done |
|
419 |
||
420 |
end |
|
421 |
||
422 |
instance alg_defl :: (bifinite) bifinite .. |
|
423 |
||
424 |
lemma approx_alg_defl_principal [simp]: |
|
425 |
"approx n\<cdot>(alg_defl_principal t) = alg_defl_principal (fd_take n t)" |
|
426 |
unfolding approx_alg_defl_def |
|
427 |
by (rule alg_defl.completion_approx_principal) |
|
428 |
||
429 |
lemma approx_eq_alg_defl_principal: |
|
430 |
"\<exists>t\<in>Rep_alg_defl xs. approx n\<cdot>xs = alg_defl_principal (fd_take n t)" |
|
431 |
unfolding approx_alg_defl_def |
|
432 |
by (rule alg_defl.completion_approx_eq_principal) |
|
433 |
||
434 |
||
435 |
subsection {* Applying algebraic deflations *} |
|
436 |
||
437 |
definition |
|
438 |
cast :: "'a alg_defl \<rightarrow> 'a \<rightarrow> 'a" |
|
439 |
where |
|
440 |
"cast = alg_defl.basis_fun Rep_fin_defl" |
|
441 |
||
442 |
lemma cast_alg_defl_principal: |
|
443 |
"cast\<cdot>(alg_defl_principal a) = Rep_fin_defl a" |
|
444 |
unfolding cast_def |
|
445 |
apply (rule alg_defl.basis_fun_principal) |
|
446 |
apply (simp only: sq_le_fin_defl_def) |
|
447 |
done |
|
448 |
||
449 |
lemma deflation_cast: "deflation (cast\<cdot>d)" |
|
450 |
apply (induct d rule: alg_defl.principal_induct) |
|
451 |
apply (rule adm_subst [OF _ adm_deflation], simp) |
|
452 |
apply (simp add: cast_alg_defl_principal) |
|
453 |
apply (rule finite_deflation_imp_deflation) |
|
454 |
apply (rule finite_deflation_Rep_fin_defl) |
|
455 |
done |
|
456 |
||
457 |
lemma finite_deflation_cast: |
|
458 |
"compact d \<Longrightarrow> finite_deflation (cast\<cdot>d)" |
|
459 |
apply (drule alg_defl.compact_imp_principal, clarify) |
|
460 |
apply (simp add: cast_alg_defl_principal) |
|
461 |
apply (rule finite_deflation_Rep_fin_defl) |
|
462 |
done |
|
463 |
||
30729
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
wenzelm
parents:
29252
diff
changeset
|
464 |
interpretation cast: deflation "cast\<cdot>d" |
27409 | 465 |
by (rule deflation_cast) |
466 |
||
467 |
lemma "cast\<cdot>(\<Squnion>i. alg_defl_principal (Abs_fin_defl (approx i)))\<cdot>x = x" |
|
468 |
apply (subst contlub_cfun_arg) |
|
469 |
apply (rule chainI) |
|
470 |
apply (rule alg_defl.principal_mono) |
|
471 |
apply (rule Abs_fin_defl_mono) |
|
472 |
apply (rule finite_deflation_approx) |
|
473 |
apply (rule finite_deflation_approx) |
|
474 |
apply (rule chainE) |
|
475 |
apply (rule chain_approx) |
|
476 |
apply (simp add: cast_alg_defl_principal Abs_fin_defl_inverse finite_deflation_approx) |
|
477 |
done |
|
478 |
||
479 |
text {* This lemma says that if we have an ep-pair from |
|
480 |
a bifinite domain into a universal domain, then e oo p |
|
481 |
is an algebraic deflation. *} |
|
482 |
||
483 |
lemma |
|
28611 | 484 |
assumes "ep_pair e p" |
27409 | 485 |
constrains e :: "'a::profinite \<rightarrow> 'b::profinite" |
486 |
shows "\<exists>d. cast\<cdot>d = e oo p" |
|
487 |
proof |
|
29237 | 488 |
interpret ep_pair e p by fact |
27409 | 489 |
let ?a = "\<lambda>i. e oo approx i oo p" |
490 |
have a: "\<And>i. finite_deflation (?a i)" |
|
491 |
apply (rule finite_deflation_e_d_p) |
|
492 |
apply (rule finite_deflation_approx) |
|
493 |
done |
|
494 |
let ?d = "\<Squnion>i. alg_defl_principal (Abs_fin_defl (?a i))" |
|
495 |
show "cast\<cdot>?d = e oo p" |
|
496 |
apply (subst contlub_cfun_arg) |
|
497 |
apply (rule chainI) |
|
498 |
apply (rule alg_defl.principal_mono) |
|
499 |
apply (rule Abs_fin_defl_mono [OF a a]) |
|
500 |
apply (rule chainE, simp) |
|
501 |
apply (subst cast_alg_defl_principal) |
|
502 |
apply (simp add: Abs_fin_defl_inverse a) |
|
503 |
apply (simp add: expand_cfun_eq lub_distribs) |
|
504 |
done |
|
505 |
qed |
|
506 |
||
507 |
text {* This lemma says that if we have an ep-pair |
|
508 |
from a cpo into a bifinite domain, and e oo p is |
|
509 |
an algebraic deflation, then the cpo is bifinite. *} |
|
510 |
||
511 |
lemma |
|
28611 | 512 |
assumes "ep_pair e p" |
27409 | 513 |
constrains e :: "'a::cpo \<rightarrow> 'b::profinite" |
514 |
assumes d: "\<And>x. cast\<cdot>d\<cdot>x = e\<cdot>(p\<cdot>x)" |
|
515 |
obtains a :: "nat \<Rightarrow> 'a \<rightarrow> 'a" where |
|
516 |
"\<And>i. finite_deflation (a i)" |
|
517 |
"(\<Squnion>i. a i) = ID" |
|
518 |
proof |
|
29237 | 519 |
interpret ep_pair e p by fact |
27409 | 520 |
let ?a = "\<lambda>i. p oo cast\<cdot>(approx i\<cdot>d) oo e" |
521 |
show "\<And>i. finite_deflation (?a i)" |
|
522 |
apply (rule finite_deflation_p_d_e) |
|
523 |
apply (rule finite_deflation_cast) |
|
524 |
apply (rule compact_approx) |
|
525 |
apply (rule sq_ord_less_eq_trans [OF _ d]) |
|
526 |
apply (rule monofun_cfun_fun) |
|
527 |
apply (rule monofun_cfun_arg) |
|
528 |
apply (rule approx_less) |
|
529 |
done |
|
530 |
show "(\<Squnion>i. ?a i) = ID" |
|
531 |
apply (rule ext_cfun, simp) |
|
532 |
apply (simp add: lub_distribs) |
|
533 |
apply (simp add: d) |
|
534 |
done |
|
535 |
qed |
|
536 |
||
537 |
end |