| author | huffman | 
| Thu, 04 Sep 2008 17:19:57 +0200 | |
| changeset 28131 | 3130d7b3149d | 
| parent 25162 | ad4d5365d9d8 | 
| child 28944 | e27abf0db984 | 
| permissions | -rw-r--r-- | 
| 15094 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 1 | (* Title : Fact.thy | 
| 12196 | 2 | Author : Jacques D. Fleuriot | 
| 3 | Copyright : 1998 University of Cambridge | |
| 15094 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 4 | Conversion to Isar and new proofs by Lawrence C Paulson, 2004 | 
| 12196 | 5 | *) | 
| 6 | ||
| 15094 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 7 | header{*Factorial Function*}
 | 
| 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 8 | |
| 15131 | 9 | theory Fact | 
| 15241 | 10 | imports "../Real/Real" | 
| 15131 | 11 | begin | 
| 15094 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 12 | |
| 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 13 | consts fact :: "nat => nat" | 
| 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 14 | primrec | 
| 19765 | 15 | fact_0: "fact 0 = 1" | 
| 16 | fact_Suc: "fact (Suc n) = (Suc n) * fact n" | |
| 15094 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 17 | |
| 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 18 | |
| 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 19 | lemma fact_gt_zero [simp]: "0 < fact n" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 20 | by (induct n) auto | 
| 15094 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 21 | |
| 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 22 | lemma fact_not_eq_zero [simp]: "fact n \<noteq> 0" | 
| 25162 | 23 | by simp | 
| 15094 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 24 | |
| 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 25 | lemma real_of_nat_fact_not_zero [simp]: "real (fact n) \<noteq> 0" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 26 | by auto | 
| 15094 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 27 | |
| 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 28 | lemma real_of_nat_fact_gt_zero [simp]: "0 < real(fact n)" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 29 | by auto | 
| 15094 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 30 | |
| 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 31 | lemma real_of_nat_fact_ge_zero [simp]: "0 \<le> real(fact n)" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 32 | by simp | 
| 15094 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 33 | |
| 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 34 | lemma fact_ge_one [simp]: "1 \<le> fact n" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 35 | by (induct n) auto | 
| 12196 | 36 | |
| 15094 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 37 | lemma fact_mono: "m \<le> n ==> fact m \<le> fact n" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 38 | apply (drule le_imp_less_or_eq) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 39 | apply (auto dest!: less_imp_Suc_add) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 40 | apply (induct_tac k, auto) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 41 | done | 
| 15094 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 42 | |
| 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 43 | text{*Note that @{term "fact 0 = fact 1"}*}
 | 
| 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 44 | lemma fact_less_mono: "[| 0 < m; m < n |] ==> fact m < fact n" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 45 | apply (drule_tac m = m in less_imp_Suc_add, auto) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 46 | apply (induct_tac k, auto) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 47 | done | 
| 15094 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 48 | |
| 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 49 | lemma inv_real_of_nat_fact_gt_zero [simp]: "0 < inverse (real (fact n))" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 50 | by (auto simp add: positive_imp_inverse_positive) | 
| 15094 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 51 | |
| 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 52 | lemma inv_real_of_nat_fact_ge_zero [simp]: "0 \<le> inverse (real (fact n))" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 53 | by (auto intro: order_less_imp_le) | 
| 15094 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 54 | |
| 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 55 | lemma fact_diff_Suc [rule_format]: | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 56 | "n < Suc m ==> fact (Suc m - n) = (Suc m - n) * fact (m - n)" | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 57 | apply (induct n arbitrary: m) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 58 | apply auto | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 59 | apply (drule_tac x = "m - 1" in meta_spec, auto) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 60 | done | 
| 15094 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 61 | |
| 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 62 | lemma fact_num0 [simp]: "fact 0 = 1" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 63 | by auto | 
| 15094 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 64 | |
| 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 65 | lemma fact_num_eq_if: "fact m = (if m=0 then 1 else m * fact (m - 1))" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 66 | by (cases m) auto | 
| 15094 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 67 | |
| 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 68 | lemma fact_add_num_eq_if: | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 69 | "fact (m + n) = (if m + n = 0 then 1 else (m + n) * fact (m + n - 1))" | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 70 | by (cases "m + n") auto | 
| 15094 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 71 | |
| 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 72 | lemma fact_add_num_eq_if2: | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 73 | "fact (m + n) = (if m = 0 then fact n else (m + n) * fact ((m - 1) + n))" | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 74 | by (cases m) auto | 
| 12196 | 75 | |
| 15131 | 76 | end |