| author | huffman | 
| Thu, 04 Sep 2008 17:19:57 +0200 | |
| changeset 28131 | 3130d7b3149d | 
| parent 27556 | 292098f2efdf | 
| child 31758 | 3edd5f813f01 | 
| permissions | -rw-r--r-- | 
| 8051 | 1 | (* Title: HOL/Isar_examples/Fibonacci.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Gertrud Bauer | |
| 4 | Copyright 1999 Technische Universitaet Muenchen | |
| 5 | ||
| 6 | The Fibonacci function. Demonstrates the use of recdef. Original | |
| 7 | tactic script by Lawrence C Paulson. | |
| 8 | ||
| 9 | Fibonacci numbers: proofs of laws taken from | |
| 10 | ||
| 11 | R. L. Graham, D. E. Knuth, O. Patashnik. | |
| 12 | Concrete Mathematics. | |
| 13 | (Addison-Wesley, 1989) | |
| 14 | *) | |
| 15 | ||
| 10007 | 16 | header {* Fib and Gcd commute *}
 | 
| 8051 | 17 | |
| 27366 | 18 | theory Fibonacci | 
| 19 | imports Primes | |
| 20 | begin | |
| 8051 | 21 | |
| 22 | text_raw {*
 | |
| 23 |  \footnote{Isar version by Gertrud Bauer.  Original tactic script by
 | |
| 8052 | 24 | Larry Paulson. A few proofs of laws taken from | 
| 8051 | 25 |  \cite{Concrete-Math}.}
 | 
| 10007 | 26 | *} | 
| 8051 | 27 | |
| 28 | ||
| 10007 | 29 | subsection {* Fibonacci numbers *}
 | 
| 8051 | 30 | |
| 27366 | 31 | fun fib :: "nat \<Rightarrow> nat" where | 
| 18153 | 32 | "fib 0 = 0" | 
| 27366 | 33 | | "fib (Suc 0) = 1" | 
| 34 | | "fib (Suc (Suc x)) = fib x + fib (Suc x)" | |
| 8051 | 35 | |
| 10007 | 36 | lemma [simp]: "0 < fib (Suc n)" | 
| 18153 | 37 | by (induct n rule: fib.induct) simp_all | 
| 8051 | 38 | |
| 39 | ||
| 10007 | 40 | text {* Alternative induction rule. *}
 | 
| 8051 | 41 | |
| 8304 | 42 | theorem fib_induct: | 
| 11704 
3c50a2cd6f00
* sane numerals (stage 2): plain "num" syntax (removed "#");
 wenzelm parents: 
11701diff
changeset | 43 | "P 0 ==> P 1 ==> (!!n. P (n + 1) ==> P n ==> P (n + 2)) ==> P (n::nat)" | 
| 18153 | 44 | by (induct rule: fib.induct) simp_all | 
| 8051 | 45 | |
| 46 | ||
| 10007 | 47 | subsection {* Fib and gcd commute *}
 | 
| 8051 | 48 | |
| 10007 | 49 | text {* A few laws taken from \cite{Concrete-Math}. *}
 | 
| 8051 | 50 | |
| 9659 | 51 | lemma fib_add: | 
| 8051 | 52 | "fib (n + k + 1) = fib (k + 1) * fib (n + 1) + fib k * fib n" | 
| 9659 | 53 | (is "?P n") | 
| 10007 | 54 |   -- {* see \cite[page 280]{Concrete-Math} *}
 | 
| 11809 | 55 | proof (induct n rule: fib_induct) | 
| 10007 | 56 | show "?P 0" by simp | 
| 57 | show "?P 1" by simp | |
| 58 | fix n | |
| 11704 
3c50a2cd6f00
* sane numerals (stage 2): plain "num" syntax (removed "#");
 wenzelm parents: 
11701diff
changeset | 59 | have "fib (n + 2 + k + 1) | 
| 10007 | 60 | = fib (n + k + 1) + fib (n + 1 + k + 1)" by simp | 
| 61 | also assume "fib (n + k + 1) | |
| 8051 | 62 | = fib (k + 1) * fib (n + 1) + fib k * fib n" | 
| 10007 | 63 | (is " _ = ?R1") | 
| 64 | also assume "fib (n + 1 + k + 1) | |
| 8051 | 65 | = fib (k + 1) * fib (n + 1 + 1) + fib k * fib (n + 1)" | 
| 10007 | 66 | (is " _ = ?R2") | 
| 67 | also have "?R1 + ?R2 | |
| 11704 
3c50a2cd6f00
* sane numerals (stage 2): plain "num" syntax (removed "#");
 wenzelm parents: 
11701diff
changeset | 68 | = fib (k + 1) * fib (n + 2 + 1) + fib k * fib (n + 2)" | 
| 10007 | 69 | by (simp add: add_mult_distrib2) | 
| 11704 
3c50a2cd6f00
* sane numerals (stage 2): plain "num" syntax (removed "#");
 wenzelm parents: 
11701diff
changeset | 70 | finally show "?P (n + 2)" . | 
| 10007 | 71 | qed | 
| 8051 | 72 | |
| 27556 | 73 | lemma gcd_fib_Suc_eq_1: "gcd (fib n) (fib (n + 1)) = 1" (is "?P n") | 
| 11809 | 74 | proof (induct n rule: fib_induct) | 
| 10007 | 75 | show "?P 0" by simp | 
| 76 | show "?P 1" by simp | |
| 77 | fix n | |
| 11704 
3c50a2cd6f00
* sane numerals (stage 2): plain "num" syntax (removed "#");
 wenzelm parents: 
11701diff
changeset | 78 | have "fib (n + 2 + 1) = fib (n + 1) + fib (n + 2)" | 
| 10007 | 79 | by simp | 
| 27556 | 80 | also have "gcd (fib (n + 2)) ... = gcd (fib (n + 2)) (fib (n + 1))" | 
| 10007 | 81 | by (simp only: gcd_add2') | 
| 27556 | 82 | also have "... = gcd (fib (n + 1)) (fib (n + 1 + 1))" | 
| 10007 | 83 | by (simp add: gcd_commute) | 
| 84 | also assume "... = 1" | |
| 11704 
3c50a2cd6f00
* sane numerals (stage 2): plain "num" syntax (removed "#");
 wenzelm parents: 
11701diff
changeset | 85 | finally show "?P (n + 2)" . | 
| 10007 | 86 | qed | 
| 8051 | 87 | |
| 27556 | 88 | lemma gcd_mult_add: "0 < n ==> gcd (n * k + m) n = gcd m n" | 
| 10007 | 89 | proof - | 
| 90 | assume "0 < n" | |
| 27556 | 91 | then have "gcd (n * k + m) n = gcd n (m mod n)" | 
| 10007 | 92 | by (simp add: gcd_non_0 add_commute) | 
| 27556 | 93 | also from `0 < n` have "... = gcd m n" by (simp add: gcd_non_0) | 
| 10007 | 94 | finally show ?thesis . | 
| 95 | qed | |
| 8051 | 96 | |
| 27556 | 97 | lemma gcd_fib_add: "gcd (fib m) (fib (n + m)) = gcd (fib m) (fib n)" | 
| 10007 | 98 | proof (cases m) | 
| 18153 | 99 | case 0 | 
| 100 | then show ?thesis by simp | |
| 10007 | 101 | next | 
| 18153 | 102 | case (Suc k) | 
| 27556 | 103 | then have "gcd (fib m) (fib (n + m)) = gcd (fib (n + k + 1)) (fib (k + 1))" | 
| 10007 | 104 | by (simp add: gcd_commute) | 
| 105 | also have "fib (n + k + 1) | |
| 106 | = fib (k + 1) * fib (n + 1) + fib k * fib n" | |
| 107 | by (rule fib_add) | |
| 27556 | 108 | also have "gcd ... (fib (k + 1)) = gcd (fib k * fib n) (fib (k + 1))" | 
| 10007 | 109 | by (simp add: gcd_mult_add) | 
| 27556 | 110 | also have "... = gcd (fib n) (fib (k + 1))" | 
| 10007 | 111 | by (simp only: gcd_fib_Suc_eq_1 gcd_mult_cancel) | 
| 27556 | 112 | also have "... = gcd (fib m) (fib n)" | 
| 18153 | 113 | using Suc by (simp add: gcd_commute) | 
| 10007 | 114 | finally show ?thesis . | 
| 115 | qed | |
| 8051 | 116 | |
| 9659 | 117 | lemma gcd_fib_diff: | 
| 18153 | 118 | assumes "m <= n" | 
| 27556 | 119 | shows "gcd (fib m) (fib (n - m)) = gcd (fib m) (fib n)" | 
| 10007 | 120 | proof - | 
| 27556 | 121 | have "gcd (fib m) (fib (n - m)) = gcd (fib m) (fib (n - m + m))" | 
| 10007 | 122 | by (simp add: gcd_fib_add) | 
| 18153 | 123 | also from `m <= n` have "n - m + m = n" by simp | 
| 10007 | 124 | finally show ?thesis . | 
| 125 | qed | |
| 8051 | 126 | |
| 9659 | 127 | lemma gcd_fib_mod: | 
| 18241 | 128 | assumes "0 < m" | 
| 27556 | 129 | shows "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" | 
| 18153 | 130 | proof (induct n rule: nat_less_induct) | 
| 131 | case (1 n) note hyp = this | |
| 132 | show ?case | |
| 133 | proof - | |
| 134 | have "n mod m = (if n < m then n else (n - m) mod m)" | |
| 135 | by (rule mod_if) | |
| 27556 | 136 | also have "gcd (fib m) (fib ...) = gcd (fib m) (fib n)" | 
| 18153 | 137 | proof (cases "n < m") | 
| 138 | case True then show ?thesis by simp | |
| 139 | next | |
| 140 | case False then have "m <= n" by simp | |
| 18241 | 141 | from `0 < m` and False have "n - m < n" by simp | 
| 27556 | 142 | with hyp have "gcd (fib m) (fib ((n - m) mod m)) | 
| 143 | = gcd (fib m) (fib (n - m))" by simp | |
| 144 | also have "... = gcd (fib m) (fib n)" | |
| 18153 | 145 | using `m <= n` by (rule gcd_fib_diff) | 
| 27556 | 146 | finally have "gcd (fib m) (fib ((n - m) mod m)) = | 
| 147 | gcd (fib m) (fib n)" . | |
| 18153 | 148 | with False show ?thesis by simp | 
| 10408 | 149 | qed | 
| 18153 | 150 | finally show ?thesis . | 
| 10007 | 151 | qed | 
| 152 | qed | |
| 8051 | 153 | |
| 154 | ||
| 27556 | 155 | theorem fib_gcd: "fib (gcd m n) = gcd (fib m) (fib n)" (is "?P m n") | 
| 11809 | 156 | proof (induct m n rule: gcd_induct) | 
| 27556 | 157 | fix m show "fib (gcd m 0) = gcd (fib m) (fib 0)" by simp | 
| 10007 | 158 | fix n :: nat assume n: "0 < n" | 
| 27556 | 159 | then have "gcd m n = gcd n (m mod n)" by (rule gcd_non_0) | 
| 160 | also assume hyp: "fib ... = gcd (fib n) (fib (m mod n))" | |
| 161 | also from n have "... = gcd (fib n) (fib m)" by (rule gcd_fib_mod) | |
| 162 | also have "... = gcd (fib m) (fib n)" by (rule gcd_commute) | |
| 163 | finally show "fib (gcd m n) = gcd (fib m) (fib n)" . | |
| 10007 | 164 | qed | 
| 8051 | 165 | |
| 10007 | 166 | end |