| author | berghofe | 
| Wed, 11 Jan 2006 18:21:23 +0100 | |
| changeset 18658 | 317a6f0ef8b9 | 
| parent 17456 | bcf7544875b2 | 
| permissions | -rw-r--r-- | 
| 17456 | 1 | (* Title: CCL/Gfp.ML | 
| 0 | 2 | ID: $Id$ | 
| 3 | *) | |
| 4 | ||
| 5 | (*** Proof of Knaster-Tarski Theorem using gfp ***) | |
| 6 | ||
| 7 | (* gfp(f) is the least upper bound of {u. u <= f(u)} *)
 | |
| 8 | ||
| 17456 | 9 | val prems = goalw (the_context ()) [gfp_def] "[| A <= f(A) |] ==> A <= gfp(f)"; | 
| 0 | 10 | by (rtac (CollectI RS Union_upper) 1); | 
| 11 | by (resolve_tac prems 1); | |
| 757 | 12 | qed "gfp_upperbound"; | 
| 0 | 13 | |
| 17456 | 14 | val prems = goalw (the_context ()) [gfp_def] | 
| 0 | 15 | "[| !!u. u <= f(u) ==> u<=A |] ==> gfp(f) <= A"; | 
| 16 | by (REPEAT (ares_tac ([Union_least]@prems) 1)); | |
| 17 | by (etac CollectD 1); | |
| 757 | 18 | qed "gfp_least"; | 
| 0 | 19 | |
| 17456 | 20 | val [mono] = goal (the_context ()) "mono(f) ==> gfp(f) <= f(gfp(f))"; | 
| 0 | 21 | by (EVERY1 [rtac gfp_least, rtac subset_trans, atac, | 
| 1459 | 22 | rtac (mono RS monoD), rtac gfp_upperbound, atac]); | 
| 757 | 23 | qed "gfp_lemma2"; | 
| 0 | 24 | |
| 17456 | 25 | val [mono] = goal (the_context ()) "mono(f) ==> f(gfp(f)) <= gfp(f)"; | 
| 0 | 26 | by (EVERY1 [rtac gfp_upperbound, rtac (mono RS monoD), | 
| 1459 | 27 | rtac gfp_lemma2, rtac mono]); | 
| 757 | 28 | qed "gfp_lemma3"; | 
| 0 | 29 | |
| 17456 | 30 | val [mono] = goal (the_context ()) "mono(f) ==> gfp(f) = f(gfp(f))"; | 
| 0 | 31 | by (REPEAT (resolve_tac [equalityI,gfp_lemma2,gfp_lemma3,mono] 1)); | 
| 757 | 32 | qed "gfp_Tarski"; | 
| 0 | 33 | |
| 34 | (*** Coinduction rules for greatest fixed points ***) | |
| 35 | ||
| 36 | (*weak version*) | |
| 17456 | 37 | val prems = goal (the_context ()) | 
| 0 | 38 | "[| a: A; A <= f(A) |] ==> a : gfp(f)"; | 
| 39 | by (rtac (gfp_upperbound RS subsetD) 1); | |
| 40 | by (REPEAT (ares_tac prems 1)); | |
| 757 | 41 | qed "coinduct"; | 
| 0 | 42 | |
| 17456 | 43 | val [prem,mono] = goal (the_context ()) | 
| 0 | 44 | "[| A <= f(A) Un gfp(f); mono(f) |] ==> \ | 
| 45 | \ A Un gfp(f) <= f(A Un gfp(f))"; | |
| 46 | by (rtac subset_trans 1); | |
| 47 | by (rtac (mono RS mono_Un) 2); | |
| 48 | by (rtac (mono RS gfp_Tarski RS subst) 1); | |
| 49 | by (rtac (prem RS Un_least) 1); | |
| 50 | by (rtac Un_upper2 1); | |
| 757 | 51 | qed "coinduct2_lemma"; | 
| 0 | 52 | |
| 53 | (*strong version, thanks to Martin Coen*) | |
| 17456 | 54 | val ainA::prems = goal (the_context ()) | 
| 0 | 55 | "[| a: A; A <= f(A) Un gfp(f); mono(f) |] ==> a : gfp(f)"; | 
| 642 
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
 lcp parents: 
0diff
changeset | 56 | by (rtac coinduct 1); | 
| 
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
 lcp parents: 
0diff
changeset | 57 | by (rtac (prems MRS coinduct2_lemma) 2); | 
| 
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
 lcp parents: 
0diff
changeset | 58 | by (resolve_tac [ainA RS UnI1] 1); | 
| 757 | 59 | qed "coinduct2"; | 
| 0 | 60 | |
| 61 | (*** Even Stronger version of coinduct [by Martin Coen] | |
| 62 | - instead of the condition A <= f(A) | |
| 63 | consider A <= (f(A) Un f(f(A)) ...) Un gfp(A) ***) | |
| 64 | ||
| 17456 | 65 | val [prem] = goal (the_context ()) "mono(f) ==> mono(%x. f(x) Un A Un B)"; | 
| 0 | 66 | by (REPEAT (ares_tac [subset_refl, monoI, Un_mono, prem RS monoD] 1)); | 
| 757 | 67 | qed "coinduct3_mono_lemma"; | 
| 0 | 68 | |
| 17456 | 69 | val [prem,mono] = goal (the_context ()) | 
| 3837 | 70 | "[| A <= f(lfp(%x. f(x) Un A Un gfp(f))); mono(f) |] ==> \ | 
| 71 | \ lfp(%x. f(x) Un A Un gfp(f)) <= f(lfp(%x. f(x) Un A Un gfp(f)))"; | |
| 0 | 72 | by (rtac subset_trans 1); | 
| 642 
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
 lcp parents: 
0diff
changeset | 73 | by (rtac (mono RS coinduct3_mono_lemma RS lfp_lemma3) 1); | 
| 0 | 74 | by (rtac (Un_least RS Un_least) 1); | 
| 642 
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
 lcp parents: 
0diff
changeset | 75 | by (rtac subset_refl 1); | 
| 
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
 lcp parents: 
0diff
changeset | 76 | by (rtac prem 1); | 
| 
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
 lcp parents: 
0diff
changeset | 77 | by (rtac (mono RS gfp_Tarski RS equalityD1 RS subset_trans) 1); | 
| 0 | 78 | by (rtac (mono RS monoD) 1); | 
| 2035 | 79 | by (stac (mono RS coinduct3_mono_lemma RS lfp_Tarski) 1); | 
| 0 | 80 | by (rtac Un_upper2 1); | 
| 757 | 81 | qed "coinduct3_lemma"; | 
| 0 | 82 | |
| 17456 | 83 | val ainA::prems = goal (the_context ()) | 
| 3837 | 84 | "[| a:A; A <= f(lfp(%x. f(x) Un A Un gfp(f))); mono(f) |] ==> a : gfp(f)"; | 
| 642 
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
 lcp parents: 
0diff
changeset | 85 | by (rtac coinduct 1); | 
| 
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
 lcp parents: 
0diff
changeset | 86 | by (rtac (prems MRS coinduct3_lemma) 2); | 
| 
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
 lcp parents: 
0diff
changeset | 87 | by (resolve_tac (prems RL [coinduct3_mono_lemma RS lfp_Tarski RS ssubst]) 1); | 
| 
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
 lcp parents: 
0diff
changeset | 88 | by (rtac (ainA RS UnI2 RS UnI1) 1); | 
| 757 | 89 | qed "coinduct3"; | 
| 0 | 90 | |
| 91 | ||
| 92 | (** Definition forms of gfp_Tarski, to control unfolding **) | |
| 93 | ||
| 17456 | 94 | val [rew,mono] = goal (the_context ()) "[| h==gfp(f); mono(f) |] ==> h = f(h)"; | 
| 0 | 95 | by (rewtac rew); | 
| 96 | by (rtac (mono RS gfp_Tarski) 1); | |
| 757 | 97 | qed "def_gfp_Tarski"; | 
| 0 | 98 | |
| 17456 | 99 | val rew::prems = goal (the_context ()) | 
| 0 | 100 | "[| h==gfp(f); a:A; A <= f(A) |] ==> a: h"; | 
| 101 | by (rewtac rew); | |
| 102 | by (REPEAT (ares_tac (prems @ [coinduct]) 1)); | |
| 757 | 103 | qed "def_coinduct"; | 
| 0 | 104 | |
| 17456 | 105 | val rew::prems = goal (the_context ()) | 
| 0 | 106 | "[| h==gfp(f); a:A; A <= f(A) Un h; mono(f) |] ==> a: h"; | 
| 107 | by (rewtac rew); | |
| 108 | by (REPEAT (ares_tac (map (rewrite_rule [rew]) prems @ [coinduct2]) 1)); | |
| 757 | 109 | qed "def_coinduct2"; | 
| 0 | 110 | |
| 17456 | 111 | val rew::prems = goal (the_context ()) | 
| 3837 | 112 | "[| h==gfp(f); a:A; A <= f(lfp(%x. f(x) Un A Un h)); mono(f) |] ==> a: h"; | 
| 0 | 113 | by (rewtac rew); | 
| 114 | by (REPEAT (ares_tac (map (rewrite_rule [rew]) prems @ [coinduct3]) 1)); | |
| 757 | 115 | qed "def_coinduct3"; | 
| 0 | 116 | |
| 117 | (*Monotonicity of gfp!*) | |
| 17456 | 118 | val prems = goal (the_context ()) | 
| 0 | 119 | "[| mono(f); !!Z. f(Z)<=g(Z) |] ==> gfp(f) <= gfp(g)"; | 
| 120 | by (rtac gfp_upperbound 1); | |
| 121 | by (rtac subset_trans 1); | |
| 122 | by (rtac gfp_lemma2 1); | |
| 123 | by (resolve_tac prems 1); | |
| 124 | by (resolve_tac prems 1); | |
| 757 | 125 | qed "gfp_mono"; |