| 
31379
 | 
     1  | 
  | 
| 
 | 
     2  | 
(* Author: Andreas Lochbihler, Uni Karlsruhe *)
  | 
| 
 | 
     3  | 
  | 
| 
 | 
     4  | 
header {* Almost everywhere constant functions *}
 | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
theory Fin_Fun
  | 
| 
 | 
     7  | 
imports Main Infinite_Set Enum
  | 
| 
 | 
     8  | 
begin
  | 
| 
 | 
     9  | 
  | 
| 
 | 
    10  | 
text {*
 | 
| 
 | 
    11  | 
  This theory defines functions which are constant except for finitely
  | 
| 
 | 
    12  | 
  many points (FinFun) and introduces a type finfin along with a
  | 
| 
 | 
    13  | 
  number of operators for them. The code generator is set up such that
  | 
| 
 | 
    14  | 
  such functions can be represented as data in the generated code and
  | 
| 
 | 
    15  | 
  all operators are executable.
  | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
  For details, see Formalising FinFuns - Generating Code for Functions as Data by A. Lochbihler in TPHOLs 2009.
  | 
| 
 | 
    18  | 
*}
  | 
| 
 | 
    19  | 
  | 
| 
31380
 | 
    20  | 
  | 
| 
 | 
    21  | 
subsection {* The @{text "map_default"} operation *}
 | 
| 
31379
 | 
    22  | 
  | 
| 
 | 
    23  | 
definition map_default :: "'b \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
 | 
| 
 | 
    24  | 
where "map_default b f a \<equiv> case f a of None \<Rightarrow> b | Some b' \<Rightarrow> b'"
  | 
| 
 | 
    25  | 
  | 
| 
 | 
    26  | 
lemma map_default_delete [simp]:
  | 
| 
 | 
    27  | 
  "map_default b (f(a := None)) = (map_default b f)(a := b)"
  | 
| 
 | 
    28  | 
by(simp add: map_default_def expand_fun_eq)
  | 
| 
 | 
    29  | 
  | 
| 
 | 
    30  | 
lemma map_default_insert:
  | 
| 
 | 
    31  | 
  "map_default b (f(a \<mapsto> b')) = (map_default b f)(a := b')"
  | 
| 
 | 
    32  | 
by(simp add: map_default_def expand_fun_eq)
  | 
| 
 | 
    33  | 
  | 
| 
 | 
    34  | 
lemma map_default_empty [simp]: "map_default b empty = (\<lambda>a. b)"
  | 
| 
 | 
    35  | 
by(simp add: expand_fun_eq map_default_def)
  | 
| 
 | 
    36  | 
  | 
| 
 | 
    37  | 
lemma map_default_inject:
  | 
| 
 | 
    38  | 
  fixes g g' :: "'a \<rightharpoonup> 'b"
  | 
| 
 | 
    39  | 
  assumes infin_eq: "\<not> finite (UNIV :: 'a set) \<or> b = b'"
  | 
| 
 | 
    40  | 
  and fin: "finite (dom g)" and b: "b \<notin> ran g"
  | 
| 
 | 
    41  | 
  and fin': "finite (dom g')" and b': "b' \<notin> ran g'"
  | 
| 
 | 
    42  | 
  and eq': "map_default b g = map_default b' g'"
  | 
| 
 | 
    43  | 
  shows "b = b'" "g = g'"
  | 
| 
 | 
    44  | 
proof -
  | 
| 
 | 
    45  | 
  from infin_eq show bb': "b = b'"
  | 
| 
 | 
    46  | 
  proof
  | 
| 
 | 
    47  | 
    assume infin: "\<not> finite (UNIV :: 'a set)"
  | 
| 
 | 
    48  | 
    from fin fin' have "finite (dom g \<union> dom g')" by auto
  | 
| 
 | 
    49  | 
    with infin have "UNIV - (dom g \<union> dom g') \<noteq> {}" by(auto dest: finite_subset)
 | 
| 
 | 
    50  | 
    then obtain a where a: "a \<notin> dom g \<union> dom g'" by auto
  | 
| 
 | 
    51  | 
    hence "map_default b g a = b" "map_default b' g' a = b'" by(auto simp add: map_default_def)
  | 
| 
 | 
    52  | 
    with eq' show "b = b'" by simp
  | 
| 
 | 
    53  | 
  qed
  | 
| 
 | 
    54  | 
  | 
| 
 | 
    55  | 
  show "g = g'"
  | 
| 
 | 
    56  | 
  proof
  | 
| 
 | 
    57  | 
    fix x
  | 
| 
 | 
    58  | 
    show "g x = g' x"
  | 
| 
 | 
    59  | 
    proof(cases "g x")
  | 
| 
 | 
    60  | 
      case None
  | 
| 
 | 
    61  | 
      hence "map_default b g x = b" by(simp add: map_default_def)
  | 
| 
 | 
    62  | 
      with bb' eq' have "map_default b' g' x = b'" by simp
  | 
| 
 | 
    63  | 
      with b' have "g' x = None" by(simp add: map_default_def ran_def split: option.split_asm)
  | 
| 
 | 
    64  | 
      with None show ?thesis by simp
  | 
| 
 | 
    65  | 
    next
  | 
| 
 | 
    66  | 
      case (Some c)
  | 
| 
 | 
    67  | 
      with b have cb: "c \<noteq> b" by(auto simp add: ran_def)
  | 
| 
 | 
    68  | 
      moreover from Some have "map_default b g x = c" by(simp add: map_default_def)
  | 
| 
 | 
    69  | 
      with eq' have "map_default b' g' x = c" by simp
  | 
| 
 | 
    70  | 
      ultimately have "g' x = Some c" using b' bb' by(auto simp add: map_default_def split: option.splits)
  | 
| 
 | 
    71  | 
      with Some show ?thesis by simp
  | 
| 
 | 
    72  | 
    qed
  | 
| 
 | 
    73  | 
  qed
  | 
| 
 | 
    74  | 
qed
  | 
| 
 | 
    75  | 
  | 
| 
 | 
    76  | 
subsection {* The finfun type *}
 | 
| 
 | 
    77  | 
  | 
| 
 | 
    78  | 
typedef ('a,'b) finfun = "{f::'a\<Rightarrow>'b. \<exists>b. finite {a. f a \<noteq> b}}"
 | 
| 
31633
 | 
    79  | 
proof -
  | 
| 
 | 
    80  | 
  have "\<exists>f. finite {x. f x \<noteq> undefined}"
 | 
| 
 | 
    81  | 
  proof
  | 
| 
 | 
    82  | 
    show "finite {x. (\<lambda>y. undefined) x \<noteq> undefined}" by auto
 | 
| 
 | 
    83  | 
  qed
  | 
| 
 | 
    84  | 
  then show ?thesis by auto
  | 
| 
 | 
    85  | 
qed
  | 
| 
31379
 | 
    86  | 
  | 
| 
 | 
    87  | 
syntax
  | 
| 
 | 
    88  | 
  "finfun"      :: "type \<Rightarrow> type \<Rightarrow> type"         ("(_ \<Rightarrow>\<^isub>f /_)" [22, 21] 21)
 | 
| 
 | 
    89  | 
  | 
| 
 | 
    90  | 
lemma fun_upd_finfun: "y(a := b) \<in> finfun \<longleftrightarrow> y \<in> finfun"
  | 
| 
 | 
    91  | 
proof -
  | 
| 
 | 
    92  | 
  { fix b'
 | 
| 
 | 
    93  | 
    have "finite {a'. (y(a := b)) a' \<noteq> b'} = finite {a'. y a' \<noteq> b'}"
 | 
| 
 | 
    94  | 
    proof(cases "b = b'")
  | 
| 
 | 
    95  | 
      case True
  | 
| 
 | 
    96  | 
      hence "{a'. (y(a := b)) a' \<noteq> b'} = {a'. y a' \<noteq> b'} - {a}" by auto
 | 
| 
 | 
    97  | 
      thus ?thesis by simp
  | 
| 
 | 
    98  | 
    next
  | 
| 
 | 
    99  | 
      case False
  | 
| 
 | 
   100  | 
      hence "{a'. (y(a := b)) a' \<noteq> b'} = insert a {a'. y a' \<noteq> b'}" by auto
 | 
| 
 | 
   101  | 
      thus ?thesis by simp
  | 
| 
 | 
   102  | 
    qed }
  | 
| 
 | 
   103  | 
  thus ?thesis unfolding finfun_def by blast
  | 
| 
 | 
   104  | 
qed
  | 
| 
 | 
   105  | 
  | 
| 
 | 
   106  | 
lemma const_finfun: "(\<lambda>x. a) \<in> finfun"
  | 
| 
 | 
   107  | 
by(auto simp add: finfun_def)
  | 
| 
 | 
   108  | 
  | 
| 
 | 
   109  | 
lemma finfun_left_compose:
  | 
| 
 | 
   110  | 
  assumes "y \<in> finfun"
  | 
| 
 | 
   111  | 
  shows "g \<circ> y \<in> finfun"
  | 
| 
 | 
   112  | 
proof -
  | 
| 
 | 
   113  | 
  from assms obtain b where "finite {a. y a \<noteq> b}"
 | 
| 
 | 
   114  | 
    unfolding finfun_def by blast
  | 
| 
 | 
   115  | 
  hence "finite {c. g (y c) \<noteq> g b}"
 | 
| 
 | 
   116  | 
  proof(induct x\<equiv>"{a. y a \<noteq> b}" arbitrary: y)
 | 
| 
 | 
   117  | 
    case empty
  | 
| 
 | 
   118  | 
    hence "y = (\<lambda>a. b)" by(auto intro: ext)
  | 
| 
 | 
   119  | 
    thus ?case by(simp)
  | 
| 
 | 
   120  | 
  next
  | 
| 
 | 
   121  | 
    case (insert x F)
  | 
| 
 | 
   122  | 
    note IH = `\<And>y. F = {a. y a \<noteq> b} \<Longrightarrow> finite {c. g (y c) \<noteq> g b}`
 | 
| 
 | 
   123  | 
    from `insert x F = {a. y a \<noteq> b}` `x \<notin> F`
 | 
| 
 | 
   124  | 
    have F: "F = {a. (y(x := b)) a \<noteq> b}" by(auto)
 | 
| 
 | 
   125  | 
    show ?case
  | 
| 
 | 
   126  | 
    proof(cases "g (y x) = g b")
  | 
| 
 | 
   127  | 
      case True
  | 
| 
 | 
   128  | 
      hence "{c. g ((y(x := b)) c) \<noteq> g b} = {c. g (y c) \<noteq> g b}" by auto
 | 
| 
 | 
   129  | 
      with IH[OF F] show ?thesis by simp
  | 
| 
 | 
   130  | 
    next
  | 
| 
 | 
   131  | 
      case False
  | 
| 
 | 
   132  | 
      hence "{c. g (y c) \<noteq> g b} = insert x {c. g ((y(x := b)) c) \<noteq> g b}" by auto
 | 
| 
 | 
   133  | 
      with IH[OF F] show ?thesis by(simp)
  | 
| 
 | 
   134  | 
    qed
  | 
| 
 | 
   135  | 
  qed
  | 
| 
 | 
   136  | 
  thus ?thesis unfolding finfun_def by auto
  | 
| 
 | 
   137  | 
qed
  | 
| 
 | 
   138  | 
  | 
| 
 | 
   139  | 
lemma assumes "y \<in> finfun"
  | 
| 
 | 
   140  | 
  shows fst_finfun: "fst \<circ> y \<in> finfun"
  | 
| 
 | 
   141  | 
  and snd_finfun: "snd \<circ> y \<in> finfun"
  | 
| 
 | 
   142  | 
proof -
  | 
| 
 | 
   143  | 
  from assms obtain b c where bc: "finite {a. y a \<noteq> (b, c)}"
 | 
| 
 | 
   144  | 
    unfolding finfun_def by auto
  | 
| 
 | 
   145  | 
  have "{a. fst (y a) \<noteq> b} \<subseteq> {a. y a \<noteq> (b, c)}"
 | 
| 
 | 
   146  | 
    and "{a. snd (y a) \<noteq> c} \<subseteq> {a. y a \<noteq> (b, c)}" by auto
 | 
| 
 | 
   147  | 
  hence "finite {a. fst (y a) \<noteq> b}" 
 | 
| 
 | 
   148  | 
    and "finite {a. snd (y a) \<noteq> c}" using bc by(auto intro: finite_subset)
 | 
| 
 | 
   149  | 
  thus "fst \<circ> y \<in> finfun" "snd \<circ> y \<in> finfun"
  | 
| 
 | 
   150  | 
    unfolding finfun_def by auto
  | 
| 
 | 
   151  | 
qed
  | 
| 
 | 
   152  | 
  | 
| 
 | 
   153  | 
lemma map_of_finfun: "map_of xs \<in> finfun"
  | 
| 
 | 
   154  | 
unfolding finfun_def
  | 
| 
 | 
   155  | 
by(induct xs)(auto simp add: Collect_neg_eq Collect_conj_eq Collect_imp_eq intro: finite_subset)
  | 
| 
 | 
   156  | 
  | 
| 
 | 
   157  | 
lemma Diag_finfun: "(\<lambda>x. (f x, g x)) \<in> finfun \<longleftrightarrow> f \<in> finfun \<and> g \<in> finfun"
  | 
| 
 | 
   158  | 
by(auto intro: finite_subset simp add: Collect_neg_eq Collect_imp_eq Collect_conj_eq finfun_def)
  | 
| 
 | 
   159  | 
  | 
| 
 | 
   160  | 
lemma finfun_right_compose:
  | 
| 
 | 
   161  | 
  assumes g: "g \<in> finfun" and inj: "inj f"
  | 
| 
 | 
   162  | 
  shows "g o f \<in> finfun"
  | 
| 
 | 
   163  | 
proof -
  | 
| 
 | 
   164  | 
  from g obtain b where b: "finite {a. g a \<noteq> b}" unfolding finfun_def by blast
 | 
| 
 | 
   165  | 
  moreover have "f ` {a. g (f a) \<noteq> b} \<subseteq> {a. g a \<noteq> b}" by auto
 | 
| 
 | 
   166  | 
  moreover from inj have "inj_on f {a.  g (f a) \<noteq> b}" by(rule subset_inj_on) blast
 | 
| 
 | 
   167  | 
  ultimately have "finite {a. g (f a) \<noteq> b}"
 | 
| 
 | 
   168  | 
    by(blast intro: finite_imageD[where f=f] finite_subset)
  | 
| 
 | 
   169  | 
  thus ?thesis unfolding finfun_def by auto
  | 
| 
 | 
   170  | 
qed
  | 
| 
 | 
   171  | 
  | 
| 
 | 
   172  | 
lemma finfun_curry:
  | 
| 
 | 
   173  | 
  assumes fin: "f \<in> finfun"
  | 
| 
 | 
   174  | 
  shows "curry f \<in> finfun" "curry f a \<in> finfun"
  | 
| 
 | 
   175  | 
proof -
  | 
| 
 | 
   176  | 
  from fin obtain c where c: "finite {ab. f ab \<noteq> c}" unfolding finfun_def by blast
 | 
| 
 | 
   177  | 
  moreover have "{a. \<exists>b. f (a, b) \<noteq> c} = fst ` {ab. f ab \<noteq> c}" by(force)
 | 
| 
 | 
   178  | 
  hence "{a. curry f a \<noteq> (\<lambda>b. c)} = fst ` {ab. f ab \<noteq> c}"
 | 
| 
 | 
   179  | 
    by(auto simp add: curry_def expand_fun_eq)
  | 
| 
 | 
   180  | 
  ultimately have "finite {a. curry f a \<noteq> (\<lambda>b. c)}" by simp
 | 
| 
 | 
   181  | 
  thus "curry f \<in> finfun" unfolding finfun_def by blast
  | 
| 
 | 
   182  | 
  
  | 
| 
 | 
   183  | 
  have "snd ` {ab. f ab \<noteq> c} = {b. \<exists>a. f (a, b) \<noteq> c}" by(force)
 | 
| 
 | 
   184  | 
  hence "{b. f (a, b) \<noteq> c} \<subseteq> snd ` {ab. f ab \<noteq> c}" by auto
 | 
| 
 | 
   185  | 
  hence "finite {b. f (a, b) \<noteq> c}" by(rule finite_subset)(rule finite_imageI[OF c])
 | 
| 
 | 
   186  | 
  thus "curry f a \<in> finfun" unfolding finfun_def by auto
  | 
| 
 | 
   187  | 
qed
  | 
| 
 | 
   188  | 
  | 
| 
 | 
   189  | 
lemmas finfun_simp = 
  | 
| 
 | 
   190  | 
  fst_finfun snd_finfun Abs_finfun_inverse Rep_finfun_inverse Abs_finfun_inject Rep_finfun_inject Diag_finfun finfun_curry
  | 
| 
 | 
   191  | 
lemmas finfun_iff = const_finfun fun_upd_finfun Rep_finfun map_of_finfun
  | 
| 
 | 
   192  | 
lemmas finfun_intro = finfun_left_compose fst_finfun snd_finfun
  | 
| 
 | 
   193  | 
  | 
| 
 | 
   194  | 
lemma Abs_finfun_inject_finite:
  | 
| 
 | 
   195  | 
  fixes x y :: "'a \<Rightarrow> 'b"
  | 
| 
 | 
   196  | 
  assumes fin: "finite (UNIV :: 'a set)"
  | 
| 
 | 
   197  | 
  shows "Abs_finfun x = Abs_finfun y \<longleftrightarrow> x = y"
  | 
| 
 | 
   198  | 
proof
  | 
| 
 | 
   199  | 
  assume "Abs_finfun x = Abs_finfun y"
  | 
| 
 | 
   200  | 
  moreover have "x \<in> finfun" "y \<in> finfun" unfolding finfun_def
  | 
| 
 | 
   201  | 
    by(auto intro: finite_subset[OF _ fin])
  | 
| 
 | 
   202  | 
  ultimately show "x = y" by(simp add: Abs_finfun_inject)
  | 
| 
 | 
   203  | 
qed simp
  | 
| 
 | 
   204  | 
  | 
| 
 | 
   205  | 
lemma Abs_finfun_inject_finite_class:
  | 
| 
 | 
   206  | 
  fixes x y :: "('a :: finite) \<Rightarrow> 'b"
 | 
| 
 | 
   207  | 
  shows "Abs_finfun x = Abs_finfun y \<longleftrightarrow> x = y"
  | 
| 
 | 
   208  | 
using finite_UNIV
  | 
| 
 | 
   209  | 
by(simp add: Abs_finfun_inject_finite)
  | 
| 
 | 
   210  | 
  | 
| 
 | 
   211  | 
lemma Abs_finfun_inj_finite:
  | 
| 
 | 
   212  | 
  assumes fin: "finite (UNIV :: 'a set)"
  | 
| 
 | 
   213  | 
  shows "inj (Abs_finfun :: ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'b)"
 | 
| 
 | 
   214  | 
proof(rule inj_onI)
  | 
| 
 | 
   215  | 
  fix x y :: "'a \<Rightarrow> 'b"
  | 
| 
 | 
   216  | 
  assume "Abs_finfun x = Abs_finfun y"
  | 
| 
 | 
   217  | 
  moreover have "x \<in> finfun" "y \<in> finfun" unfolding finfun_def
  | 
| 
 | 
   218  | 
    by(auto intro: finite_subset[OF _ fin])
  | 
| 
 | 
   219  | 
  ultimately show "x = y" by(simp add: Abs_finfun_inject)
  | 
| 
 | 
   220  | 
qed
  | 
| 
 | 
   221  | 
  | 
| 
 | 
   222  | 
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
  | 
| 
 | 
   223  | 
  | 
| 
 | 
   224  | 
lemma Abs_finfun_inverse_finite:
  | 
| 
 | 
   225  | 
  fixes x :: "'a \<Rightarrow> 'b"
  | 
| 
 | 
   226  | 
  assumes fin: "finite (UNIV :: 'a set)"
  | 
| 
 | 
   227  | 
  shows "Rep_finfun (Abs_finfun x) = x"
  | 
| 
 | 
   228  | 
proof -
  | 
| 
 | 
   229  | 
  from fin have "x \<in> finfun"
  | 
| 
 | 
   230  | 
    by(auto simp add: finfun_def intro: finite_subset)
  | 
| 
 | 
   231  | 
  thus ?thesis by simp
  | 
| 
 | 
   232  | 
qed
  | 
| 
 | 
   233  | 
  | 
| 
 | 
   234  | 
declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
  | 
| 
 | 
   235  | 
  | 
| 
 | 
   236  | 
lemma Abs_finfun_inverse_finite_class:
  | 
| 
 | 
   237  | 
  fixes x :: "('a :: finite) \<Rightarrow> 'b"
 | 
| 
 | 
   238  | 
  shows "Rep_finfun (Abs_finfun x) = x"
  | 
| 
 | 
   239  | 
using finite_UNIV by(simp add: Abs_finfun_inverse_finite)
  | 
| 
 | 
   240  | 
  | 
| 
 | 
   241  | 
lemma finfun_eq_finite_UNIV: "finite (UNIV :: 'a set) \<Longrightarrow> (finfun :: ('a \<Rightarrow> 'b) set) = UNIV"
 | 
| 
 | 
   242  | 
unfolding finfun_def by(auto intro: finite_subset)
  | 
| 
 | 
   243  | 
  | 
| 
 | 
   244  | 
lemma finfun_finite_UNIV_class: "finfun = (UNIV :: ('a :: finite \<Rightarrow> 'b) set)"
 | 
| 
 | 
   245  | 
by(simp add: finfun_eq_finite_UNIV)
  | 
| 
 | 
   246  | 
  | 
| 
 | 
   247  | 
lemma map_default_in_finfun:
  | 
| 
 | 
   248  | 
  assumes fin: "finite (dom f)"
  | 
| 
 | 
   249  | 
  shows "map_default b f \<in> finfun"
  | 
| 
 | 
   250  | 
unfolding finfun_def
  | 
| 
 | 
   251  | 
proof(intro CollectI exI)
  | 
| 
 | 
   252  | 
  from fin show "finite {a. map_default b f a \<noteq> b}"
 | 
| 
 | 
   253  | 
    by(auto simp add: map_default_def dom_def Collect_conj_eq split: option.splits)
  | 
| 
 | 
   254  | 
qed
  | 
| 
 | 
   255  | 
  | 
| 
 | 
   256  | 
lemma finfun_cases_map_default:
  | 
| 
 | 
   257  | 
  obtains b g where "f = Abs_finfun (map_default b g)" "finite (dom g)" "b \<notin> ran g"
  | 
| 
 | 
   258  | 
proof -
  | 
| 
 | 
   259  | 
  obtain y where f: "f = Abs_finfun y" and y: "y \<in> finfun" by(cases f)
  | 
| 
 | 
   260  | 
  from y obtain b where b: "finite {a. y a \<noteq> b}" unfolding finfun_def by auto
 | 
| 
 | 
   261  | 
  let ?g = "(\<lambda>a. if y a = b then None else Some (y a))"
  | 
| 
 | 
   262  | 
  have "map_default b ?g = y" by(simp add: expand_fun_eq map_default_def)
  | 
| 
 | 
   263  | 
  with f have "f = Abs_finfun (map_default b ?g)" by simp
  | 
| 
 | 
   264  | 
  moreover from b have "finite (dom ?g)" by(auto simp add: dom_def)
  | 
| 
 | 
   265  | 
  moreover have "b \<notin> ran ?g" by(auto simp add: ran_def)
  | 
| 
 | 
   266  | 
  ultimately show ?thesis by(rule that)
  | 
| 
 | 
   267  | 
qed
  | 
| 
 | 
   268  | 
  | 
| 
 | 
   269  | 
  | 
| 
 | 
   270  | 
subsection {* Kernel functions for type @{typ "'a \<Rightarrow>\<^isub>f 'b"} *}
 | 
| 
 | 
   271  | 
  | 
| 
 | 
   272  | 
definition finfun_const :: "'b \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'b" ("\<lambda>\<^isup>f/ _" [0] 1)
 | 
| 
 | 
   273  | 
where [code del]: "(\<lambda>\<^isup>f b) = Abs_finfun (\<lambda>x. b)"
  | 
| 
 | 
   274  | 
  | 
| 
 | 
   275  | 
definition finfun_update :: "'a \<Rightarrow>\<^isub>f 'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'b" ("_'(\<^sup>f/ _ := _')" [1000,0,0] 1000)
 | 
| 
 | 
   276  | 
where [code del]: "f(\<^sup>fa := b) = Abs_finfun ((Rep_finfun f)(a := b))"
  | 
| 
 | 
   277  | 
  | 
| 
 | 
   278  | 
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
  | 
| 
 | 
   279  | 
  | 
| 
 | 
   280  | 
lemma finfun_update_twist: "a \<noteq> a' \<Longrightarrow> f(\<^sup>f a := b)(\<^sup>f a' := b') = f(\<^sup>f a' := b')(\<^sup>f a := b)"
  | 
| 
 | 
   281  | 
by(simp add: finfun_update_def fun_upd_twist)
  | 
| 
 | 
   282  | 
  | 
| 
 | 
   283  | 
lemma finfun_update_twice [simp]:
  | 
| 
 | 
   284  | 
  "finfun_update (finfun_update f a b) a b' = finfun_update f a b'"
  | 
| 
 | 
   285  | 
by(simp add: finfun_update_def)
  | 
| 
 | 
   286  | 
  | 
| 
 | 
   287  | 
lemma finfun_update_const_same: "(\<lambda>\<^isup>f b)(\<^sup>f a := b) = (\<lambda>\<^isup>f b)"
  | 
| 
 | 
   288  | 
by(simp add: finfun_update_def finfun_const_def expand_fun_eq)
  | 
| 
 | 
   289  | 
  | 
| 
 | 
   290  | 
declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
  | 
| 
 | 
   291  | 
  | 
| 
 | 
   292  | 
subsection {* Code generator setup *}
 | 
| 
 | 
   293  | 
  | 
| 
 | 
   294  | 
definition finfun_update_code :: "'a \<Rightarrow>\<^isub>f 'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'b" ("_'(\<^sup>f\<^sup>c/ _ := _')" [1000,0,0] 1000)
 | 
| 
 | 
   295  | 
where [simp, code del]: "finfun_update_code = finfun_update"
  | 
| 
 | 
   296  | 
  | 
| 
 | 
   297  | 
code_datatype finfun_const finfun_update_code
  | 
| 
 | 
   298  | 
  | 
| 
 | 
   299  | 
lemma finfun_update_const_code [code]:
  | 
| 
 | 
   300  | 
  "(\<lambda>\<^isup>f b)(\<^sup>f a := b') = (if b = b' then (\<lambda>\<^isup>f b) else finfun_update_code (\<lambda>\<^isup>f b) a b')"
  | 
| 
 | 
   301  | 
by(simp add: finfun_update_const_same)
  | 
| 
 | 
   302  | 
  | 
| 
 | 
   303  | 
lemma finfun_update_update_code [code]:
  | 
| 
 | 
   304  | 
  "(finfun_update_code f a b)(\<^sup>f a' := b') = (if a = a' then f(\<^sup>f a := b') else finfun_update_code (f(\<^sup>f a' := b')) a b)"
  | 
| 
 | 
   305  | 
by(simp add: finfun_update_twist)
  | 
| 
 | 
   306  | 
  | 
| 
 | 
   307  | 
  | 
| 
 | 
   308  | 
subsection {* Setup for quickcheck *}
 | 
| 
 | 
   309  | 
  | 
| 
 | 
   310  | 
notation fcomp (infixl "o>" 60)
  | 
| 
 | 
   311  | 
notation scomp (infixl "o\<rightarrow>" 60)
  | 
| 
 | 
   312  | 
  | 
| 
 | 
   313  | 
definition (in term_syntax) valtermify_finfun_const ::
  | 
| 
32657
 | 
   314  | 
  "'b\<Colon>typerep \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> ('a\<Colon>typerep \<Rightarrow>\<^isub>f 'b) \<times> (unit \<Rightarrow> Code_Evaluation.term)" where
 | 
| 
 | 
   315  | 
  "valtermify_finfun_const y = Code_Evaluation.valtermify finfun_const {\<cdot>} y"
 | 
| 
31379
 | 
   316  | 
  | 
| 
 | 
   317  | 
definition (in term_syntax) valtermify_finfun_update_code ::
  | 
| 
32657
 | 
   318  | 
  "'a\<Colon>typerep \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> 'b\<Colon>typerep \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> ('a \<Rightarrow>\<^isub>f 'b) \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> ('a \<Rightarrow>\<^isub>f 'b) \<times> (unit \<Rightarrow> Code_Evaluation.term)" where
 | 
| 
 | 
   319  | 
  "valtermify_finfun_update_code x y f = Code_Evaluation.valtermify finfun_update_code {\<cdot>} f {\<cdot>} x {\<cdot>} y"
 | 
| 
31379
 | 
   320  | 
  | 
| 
 | 
   321  | 
instantiation finfun :: (random, random) random
  | 
| 
 | 
   322  | 
begin
  | 
| 
 | 
   323  | 
  | 
| 
32657
 | 
   324  | 
primrec random_finfun_aux :: "code_numeral \<Rightarrow> code_numeral \<Rightarrow> Random.seed \<Rightarrow> ('a \<Rightarrow>\<^isub>f 'b \<times> (unit \<Rightarrow> Code_Evaluation.term)) \<times> Random.seed" where
 | 
| 
31633
 | 
   325  | 
    "random_finfun_aux 0 j = Quickcheck.collapse (Random.select_weight
  | 
| 
31644
 | 
   326  | 
       [(1, Quickcheck.random j o\<rightarrow> (\<lambda>y. Pair (valtermify_finfun_const y)))])"
  | 
| 
31633
 | 
   327  | 
  | "random_finfun_aux (Suc_code_numeral i) j = Quickcheck.collapse (Random.select_weight
  | 
| 
31644
 | 
   328  | 
       [(Suc_code_numeral i, Quickcheck.random j o\<rightarrow> (\<lambda>x. Quickcheck.random j o\<rightarrow> (\<lambda>y. random_finfun_aux i j o\<rightarrow> (\<lambda>f. Pair (valtermify_finfun_update_code x y f))))),
  | 
| 
 | 
   329  | 
         (1, Quickcheck.random j o\<rightarrow> (\<lambda>y. Pair (valtermify_finfun_const y)))])"
  | 
| 
31633
 | 
   330  | 
  | 
| 
31379
 | 
   331  | 
definition 
  | 
| 
31641
 | 
   332  | 
  "Quickcheck.random i = random_finfun_aux i i"
  | 
| 
31379
 | 
   333  | 
  | 
| 
 | 
   334  | 
instance ..
  | 
| 
 | 
   335  | 
  | 
| 
 | 
   336  | 
end
  | 
| 
 | 
   337  | 
  | 
| 
31633
 | 
   338  | 
lemma random_finfun_aux_code [code]:
  | 
| 
 | 
   339  | 
  "random_finfun_aux i j = Quickcheck.collapse (Random.select_weight
  | 
| 
31644
 | 
   340  | 
     [(i, Quickcheck.random j o\<rightarrow> (\<lambda>x. Quickcheck.random j o\<rightarrow> (\<lambda>y. random_finfun_aux (i - 1) j o\<rightarrow> (\<lambda>f. Pair (valtermify_finfun_update_code x y f))))),
  | 
| 
 | 
   341  | 
       (1, Quickcheck.random j o\<rightarrow> (\<lambda>y. Pair (valtermify_finfun_const y)))])"
  | 
| 
31379
 | 
   342  | 
  apply (cases i rule: code_numeral.exhaust)
  | 
| 
31633
 | 
   343  | 
  apply (simp_all only: random_finfun_aux.simps code_numeral_zero_minus_one Suc_code_numeral_minus_one)
  | 
| 
 | 
   344  | 
  apply (subst select_weight_cons_zero) apply (simp only:)
  | 
| 
31379
 | 
   345  | 
  done
  | 
| 
 | 
   346  | 
  | 
| 
 | 
   347  | 
no_notation fcomp (infixl "o>" 60)
  | 
| 
 | 
   348  | 
no_notation scomp (infixl "o\<rightarrow>" 60)
  | 
| 
 | 
   349  | 
  | 
| 
 | 
   350  | 
  | 
| 
 | 
   351  | 
subsection {* @{text "finfun_update"} as instance of @{text "fun_left_comm"} *}
 | 
| 
 | 
   352  | 
  | 
| 
 | 
   353  | 
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
  | 
| 
 | 
   354  | 
  | 
| 
 | 
   355  | 
interpretation finfun_update: fun_left_comm "\<lambda>a f. f(\<^sup>f a :: 'a := b')"
  | 
| 
 | 
   356  | 
proof
  | 
| 
 | 
   357  | 
  fix a' a :: 'a
  | 
| 
 | 
   358  | 
  fix b
  | 
| 
 | 
   359  | 
  have "(Rep_finfun b)(a := b', a' := b') = (Rep_finfun b)(a' := b', a := b')"
  | 
| 
 | 
   360  | 
    by(cases "a = a'")(auto simp add: fun_upd_twist)
  | 
| 
 | 
   361  | 
  thus "b(\<^sup>f a := b')(\<^sup>f a' := b') = b(\<^sup>f a' := b')(\<^sup>f a := b')"
  | 
| 
 | 
   362  | 
    by(auto simp add: finfun_update_def fun_upd_twist)
  | 
| 
 | 
   363  | 
qed
  | 
| 
 | 
   364  | 
  | 
| 
 | 
   365  | 
lemma fold_finfun_update_finite_univ:
  | 
| 
 | 
   366  | 
  assumes fin: "finite (UNIV :: 'a set)"
  | 
| 
 | 
   367  | 
  shows "fold (\<lambda>a f. f(\<^sup>f a := b')) (\<lambda>\<^isup>f b) (UNIV :: 'a set) = (\<lambda>\<^isup>f b')"
  | 
| 
 | 
   368  | 
proof -
  | 
| 
 | 
   369  | 
  { fix A :: "'a set"
 | 
| 
 | 
   370  | 
    from fin have "finite A" by(auto intro: finite_subset)
  | 
| 
 | 
   371  | 
    hence "fold (\<lambda>a f. f(\<^sup>f a := b')) (\<lambda>\<^isup>f b) A = Abs_finfun (\<lambda>a. if a \<in> A then b' else b)"
  | 
| 
 | 
   372  | 
    proof(induct)
  | 
| 
 | 
   373  | 
      case (insert x F)
  | 
| 
 | 
   374  | 
      have "(\<lambda>a. if a = x then b' else (if a \<in> F then b' else b)) = (\<lambda>a. if a = x \<or> a \<in> F then b' else b)"
  | 
| 
 | 
   375  | 
        by(auto intro: ext)
  | 
| 
 | 
   376  | 
      with insert show ?case
  | 
| 
 | 
   377  | 
        by(simp add: finfun_const_def fun_upd_def)(simp add: finfun_update_def Abs_finfun_inverse_finite[OF fin] fun_upd_def)
  | 
| 
 | 
   378  | 
    qed(simp add: finfun_const_def) }
  | 
| 
 | 
   379  | 
  thus ?thesis by(simp add: finfun_const_def)
  | 
| 
 | 
   380  | 
qed
  | 
| 
 | 
   381  | 
  | 
| 
 | 
   382  | 
  | 
| 
 | 
   383  | 
subsection {* Default value for FinFuns *}
 | 
| 
 | 
   384  | 
  | 
| 
 | 
   385  | 
definition finfun_default_aux :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b"
 | 
| 
31804
 | 
   386  | 
where [code del]: "finfun_default_aux f = (if finite (UNIV :: 'a set) then undefined else THE b. finite {a. f a \<noteq> b})"
 | 
| 
31379
 | 
   387  | 
  | 
| 
 | 
   388  | 
lemma finfun_default_aux_infinite:
  | 
| 
 | 
   389  | 
  fixes f :: "'a \<Rightarrow> 'b"
  | 
| 
 | 
   390  | 
  assumes infin: "infinite (UNIV :: 'a set)"
  | 
| 
 | 
   391  | 
  and fin: "finite {a. f a \<noteq> b}"
 | 
| 
 | 
   392  | 
  shows "finfun_default_aux f = b"
  | 
| 
 | 
   393  | 
proof -
  | 
| 
 | 
   394  | 
  let ?B = "{a. f a \<noteq> b}"
 | 
| 
 | 
   395  | 
  from fin have "(THE b. finite {a. f a \<noteq> b}) = b"
 | 
| 
 | 
   396  | 
  proof(rule the_equality)
  | 
| 
 | 
   397  | 
    fix b'
  | 
| 
 | 
   398  | 
    assume "finite {a. f a \<noteq> b'}" (is "finite ?B'")
 | 
| 
 | 
   399  | 
    with infin fin have "UNIV - (?B' \<union> ?B) \<noteq> {}" by(auto dest: finite_subset)
 | 
| 
 | 
   400  | 
    then obtain a where a: "a \<notin> ?B' \<union> ?B" by auto
  | 
| 
 | 
   401  | 
    thus "b' = b" by auto
  | 
| 
 | 
   402  | 
  qed
  | 
| 
 | 
   403  | 
  thus ?thesis using infin by(simp add: finfun_default_aux_def)
  | 
| 
 | 
   404  | 
qed
  | 
| 
 | 
   405  | 
  | 
| 
 | 
   406  | 
  | 
| 
 | 
   407  | 
lemma finite_finfun_default_aux:
  | 
| 
 | 
   408  | 
  fixes f :: "'a \<Rightarrow> 'b"
  | 
| 
 | 
   409  | 
  assumes fin: "f \<in> finfun"
  | 
| 
 | 
   410  | 
  shows "finite {a. f a \<noteq> finfun_default_aux f}"
 | 
| 
 | 
   411  | 
proof(cases "finite (UNIV :: 'a set)")
  | 
| 
 | 
   412  | 
  case True thus ?thesis using fin
  | 
| 
 | 
   413  | 
    by(auto simp add: finfun_def finfun_default_aux_def intro: finite_subset)
  | 
| 
 | 
   414  | 
next
  | 
| 
 | 
   415  | 
  case False
  | 
| 
 | 
   416  | 
  from fin obtain b where b: "finite {a. f a \<noteq> b}" (is "finite ?B")
 | 
| 
 | 
   417  | 
    unfolding finfun_def by blast
  | 
| 
 | 
   418  | 
  with False show ?thesis by(simp add: finfun_default_aux_infinite)
  | 
| 
 | 
   419  | 
qed
  | 
| 
 | 
   420  | 
  | 
| 
 | 
   421  | 
lemma finfun_default_aux_update_const:
  | 
| 
 | 
   422  | 
  fixes f :: "'a \<Rightarrow> 'b"
  | 
| 
 | 
   423  | 
  assumes fin: "f \<in> finfun"
  | 
| 
 | 
   424  | 
  shows "finfun_default_aux (f(a := b)) = finfun_default_aux f"
  | 
| 
 | 
   425  | 
proof(cases "finite (UNIV :: 'a set)")
  | 
| 
 | 
   426  | 
  case False
  | 
| 
 | 
   427  | 
  from fin obtain b' where b': "finite {a. f a \<noteq> b'}" unfolding finfun_def by blast
 | 
| 
 | 
   428  | 
  hence "finite {a'. (f(a := b)) a' \<noteq> b'}"
 | 
| 
 | 
   429  | 
  proof(cases "b = b' \<and> f a \<noteq> b'") 
  | 
| 
 | 
   430  | 
    case True
  | 
| 
 | 
   431  | 
    hence "{a. f a \<noteq> b'} = insert a {a'. (f(a := b)) a' \<noteq> b'}" by auto
 | 
| 
 | 
   432  | 
    thus ?thesis using b' by simp
  | 
| 
 | 
   433  | 
  next
  | 
| 
 | 
   434  | 
    case False
  | 
| 
 | 
   435  | 
    moreover
  | 
| 
 | 
   436  | 
    { assume "b \<noteq> b'"
 | 
| 
 | 
   437  | 
      hence "{a'. (f(a := b)) a' \<noteq> b'} = insert a {a. f a \<noteq> b'}" by auto
 | 
| 
 | 
   438  | 
      hence ?thesis using b' by simp }
  | 
| 
 | 
   439  | 
    moreover
  | 
| 
 | 
   440  | 
    { assume "b = b'" "f a = b'"
 | 
| 
 | 
   441  | 
      hence "{a'. (f(a := b)) a' \<noteq> b'} = {a. f a \<noteq> b'}" by auto
 | 
| 
 | 
   442  | 
      hence ?thesis using b' by simp }
  | 
| 
 | 
   443  | 
    ultimately show ?thesis by blast
  | 
| 
 | 
   444  | 
  qed
  | 
| 
 | 
   445  | 
  with False b' show ?thesis by(auto simp del: fun_upd_apply simp add: finfun_default_aux_infinite)
  | 
| 
 | 
   446  | 
next
  | 
| 
 | 
   447  | 
  case True thus ?thesis by(simp add: finfun_default_aux_def)
  | 
| 
 | 
   448  | 
qed
  | 
| 
 | 
   449  | 
  | 
| 
 | 
   450  | 
definition finfun_default :: "'a \<Rightarrow>\<^isub>f 'b \<Rightarrow> 'b"
  | 
| 
 | 
   451  | 
  where [code del]: "finfun_default f = finfun_default_aux (Rep_finfun f)"
  | 
| 
 | 
   452  | 
  | 
| 
 | 
   453  | 
lemma finite_finfun_default: "finite {a. Rep_finfun f a \<noteq> finfun_default f}"
 | 
| 
 | 
   454  | 
unfolding finfun_default_def by(simp add: finite_finfun_default_aux)
  | 
| 
 | 
   455  | 
  | 
| 
31804
 | 
   456  | 
lemma finfun_default_const: "finfun_default ((\<lambda>\<^isup>f b) :: 'a \<Rightarrow>\<^isub>f 'b) = (if finite (UNIV :: 'a set) then undefined else b)"
  | 
| 
31379
 | 
   457  | 
apply(auto simp add: finfun_default_def finfun_const_def finfun_default_aux_infinite)
  | 
| 
 | 
   458  | 
apply(simp add: finfun_default_aux_def)
  | 
| 
 | 
   459  | 
done
  | 
| 
 | 
   460  | 
  | 
| 
 | 
   461  | 
lemma finfun_default_update_const:
  | 
| 
 | 
   462  | 
  "finfun_default (f(\<^sup>f a := b)) = finfun_default f"
  | 
| 
 | 
   463  | 
unfolding finfun_default_def finfun_update_def
  | 
| 
 | 
   464  | 
by(simp add: finfun_default_aux_update_const)
  | 
| 
 | 
   465  | 
  | 
| 
 | 
   466  | 
subsection {* Recursion combinator and well-formedness conditions *}
 | 
| 
 | 
   467  | 
  | 
| 
 | 
   468  | 
definition finfun_rec :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow>\<^isub>f 'b) \<Rightarrow> 'c"
 | 
| 
 | 
   469  | 
where [code del]:
  | 
| 
 | 
   470  | 
  "finfun_rec cnst upd f \<equiv>
  | 
| 
 | 
   471  | 
   let b = finfun_default f;
  | 
| 
 | 
   472  | 
       g = THE g. f = Abs_finfun (map_default b g) \<and> finite (dom g) \<and> b \<notin> ran g
  | 
| 
 | 
   473  | 
   in fold (\<lambda>a. upd a (map_default b g a)) (cnst b) (dom g)"
  | 
| 
 | 
   474  | 
  | 
| 
 | 
   475  | 
locale finfun_rec_wf_aux =
  | 
| 
 | 
   476  | 
  fixes cnst :: "'b \<Rightarrow> 'c"
  | 
| 
 | 
   477  | 
  and upd :: "'a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c"
  | 
| 
 | 
   478  | 
  assumes upd_const_same: "upd a b (cnst b) = cnst b"
  | 
| 
 | 
   479  | 
  and upd_commute: "a \<noteq> a' \<Longrightarrow> upd a b (upd a' b' c) = upd a' b' (upd a b c)"
  | 
| 
 | 
   480  | 
  and upd_idemp: "b \<noteq> b' \<Longrightarrow> upd a b'' (upd a b' (cnst b)) = upd a b'' (cnst b)"
  | 
| 
 | 
   481  | 
begin
  | 
| 
 | 
   482  | 
  | 
| 
 | 
   483  | 
  | 
| 
 | 
   484  | 
lemma upd_left_comm: "fun_left_comm (\<lambda>a. upd a (f a))"
  | 
| 
 | 
   485  | 
by(unfold_locales)(auto intro: upd_commute)
  | 
| 
 | 
   486  | 
  | 
| 
 | 
   487  | 
lemma upd_upd_twice: "upd a b'' (upd a b' (cnst b)) = upd a b'' (cnst b)"
  | 
| 
 | 
   488  | 
by(cases "b \<noteq> b'")(auto simp add: fun_upd_def upd_const_same upd_idemp)
  | 
| 
 | 
   489  | 
  | 
| 
 | 
   490  | 
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
  | 
| 
 | 
   491  | 
  | 
| 
 | 
   492  | 
lemma map_default_update_const:
  | 
| 
 | 
   493  | 
  assumes fin: "finite (dom f)"
  | 
| 
 | 
   494  | 
  and anf: "a \<notin> dom f"
  | 
| 
 | 
   495  | 
  and fg: "f \<subseteq>\<^sub>m g"
  | 
| 
 | 
   496  | 
  shows "upd a d  (fold (\<lambda>a. upd a (map_default d g a)) (cnst d) (dom f)) =
  | 
| 
 | 
   497  | 
         fold (\<lambda>a. upd a (map_default d g a)) (cnst d) (dom f)"
  | 
| 
 | 
   498  | 
proof -
  | 
| 
 | 
   499  | 
  let ?upd = "\<lambda>a. upd a (map_default d g a)"
  | 
| 
 | 
   500  | 
  let ?fr = "\<lambda>A. fold ?upd (cnst d) A"
  | 
| 
 | 
   501  | 
  interpret gwf: fun_left_comm "?upd" by(rule upd_left_comm)
  | 
| 
 | 
   502  | 
  
  | 
| 
 | 
   503  | 
  from fin anf fg show ?thesis
  | 
| 
 | 
   504  | 
  proof(induct A\<equiv>"dom f" arbitrary: f)
  | 
| 
 | 
   505  | 
    case empty
  | 
| 
 | 
   506  | 
    from `{} = dom f` have "f = empty" by(auto simp add: dom_def intro: ext)
 | 
| 
 | 
   507  | 
    thus ?case by(simp add: finfun_const_def upd_const_same)
  | 
| 
 | 
   508  | 
  next
  | 
| 
 | 
   509  | 
    case (insert a' A)
  | 
| 
 | 
   510  | 
    note IH = `\<And>f.  \<lbrakk> a \<notin> dom f; f \<subseteq>\<^sub>m g; A = dom f\<rbrakk> \<Longrightarrow> upd a d (?fr (dom f)) = ?fr (dom f)`
  | 
| 
 | 
   511  | 
    note fin = `finite A` note anf = `a \<notin> dom f` note a'nA = `a' \<notin> A`
  | 
| 
 | 
   512  | 
    note domf = `insert a' A = dom f` note fg = `f \<subseteq>\<^sub>m g`
  | 
| 
 | 
   513  | 
    
  | 
| 
 | 
   514  | 
    from domf obtain b where b: "f a' = Some b" by auto
  | 
| 
 | 
   515  | 
    let ?f' = "f(a' := None)"
  | 
| 
 | 
   516  | 
    have "upd a d (?fr (insert a' A)) = upd a d (upd a' (map_default d g a') (?fr A))"
  | 
| 
 | 
   517  | 
      by(subst gwf.fold_insert[OF fin a'nA]) rule
  | 
| 
 | 
   518  | 
    also from b fg have "g a' = f a'" by(auto simp add: map_le_def intro: domI dest: bspec)
  | 
| 
 | 
   519  | 
    hence ga': "map_default d g a' = map_default d f a'" by(simp add: map_default_def)
  | 
| 
 | 
   520  | 
    also from anf domf have "a \<noteq> a'" by auto note upd_commute[OF this]
  | 
| 
 | 
   521  | 
    also from domf a'nA anf fg have "a \<notin> dom ?f'" "?f' \<subseteq>\<^sub>m g" and A: "A = dom ?f'" by(auto simp add: ran_def map_le_def)
  | 
| 
 | 
   522  | 
    note A also note IH[OF `a \<notin> dom ?f'` `?f' \<subseteq>\<^sub>m g` A]
  | 
| 
 | 
   523  | 
    also have "upd a' (map_default d f a') (?fr (dom (f(a' := None)))) = ?fr (dom f)"
  | 
| 
 | 
   524  | 
      unfolding domf[symmetric] gwf.fold_insert[OF fin a'nA] ga' unfolding A ..
  | 
| 
 | 
   525  | 
    also have "insert a' (dom ?f') = dom f" using domf by auto
  | 
| 
 | 
   526  | 
    finally show ?case .
  | 
| 
 | 
   527  | 
  qed
  | 
| 
 | 
   528  | 
qed
  | 
| 
 | 
   529  | 
  | 
| 
 | 
   530  | 
lemma map_default_update_twice:
  | 
| 
 | 
   531  | 
  assumes fin: "finite (dom f)"
  | 
| 
 | 
   532  | 
  and anf: "a \<notin> dom f"
  | 
| 
 | 
   533  | 
  and fg: "f \<subseteq>\<^sub>m g"
  | 
| 
 | 
   534  | 
  shows "upd a d'' (upd a d' (fold (\<lambda>a. upd a (map_default d g a)) (cnst d) (dom f))) =
  | 
| 
 | 
   535  | 
         upd a d'' (fold (\<lambda>a. upd a (map_default d g a)) (cnst d) (dom f))"
  | 
| 
 | 
   536  | 
proof -
  | 
| 
 | 
   537  | 
  let ?upd = "\<lambda>a. upd a (map_default d g a)"
  | 
| 
 | 
   538  | 
  let ?fr = "\<lambda>A. fold ?upd (cnst d) A"
  | 
| 
 | 
   539  | 
  interpret gwf: fun_left_comm "?upd" by(rule upd_left_comm)
  | 
| 
 | 
   540  | 
  
  | 
| 
 | 
   541  | 
  from fin anf fg show ?thesis
  | 
| 
 | 
   542  | 
  proof(induct A\<equiv>"dom f" arbitrary: f)
  | 
| 
 | 
   543  | 
    case empty
  | 
| 
 | 
   544  | 
    from `{} = dom f` have "f = empty" by(auto simp add: dom_def intro: ext)
 | 
| 
 | 
   545  | 
    thus ?case by(auto simp add: finfun_const_def finfun_update_def upd_upd_twice)
  | 
| 
 | 
   546  | 
  next
  | 
| 
 | 
   547  | 
    case (insert a' A)
  | 
| 
 | 
   548  | 
    note IH = `\<And>f. \<lbrakk>a \<notin> dom f; f \<subseteq>\<^sub>m g; A = dom f\<rbrakk> \<Longrightarrow> upd a d'' (upd a d' (?fr (dom f))) = upd a d'' (?fr (dom f))`
  | 
| 
 | 
   549  | 
    note fin = `finite A` note anf = `a \<notin> dom f` note a'nA = `a' \<notin> A`
  | 
| 
 | 
   550  | 
    note domf = `insert a' A = dom f` note fg = `f \<subseteq>\<^sub>m g`
  | 
| 
 | 
   551  | 
    
  | 
| 
 | 
   552  | 
    from domf obtain b where b: "f a' = Some b" by auto
  | 
| 
 | 
   553  | 
    let ?f' = "f(a' := None)"
  | 
| 
 | 
   554  | 
    let ?b' = "case f a' of None \<Rightarrow> d | Some b \<Rightarrow> b"
  | 
| 
 | 
   555  | 
    from domf have "upd a d'' (upd a d' (?fr (dom f))) = upd a d'' (upd a d' (?fr (insert a' A)))" by simp
  | 
| 
 | 
   556  | 
    also note gwf.fold_insert[OF fin a'nA]
  | 
| 
 | 
   557  | 
    also from b fg have "g a' = f a'" by(auto simp add: map_le_def intro: domI dest: bspec)
  | 
| 
 | 
   558  | 
    hence ga': "map_default d g a' = map_default d f a'" by(simp add: map_default_def)
  | 
| 
 | 
   559  | 
    also from anf domf have ana': "a \<noteq> a'" by auto note upd_commute[OF this]
  | 
| 
 | 
   560  | 
    also note upd_commute[OF ana']
  | 
| 
 | 
   561  | 
    also from domf a'nA anf fg have "a \<notin> dom ?f'" "?f' \<subseteq>\<^sub>m g" and A: "A = dom ?f'" by(auto simp add: ran_def map_le_def)
  | 
| 
 | 
   562  | 
    note A also note IH[OF `a \<notin> dom ?f'` `?f' \<subseteq>\<^sub>m g` A]
  | 
| 
 | 
   563  | 
    also note upd_commute[OF ana'[symmetric]] also note ga'[symmetric] also note A[symmetric]
  | 
| 
 | 
   564  | 
    also note gwf.fold_insert[symmetric, OF fin a'nA] also note domf
  | 
| 
 | 
   565  | 
    finally show ?case .
  | 
| 
 | 
   566  | 
  qed
  | 
| 
 | 
   567  | 
qed
  | 
| 
 | 
   568  | 
  | 
| 
 | 
   569  | 
declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
  | 
| 
 | 
   570  | 
  | 
| 
 | 
   571  | 
lemma map_default_eq_id [simp]: "map_default d ((\<lambda>a. Some (f a)) |` {a. f a \<noteq> d}) = f"
 | 
| 
 | 
   572  | 
by(auto simp add: map_default_def restrict_map_def intro: ext)
  | 
| 
 | 
   573  | 
  | 
| 
 | 
   574  | 
lemma finite_rec_cong1:
  | 
| 
 | 
   575  | 
  assumes f: "fun_left_comm f" and g: "fun_left_comm g"
  | 
| 
 | 
   576  | 
  and fin: "finite A"
  | 
| 
 | 
   577  | 
  and eq: "\<And>a. a \<in> A \<Longrightarrow> f a = g a"
  | 
| 
 | 
   578  | 
  shows "fold f z A = fold g z A"
  | 
| 
 | 
   579  | 
proof -
  | 
| 
 | 
   580  | 
  interpret f: fun_left_comm f by(rule f)
  | 
| 
 | 
   581  | 
  interpret g: fun_left_comm g by(rule g)
  | 
| 
 | 
   582  | 
  { fix B
 | 
| 
 | 
   583  | 
    assume BsubA: "B \<subseteq> A"
  | 
| 
 | 
   584  | 
    with fin have "finite B" by(blast intro: finite_subset)
  | 
| 
 | 
   585  | 
    hence "B \<subseteq> A \<Longrightarrow> fold f z B = fold g z B"
  | 
| 
 | 
   586  | 
    proof(induct)
  | 
| 
 | 
   587  | 
      case empty thus ?case by simp
  | 
| 
 | 
   588  | 
    next
  | 
| 
 | 
   589  | 
      case (insert a B)
  | 
| 
 | 
   590  | 
      note finB = `finite B` note anB = `a \<notin> B` note sub = `insert a B \<subseteq> A`
  | 
| 
 | 
   591  | 
      note IH = `B \<subseteq> A \<Longrightarrow> fold f z B = fold g z B`
  | 
| 
 | 
   592  | 
      from sub anB have BpsubA: "B \<subset> A" and BsubA: "B \<subseteq> A" and aA: "a \<in> A" by auto
  | 
| 
 | 
   593  | 
      from IH[OF BsubA] eq[OF aA] finB anB
  | 
| 
 | 
   594  | 
      show ?case by(auto)
  | 
| 
 | 
   595  | 
    qed
  | 
| 
 | 
   596  | 
    with BsubA have "fold f z B = fold g z B" by blast }
  | 
| 
 | 
   597  | 
  thus ?thesis by blast
  | 
| 
 | 
   598  | 
qed
  | 
| 
 | 
   599  | 
  | 
| 
 | 
   600  | 
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
  | 
| 
 | 
   601  | 
  | 
| 
 | 
   602  | 
lemma finfun_rec_upd [simp]:
  | 
| 
 | 
   603  | 
  "finfun_rec cnst upd (f(\<^sup>f a' := b')) = upd a' b' (finfun_rec cnst upd f)"
  | 
| 
 | 
   604  | 
proof -
  | 
| 
 | 
   605  | 
  obtain b where b: "b = finfun_default f" by auto
  | 
| 
 | 
   606  | 
  let ?the = "\<lambda>f g. f = Abs_finfun (map_default b g) \<and> finite (dom g) \<and> b \<notin> ran g"
  | 
| 
 | 
   607  | 
  obtain g where g: "g = The (?the f)" by blast
  | 
| 
 | 
   608  | 
  obtain y where f: "f = Abs_finfun y" and y: "y \<in> finfun" by (cases f)
  | 
| 
 | 
   609  | 
  from f y b have bfin: "finite {a. y a \<noteq> b}" by(simp add: finfun_default_def finite_finfun_default_aux)
 | 
| 
 | 
   610  | 
  | 
| 
 | 
   611  | 
  let ?g = "(\<lambda>a. Some (y a)) |` {a. y a \<noteq> b}"
 | 
| 
 | 
   612  | 
  from bfin have fing: "finite (dom ?g)" by auto
  | 
| 
 | 
   613  | 
  have bran: "b \<notin> ran ?g" by(auto simp add: ran_def restrict_map_def)
  | 
| 
 | 
   614  | 
  have yg: "y = map_default b ?g" by simp
  | 
| 
 | 
   615  | 
  have gg: "g = ?g" unfolding g
  | 
| 
 | 
   616  | 
  proof(rule the_equality)
  | 
| 
 | 
   617  | 
    from f y bfin show "?the f ?g"
  | 
| 
 | 
   618  | 
      by(auto)(simp add: restrict_map_def ran_def split: split_if_asm)
  | 
| 
 | 
   619  | 
  next
  | 
| 
 | 
   620  | 
    fix g'
  | 
| 
 | 
   621  | 
    assume "?the f g'"
  | 
| 
 | 
   622  | 
    hence fin': "finite (dom g')" and ran': "b \<notin> ran g'"
  | 
| 
 | 
   623  | 
      and eq: "Abs_finfun (map_default b ?g) = Abs_finfun (map_default b g')" using f yg by auto
  | 
| 
 | 
   624  | 
    from fin' fing have "map_default b ?g \<in> finfun" "map_default b g' \<in> finfun" by(blast intro: map_default_in_finfun)+
  | 
| 
 | 
   625  | 
    with eq have "map_default b ?g = map_default b g'" by simp
  | 
| 
 | 
   626  | 
    with fing bran fin' ran' show "g' = ?g" by(rule map_default_inject[OF disjI2[OF refl], THEN sym])
  | 
| 
 | 
   627  | 
  qed
  | 
| 
 | 
   628  | 
  | 
| 
 | 
   629  | 
  show ?thesis
  | 
| 
 | 
   630  | 
  proof(cases "b' = b")
  | 
| 
 | 
   631  | 
    case True
  | 
| 
 | 
   632  | 
    note b'b = True
  | 
| 
 | 
   633  | 
  | 
| 
 | 
   634  | 
    let ?g' = "(\<lambda>a. Some ((y(a' := b)) a)) |` {a. (y(a' := b)) a \<noteq> b}"
 | 
| 
 | 
   635  | 
    from bfin b'b have fing': "finite (dom ?g')"
  | 
| 
 | 
   636  | 
      by(auto simp add: Collect_conj_eq Collect_imp_eq intro: finite_subset)
  | 
| 
 | 
   637  | 
    have brang': "b \<notin> ran ?g'" by(auto simp add: ran_def restrict_map_def)
  | 
| 
 | 
   638  | 
  | 
| 
 | 
   639  | 
    let ?b' = "\<lambda>a. case ?g' a of None \<Rightarrow> b | Some b \<Rightarrow> b"
  | 
| 
 | 
   640  | 
    let ?b = "map_default b ?g"
  | 
| 
 | 
   641  | 
    from upd_left_comm upd_left_comm fing'
  | 
| 
 | 
   642  | 
    have "fold (\<lambda>a. upd a (?b' a)) (cnst b) (dom ?g') = fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g')"
  | 
| 
 | 
   643  | 
      by(rule finite_rec_cong1)(auto simp add: restrict_map_def b'b b map_default_def)
  | 
| 
 | 
   644  | 
    also interpret gwf: fun_left_comm "\<lambda>a. upd a (?b a)" by(rule upd_left_comm)
  | 
| 
 | 
   645  | 
    have "fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g') = upd a' b' (fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g))"
  | 
| 
 | 
   646  | 
    proof(cases "y a' = b")
  | 
| 
 | 
   647  | 
      case True
  | 
| 
 | 
   648  | 
      with b'b have g': "?g' = ?g" by(auto simp add: restrict_map_def intro: ext)
  | 
| 
 | 
   649  | 
      from True have a'ndomg: "a' \<notin> dom ?g" by auto
  | 
| 
 | 
   650  | 
      from f b'b b show ?thesis unfolding g'
  | 
| 
 | 
   651  | 
        by(subst map_default_update_const[OF fing a'ndomg map_le_refl, symmetric]) simp
  | 
| 
 | 
   652  | 
    next
  | 
| 
 | 
   653  | 
      case False
  | 
| 
 | 
   654  | 
      hence domg: "dom ?g = insert a' (dom ?g')" by auto
  | 
| 
 | 
   655  | 
      from False b'b have a'ndomg': "a' \<notin> dom ?g'" by auto
  | 
| 
 | 
   656  | 
      have "fold (\<lambda>a. upd a (?b a)) (cnst b) (insert a' (dom ?g')) = 
  | 
| 
 | 
   657  | 
            upd a' (?b a') (fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g'))"
  | 
| 
 | 
   658  | 
        using fing' a'ndomg' unfolding b'b by(rule gwf.fold_insert)
  | 
| 
 | 
   659  | 
      hence "upd a' b (fold (\<lambda>a. upd a (?b a)) (cnst b) (insert a' (dom ?g'))) =
  | 
| 
 | 
   660  | 
             upd a' b (upd a' (?b a') (fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g')))" by simp
  | 
| 
 | 
   661  | 
      also from b'b have g'leg: "?g' \<subseteq>\<^sub>m ?g" by(auto simp add: restrict_map_def map_le_def)
  | 
| 
 | 
   662  | 
      note map_default_update_twice[OF fing' a'ndomg' this, of b "?b a'" b]
  | 
| 
 | 
   663  | 
      also note map_default_update_const[OF fing' a'ndomg' g'leg, of b]
  | 
| 
 | 
   664  | 
      finally show ?thesis unfolding b'b domg[unfolded b'b] by(rule sym)
  | 
| 
 | 
   665  | 
    qed
  | 
| 
 | 
   666  | 
    also have "The (?the (f(\<^sup>f a' := b'))) = ?g'"
  | 
| 
 | 
   667  | 
    proof(rule the_equality)
  | 
| 
 | 
   668  | 
      from f y b b'b brang' fing' show "?the (f(\<^sup>f a' := b')) ?g'"
  | 
| 
 | 
   669  | 
        by(auto simp del: fun_upd_apply simp add: finfun_update_def)
  | 
| 
 | 
   670  | 
    next
  | 
| 
 | 
   671  | 
      fix g'
  | 
| 
 | 
   672  | 
      assume "?the (f(\<^sup>f a' := b')) g'"
  | 
| 
 | 
   673  | 
      hence fin': "finite (dom g')" and ran': "b \<notin> ran g'"
  | 
| 
 | 
   674  | 
        and eq: "f(\<^sup>f a' := b') = Abs_finfun (map_default b g')" 
  | 
| 
 | 
   675  | 
        by(auto simp del: fun_upd_apply)
  | 
| 
 | 
   676  | 
      from fin' fing' have "map_default b g' \<in> finfun" "map_default b ?g' \<in> finfun"
  | 
| 
 | 
   677  | 
        by(blast intro: map_default_in_finfun)+
  | 
| 
 | 
   678  | 
      with eq f b'b b have "map_default b ?g' = map_default b g'"
  | 
| 
 | 
   679  | 
        by(simp del: fun_upd_apply add: finfun_update_def)
  | 
| 
 | 
   680  | 
      with fing' brang' fin' ran' show "g' = ?g'"
  | 
| 
 | 
   681  | 
        by(rule map_default_inject[OF disjI2[OF refl], THEN sym])
  | 
| 
 | 
   682  | 
    qed
  | 
| 
 | 
   683  | 
    ultimately show ?thesis unfolding finfun_rec_def Let_def b gg[unfolded g b] using bfin b'b b
  | 
| 
 | 
   684  | 
      by(simp only: finfun_default_update_const map_default_def)
  | 
| 
 | 
   685  | 
  next
  | 
| 
 | 
   686  | 
    case False
  | 
| 
 | 
   687  | 
    note b'b = this
  | 
| 
 | 
   688  | 
    let ?g' = "?g(a' \<mapsto> b')"
  | 
| 
 | 
   689  | 
    let ?b' = "map_default b ?g'"
  | 
| 
 | 
   690  | 
    let ?b = "map_default b ?g"
  | 
| 
 | 
   691  | 
    from fing have fing': "finite (dom ?g')" by auto
  | 
| 
 | 
   692  | 
    from bran b'b have bnrang': "b \<notin> ran ?g'" by(auto simp add: ran_def)
  | 
| 
 | 
   693  | 
    have ffmg': "map_default b ?g' = y(a' := b')" by(auto intro: ext simp add: map_default_def restrict_map_def)
  | 
| 
 | 
   694  | 
    with f y have f_Abs: "f(\<^sup>f a' := b') = Abs_finfun (map_default b ?g')" by(auto simp add: finfun_update_def)
  | 
| 
 | 
   695  | 
    have g': "The (?the (f(\<^sup>f a' := b'))) = ?g'"
  | 
| 
 | 
   696  | 
    proof
  | 
| 
 | 
   697  | 
      from fing' bnrang' f_Abs show "?the (f(\<^sup>f a' := b')) ?g'" by(auto simp add: finfun_update_def restrict_map_def)
  | 
| 
 | 
   698  | 
    next
  | 
| 
 | 
   699  | 
      fix g' assume "?the (f(\<^sup>f a' := b')) g'"
  | 
| 
 | 
   700  | 
      hence f': "f(\<^sup>f a' := b') = Abs_finfun (map_default b g')"
  | 
| 
 | 
   701  | 
        and fin': "finite (dom g')" and brang': "b \<notin> ran g'" by auto
  | 
| 
 | 
   702  | 
      from fing' fin' have "map_default b ?g' \<in> finfun" "map_default b g' \<in> finfun"
  | 
| 
 | 
   703  | 
        by(auto intro: map_default_in_finfun)
  | 
| 
 | 
   704  | 
      with f' f_Abs have "map_default b g' = map_default b ?g'" by simp
  | 
| 
 | 
   705  | 
      with fin' brang' fing' bnrang' show "g' = ?g'"
  | 
| 
 | 
   706  | 
        by(rule map_default_inject[OF disjI2[OF refl]])
  | 
| 
 | 
   707  | 
    qed
  | 
| 
 | 
   708  | 
    have dom: "dom (((\<lambda>a. Some (y a)) |` {a. y a \<noteq> b})(a' \<mapsto> b')) = insert a' (dom ((\<lambda>a. Some (y a)) |` {a. y a \<noteq> b}))"
 | 
| 
 | 
   709  | 
      by auto
  | 
| 
 | 
   710  | 
    show ?thesis
  | 
| 
 | 
   711  | 
    proof(cases "y a' = b")
  | 
| 
 | 
   712  | 
      case True
  | 
| 
 | 
   713  | 
      hence a'ndomg: "a' \<notin> dom ?g" by auto
  | 
| 
 | 
   714  | 
      from f y b'b True have yff: "y = map_default b (?g' |` dom ?g)"
  | 
| 
 | 
   715  | 
        by(auto simp add: restrict_map_def map_default_def intro!: ext)
  | 
| 
 | 
   716  | 
      hence f': "f = Abs_finfun (map_default b (?g' |` dom ?g))" using f by simp
  | 
| 
 | 
   717  | 
      interpret g'wf: fun_left_comm "\<lambda>a. upd a (?b' a)" by(rule upd_left_comm)
  | 
| 
 | 
   718  | 
      from upd_left_comm upd_left_comm fing
  | 
| 
 | 
   719  | 
      have "fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g) = fold (\<lambda>a. upd a (?b' a)) (cnst b) (dom ?g)"
  | 
| 
 | 
   720  | 
        by(rule finite_rec_cong1)(auto simp add: restrict_map_def b'b True map_default_def)
  | 
| 
 | 
   721  | 
      thus ?thesis unfolding finfun_rec_def Let_def finfun_default_update_const b[symmetric]
  | 
| 
 | 
   722  | 
        unfolding g' g[symmetric] gg g'wf.fold_insert[OF fing a'ndomg, of "cnst b", folded dom]
  | 
| 
 | 
   723  | 
        by -(rule arg_cong2[where f="upd a'"], simp_all add: map_default_def)
  | 
| 
 | 
   724  | 
    next
  | 
| 
 | 
   725  | 
      case False
  | 
| 
 | 
   726  | 
      hence "insert a' (dom ?g) = dom ?g" by auto
  | 
| 
 | 
   727  | 
      moreover {
 | 
| 
 | 
   728  | 
        let ?g'' = "?g(a' := None)"
  | 
| 
 | 
   729  | 
        let ?b'' = "map_default b ?g''"
  | 
| 
 | 
   730  | 
        from False have domg: "dom ?g = insert a' (dom ?g'')" by auto
  | 
| 
 | 
   731  | 
        from False have a'ndomg'': "a' \<notin> dom ?g''" by auto
  | 
| 
 | 
   732  | 
        have fing'': "finite (dom ?g'')" by(rule finite_subset[OF _ fing]) auto
  | 
| 
 | 
   733  | 
        have bnrang'': "b \<notin> ran ?g''" by(auto simp add: ran_def restrict_map_def)
  | 
| 
 | 
   734  | 
        interpret gwf: fun_left_comm "\<lambda>a. upd a (?b a)" by(rule upd_left_comm)
  | 
| 
 | 
   735  | 
        interpret g'wf: fun_left_comm "\<lambda>a. upd a (?b' a)" by(rule upd_left_comm)
  | 
| 
 | 
   736  | 
        have "upd a' b' (fold (\<lambda>a. upd a (?b a)) (cnst b) (insert a' (dom ?g''))) =
  | 
| 
 | 
   737  | 
              upd a' b' (upd a' (?b a') (fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g'')))"
  | 
| 
 | 
   738  | 
          unfolding gwf.fold_insert[OF fing'' a'ndomg''] f ..
  | 
| 
 | 
   739  | 
        also have g''leg: "?g |` dom ?g'' \<subseteq>\<^sub>m ?g" by(auto simp add: map_le_def)
  | 
| 
 | 
   740  | 
        have "dom (?g |` dom ?g'') = dom ?g''" by auto
  | 
| 
 | 
   741  | 
        note map_default_update_twice[where d=b and f = "?g |` dom ?g''" and a=a' and d'="?b a'" and d''=b' and g="?g",
  | 
| 
 | 
   742  | 
                                     unfolded this, OF fing'' a'ndomg'' g''leg]
  | 
| 
 | 
   743  | 
        also have b': "b' = ?b' a'" by(auto simp add: map_default_def)
  | 
| 
 | 
   744  | 
        from upd_left_comm upd_left_comm fing''
  | 
| 
 | 
   745  | 
        have "fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g'') = fold (\<lambda>a. upd a (?b' a)) (cnst b) (dom ?g'')"
  | 
| 
 | 
   746  | 
          by(rule finite_rec_cong1)(auto simp add: restrict_map_def b'b map_default_def)
  | 
| 
 | 
   747  | 
        with b' have "upd a' b' (fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g'')) =
  | 
| 
 | 
   748  | 
                     upd a' (?b' a') (fold (\<lambda>a. upd a (?b' a)) (cnst b) (dom ?g''))" by simp
  | 
| 
 | 
   749  | 
        also note g'wf.fold_insert[OF fing'' a'ndomg'', symmetric]
  | 
| 
 | 
   750  | 
        finally have "upd a' b' (fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g)) =
  | 
| 
 | 
   751  | 
                   fold (\<lambda>a. upd a (?b' a)) (cnst b) (dom ?g)"
  | 
| 
 | 
   752  | 
          unfolding domg . }
  | 
| 
 | 
   753  | 
      ultimately have "fold (\<lambda>a. upd a (?b' a)) (cnst b) (insert a' (dom ?g)) =
  | 
| 
 | 
   754  | 
                    upd a' b' (fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g))" by simp
  | 
| 
 | 
   755  | 
      thus ?thesis unfolding finfun_rec_def Let_def finfun_default_update_const b[symmetric] g[symmetric] g' dom[symmetric]
  | 
| 
 | 
   756  | 
        using b'b gg by(simp add: map_default_insert)
  | 
| 
 | 
   757  | 
    qed
  | 
| 
 | 
   758  | 
  qed
  | 
| 
 | 
   759  | 
qed
  | 
| 
 | 
   760  | 
  | 
| 
 | 
   761  | 
declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
  | 
| 
 | 
   762  | 
  | 
| 
 | 
   763  | 
end
  | 
| 
 | 
   764  | 
  | 
| 
 | 
   765  | 
locale finfun_rec_wf = finfun_rec_wf_aux + 
  | 
| 
 | 
   766  | 
  assumes const_update_all:
  | 
| 
 | 
   767  | 
  "finite (UNIV :: 'a set) \<Longrightarrow> fold (\<lambda>a. upd a b') (cnst b) (UNIV :: 'a set) = cnst b'"
  | 
| 
 | 
   768  | 
begin
  | 
| 
 | 
   769  | 
  | 
| 
 | 
   770  | 
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
  | 
| 
 | 
   771  | 
  | 
| 
 | 
   772  | 
lemma finfun_rec_const [simp]:
  | 
| 
 | 
   773  | 
  "finfun_rec cnst upd (\<lambda>\<^isup>f c) = cnst c"
  | 
| 
 | 
   774  | 
proof(cases "finite (UNIV :: 'a set)")
  | 
| 
 | 
   775  | 
  case False
  | 
| 
 | 
   776  | 
  hence "finfun_default ((\<lambda>\<^isup>f c) :: 'a \<Rightarrow>\<^isub>f 'b) = c" by(simp add: finfun_default_const)
  | 
| 
 | 
   777  | 
  moreover have "(THE g :: 'a \<rightharpoonup> 'b. (\<lambda>\<^isup>f c) = Abs_finfun (map_default c g) \<and> finite (dom g) \<and> c \<notin> ran g) = empty"
  | 
| 
 | 
   778  | 
  proof
  | 
| 
 | 
   779  | 
    show "(\<lambda>\<^isup>f c) = Abs_finfun (map_default c empty) \<and> finite (dom empty) \<and> c \<notin> ran empty"
  | 
| 
 | 
   780  | 
      by(auto simp add: finfun_const_def)
  | 
| 
 | 
   781  | 
  next
  | 
| 
 | 
   782  | 
    fix g :: "'a \<rightharpoonup> 'b"
  | 
| 
 | 
   783  | 
    assume "(\<lambda>\<^isup>f c) = Abs_finfun (map_default c g) \<and> finite (dom g) \<and> c \<notin> ran g"
  | 
| 
 | 
   784  | 
    hence g: "(\<lambda>\<^isup>f c) = Abs_finfun (map_default c g)" and fin: "finite (dom g)" and ran: "c \<notin> ran g" by blast+
  | 
| 
 | 
   785  | 
    from g map_default_in_finfun[OF fin, of c] have "map_default c g = (\<lambda>a. c)"
  | 
| 
 | 
   786  | 
      by(simp add: finfun_const_def)
  | 
| 
 | 
   787  | 
    moreover have "map_default c empty = (\<lambda>a. c)" by simp
  | 
| 
 | 
   788  | 
    ultimately show "g = empty" by-(rule map_default_inject[OF disjI2[OF refl] fin ran], auto)
  | 
| 
 | 
   789  | 
  qed
  | 
| 
 | 
   790  | 
  ultimately show ?thesis by(simp add: finfun_rec_def)
  | 
| 
 | 
   791  | 
next
  | 
| 
 | 
   792  | 
  case True
  | 
| 
31804
 | 
   793  | 
  hence default: "finfun_default ((\<lambda>\<^isup>f c) :: 'a \<Rightarrow>\<^isub>f 'b) = undefined" by(simp add: finfun_default_const)
  | 
| 
 | 
   794  | 
  let ?the = "\<lambda>g :: 'a \<rightharpoonup> 'b. (\<lambda>\<^isup>f c) = Abs_finfun (map_default undefined g) \<and> finite (dom g) \<and> undefined \<notin> ran g"
  | 
| 
31379
 | 
   795  | 
  show ?thesis
  | 
| 
31804
 | 
   796  | 
  proof(cases "c = undefined")
  | 
| 
31379
 | 
   797  | 
    case True
  | 
| 
 | 
   798  | 
    have the: "The ?the = empty"
  | 
| 
 | 
   799  | 
    proof
  | 
| 
 | 
   800  | 
      from True show "?the empty" by(auto simp add: finfun_const_def)
  | 
| 
 | 
   801  | 
    next
  | 
| 
 | 
   802  | 
      fix g'
  | 
| 
 | 
   803  | 
      assume "?the g'"
  | 
| 
31804
 | 
   804  | 
      hence fg: "(\<lambda>\<^isup>f c) = Abs_finfun (map_default undefined g')"
  | 
| 
 | 
   805  | 
        and fin: "finite (dom g')" and g: "undefined \<notin> ran g'" by simp_all
  | 
| 
 | 
   806  | 
      from fin have "map_default undefined g' \<in> finfun" by(rule map_default_in_finfun)
  | 
| 
 | 
   807  | 
      with fg have "map_default undefined g' = (\<lambda>a. c)"
  | 
| 
31379
 | 
   808  | 
        by(auto simp add: finfun_const_def intro: Abs_finfun_inject[THEN iffD1])
  | 
| 
 | 
   809  | 
      with True show "g' = empty"
  | 
| 
 | 
   810  | 
        by -(rule map_default_inject(2)[OF _ fin g], auto)
  | 
| 
 | 
   811  | 
    qed
  | 
| 
 | 
   812  | 
    show ?thesis unfolding finfun_rec_def using `finite UNIV` True
  | 
| 
 | 
   813  | 
      unfolding Let_def the default by(simp)
  | 
| 
 | 
   814  | 
  next
  | 
| 
 | 
   815  | 
    case False
  | 
| 
 | 
   816  | 
    have the: "The ?the = (\<lambda>a :: 'a. Some c)"
  | 
| 
 | 
   817  | 
    proof
  | 
| 
 | 
   818  | 
      from False True show "?the (\<lambda>a :: 'a. Some c)"
  | 
| 
 | 
   819  | 
        by(auto simp add: map_default_def_raw finfun_const_def dom_def ran_def)
  | 
| 
 | 
   820  | 
    next
  | 
| 
 | 
   821  | 
      fix g' :: "'a \<rightharpoonup> 'b"
  | 
| 
 | 
   822  | 
      assume "?the g'"
  | 
| 
31804
 | 
   823  | 
      hence fg: "(\<lambda>\<^isup>f c) = Abs_finfun (map_default undefined g')"
  | 
| 
 | 
   824  | 
        and fin: "finite (dom g')" and g: "undefined \<notin> ran g'" by simp_all
  | 
| 
 | 
   825  | 
      from fin have "map_default undefined g' \<in> finfun" by(rule map_default_in_finfun)
  | 
| 
 | 
   826  | 
      with fg have "map_default undefined g' = (\<lambda>a. c)"
  | 
| 
31379
 | 
   827  | 
        by(auto simp add: finfun_const_def intro: Abs_finfun_inject[THEN iffD1])
  | 
| 
 | 
   828  | 
      with True False show "g' = (\<lambda>a::'a. Some c)"
  | 
| 
 | 
   829  | 
        by -(rule map_default_inject(2)[OF _ fin g], auto simp add: dom_def ran_def map_default_def_raw)
  | 
| 
 | 
   830  | 
    qed
  | 
| 
 | 
   831  | 
    show ?thesis unfolding finfun_rec_def using True False
  | 
| 
 | 
   832  | 
      unfolding Let_def the default by(simp add: dom_def map_default_def const_update_all)
  | 
| 
 | 
   833  | 
  qed
  | 
| 
 | 
   834  | 
qed
  | 
| 
 | 
   835  | 
  | 
| 
 | 
   836  | 
declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
  | 
| 
 | 
   837  | 
  | 
| 
 | 
   838  | 
end
  | 
| 
 | 
   839  | 
  | 
| 
 | 
   840  | 
subsection {* Weak induction rule and case analysis for FinFuns *}
 | 
| 
 | 
   841  | 
  | 
| 
 | 
   842  | 
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
  | 
| 
 | 
   843  | 
  | 
| 
 | 
   844  | 
lemma finfun_weak_induct [consumes 0, case_names const update]:
  | 
| 
 | 
   845  | 
  assumes const: "\<And>b. P (\<lambda>\<^isup>f b)"
  | 
| 
 | 
   846  | 
  and update: "\<And>f a b. P f \<Longrightarrow> P (f(\<^sup>f a := b))"
  | 
| 
 | 
   847  | 
  shows "P x"
  | 
| 
 | 
   848  | 
proof(induct x rule: Abs_finfun_induct)
  | 
| 
 | 
   849  | 
  case (Abs_finfun y)
  | 
| 
 | 
   850  | 
  then obtain b where "finite {a. y a \<noteq> b}" unfolding finfun_def by blast
 | 
| 
 | 
   851  | 
  thus ?case using `y \<in> finfun`
  | 
| 
 | 
   852  | 
  proof(induct x\<equiv>"{a. y a \<noteq> b}" arbitrary: y rule: finite_induct)
 | 
| 
 | 
   853  | 
    case empty
  | 
| 
 | 
   854  | 
    hence "\<And>a. y a = b" by blast
  | 
| 
 | 
   855  | 
    hence "y = (\<lambda>a. b)" by(auto intro: ext)
  | 
| 
 | 
   856  | 
    hence "Abs_finfun y = finfun_const b" unfolding finfun_const_def by simp
  | 
| 
 | 
   857  | 
    thus ?case by(simp add: const)
  | 
| 
 | 
   858  | 
  next
  | 
| 
 | 
   859  | 
    case (insert a A)
  | 
| 
 | 
   860  | 
    note IH = `\<And>y. \<lbrakk> y \<in> finfun; A = {a. y a \<noteq> b} \<rbrakk> \<Longrightarrow> P (Abs_finfun y)`
 | 
| 
 | 
   861  | 
    note y = `y \<in> finfun`
  | 
| 
 | 
   862  | 
    with `insert a A = {a. y a \<noteq> b}` `a \<notin> A`
 | 
| 
 | 
   863  | 
    have "y(a := b) \<in> finfun" "A = {a'. (y(a := b)) a' \<noteq> b}" by auto
 | 
| 
 | 
   864  | 
    from IH[OF this] have "P (finfun_update (Abs_finfun (y(a := b))) a (y a))" by(rule update)
  | 
| 
 | 
   865  | 
    thus ?case using y unfolding finfun_update_def by simp
  | 
| 
 | 
   866  | 
  qed
  | 
| 
 | 
   867  | 
qed
  | 
| 
 | 
   868  | 
  | 
| 
 | 
   869  | 
declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
  | 
| 
 | 
   870  | 
  | 
| 
 | 
   871  | 
lemma finfun_exhaust_disj: "(\<exists>b. x = finfun_const b) \<or> (\<exists>f a b. x = finfun_update f a b)"
  | 
| 
 | 
   872  | 
by(induct x rule: finfun_weak_induct) blast+
  | 
| 
 | 
   873  | 
  | 
| 
 | 
   874  | 
lemma finfun_exhaust:
  | 
| 
 | 
   875  | 
  obtains b where "x = (\<lambda>\<^isup>f b)"
  | 
| 
 | 
   876  | 
        | f a b where "x = f(\<^sup>f a := b)"
  | 
| 
 | 
   877  | 
by(atomize_elim)(rule finfun_exhaust_disj)
  | 
| 
 | 
   878  | 
  | 
| 
 | 
   879  | 
lemma finfun_rec_unique:
  | 
| 
 | 
   880  | 
  fixes f :: "'a \<Rightarrow>\<^isub>f 'b \<Rightarrow> 'c"
  | 
| 
 | 
   881  | 
  assumes c: "\<And>c. f (\<lambda>\<^isup>f c) = cnst c"
  | 
| 
 | 
   882  | 
  and u: "\<And>g a b. f (g(\<^sup>f a := b)) = upd g a b (f g)"
  | 
| 
 | 
   883  | 
  and c': "\<And>c. f' (\<lambda>\<^isup>f c) = cnst c"
  | 
| 
 | 
   884  | 
  and u': "\<And>g a b. f' (g(\<^sup>f a := b)) = upd g a b (f' g)"
  | 
| 
 | 
   885  | 
  shows "f = f'"
  | 
| 
 | 
   886  | 
proof
  | 
| 
 | 
   887  | 
  fix g :: "'a \<Rightarrow>\<^isub>f 'b"
  | 
| 
 | 
   888  | 
  show "f g = f' g"
  | 
| 
 | 
   889  | 
    by(induct g rule: finfun_weak_induct)(auto simp add: c u c' u')
  | 
| 
 | 
   890  | 
qed
  | 
| 
 | 
   891  | 
  | 
| 
 | 
   892  | 
  | 
| 
 | 
   893  | 
subsection {* Function application *}
 | 
| 
 | 
   894  | 
  | 
| 
 | 
   895  | 
definition finfun_apply :: "'a \<Rightarrow>\<^isub>f 'b \<Rightarrow> 'a \<Rightarrow> 'b" ("_\<^sub>f" [1000] 1000)
 | 
| 
 | 
   896  | 
where [code del]: "finfun_apply = (\<lambda>f a. finfun_rec (\<lambda>b. b) (\<lambda>a' b c. if (a = a') then b else c) f)"
  | 
| 
 | 
   897  | 
  | 
| 
 | 
   898  | 
interpretation finfun_apply_aux: finfun_rec_wf_aux "\<lambda>b. b" "\<lambda>a' b c. if (a = a') then b else c"
  | 
| 
 | 
   899  | 
by(unfold_locales) auto
  | 
| 
 | 
   900  | 
  | 
| 
 | 
   901  | 
interpretation finfun_apply: finfun_rec_wf "\<lambda>b. b" "\<lambda>a' b c. if (a = a') then b else c"
  | 
| 
 | 
   902  | 
proof(unfold_locales)
  | 
| 
 | 
   903  | 
  fix b' b :: 'a
  | 
| 
 | 
   904  | 
  assume fin: "finite (UNIV :: 'b set)"
  | 
| 
 | 
   905  | 
  { fix A :: "'b set"
 | 
| 
 | 
   906  | 
    interpret fun_left_comm "\<lambda>a'. If (a = a') b'" by(rule finfun_apply_aux.upd_left_comm)
  | 
| 
 | 
   907  | 
    from fin have "finite A" by(auto intro: finite_subset)
  | 
| 
 | 
   908  | 
    hence "fold (\<lambda>a'. If (a = a') b') b A = (if a \<in> A then b' else b)"
  | 
| 
 | 
   909  | 
      by induct auto }
  | 
| 
 | 
   910  | 
  from this[of UNIV] show "fold (\<lambda>a'. If (a = a') b') b UNIV = b'" by simp
  | 
| 
 | 
   911  | 
qed
  | 
| 
 | 
   912  | 
  | 
| 
 | 
   913  | 
lemma finfun_const_apply [simp, code]: "(\<lambda>\<^isup>f b)\<^sub>f a = b"
  | 
| 
 | 
   914  | 
by(simp add: finfun_apply_def)
  | 
| 
 | 
   915  | 
  | 
| 
 | 
   916  | 
lemma finfun_upd_apply: "f(\<^sup>fa := b)\<^sub>f a' = (if a = a' then b else f\<^sub>f a')"
  | 
| 
 | 
   917  | 
  and finfun_upd_apply_code [code]: "(finfun_update_code f a b)\<^sub>f a' = (if a = a' then b else f\<^sub>f a')"
  | 
| 
 | 
   918  | 
by(simp_all add: finfun_apply_def)
  | 
| 
 | 
   919  | 
  | 
| 
 | 
   920  | 
lemma finfun_upd_apply_same [simp]:
  | 
| 
 | 
   921  | 
  "f(\<^sup>fa := b)\<^sub>f a = b"
  | 
| 
 | 
   922  | 
by(simp add: finfun_upd_apply)
  | 
| 
 | 
   923  | 
  | 
| 
 | 
   924  | 
lemma finfun_upd_apply_other [simp]:
  | 
| 
 | 
   925  | 
  "a \<noteq> a' \<Longrightarrow> f(\<^sup>fa := b)\<^sub>f a' = f\<^sub>f a'"
  | 
| 
 | 
   926  | 
by(simp add: finfun_upd_apply)
  | 
| 
 | 
   927  | 
  | 
| 
 | 
   928  | 
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
  | 
| 
 | 
   929  | 
  | 
| 
 | 
   930  | 
lemma finfun_apply_Rep_finfun:
  | 
| 
 | 
   931  | 
  "finfun_apply = Rep_finfun"
  | 
| 
 | 
   932  | 
proof(rule finfun_rec_unique)
  | 
| 
 | 
   933  | 
  fix c show "Rep_finfun (\<lambda>\<^isup>f c) = (\<lambda>a. c)" by(auto simp add: finfun_const_def)
  | 
| 
 | 
   934  | 
next
  | 
| 
 | 
   935  | 
  fix g a b show "Rep_finfun g(\<^sup>f a := b) = (\<lambda>c. if c = a then b else Rep_finfun g c)"
  | 
| 
 | 
   936  | 
    by(auto simp add: finfun_update_def fun_upd_finfun Abs_finfun_inverse Rep_finfun intro: ext)
  | 
| 
 | 
   937  | 
qed(auto intro: ext)
  | 
| 
 | 
   938  | 
  | 
| 
 | 
   939  | 
lemma finfun_ext: "(\<And>a. f\<^sub>f a = g\<^sub>f a) \<Longrightarrow> f = g"
  | 
| 
 | 
   940  | 
by(auto simp add: finfun_apply_Rep_finfun Rep_finfun_inject[symmetric] simp del: Rep_finfun_inject intro: ext)
  | 
| 
 | 
   941  | 
  | 
| 
 | 
   942  | 
declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
  | 
| 
 | 
   943  | 
  | 
| 
 | 
   944  | 
lemma expand_finfun_eq: "(f = g) = (f\<^sub>f = g\<^sub>f)"
  | 
| 
 | 
   945  | 
by(auto intro: finfun_ext)
  | 
| 
 | 
   946  | 
  | 
| 
 | 
   947  | 
lemma finfun_const_inject [simp]: "(\<lambda>\<^isup>f b) = (\<lambda>\<^isup>f b') \<equiv> b = b'"
  | 
| 
 | 
   948  | 
by(simp add: expand_finfun_eq expand_fun_eq)
  | 
| 
 | 
   949  | 
  | 
| 
 | 
   950  | 
lemma finfun_const_eq_update:
  | 
| 
 | 
   951  | 
  "((\<lambda>\<^isup>f b) = f(\<^sup>f a := b')) = (b = b' \<and> (\<forall>a'. a \<noteq> a' \<longrightarrow> f\<^sub>f a' = b))"
  | 
| 
 | 
   952  | 
by(auto simp add: expand_finfun_eq expand_fun_eq finfun_upd_apply)
  | 
| 
 | 
   953  | 
  | 
| 
 | 
   954  | 
subsection {* Function composition *}
 | 
| 
 | 
   955  | 
  | 
| 
 | 
   956  | 
definition finfun_comp :: "('a \<Rightarrow> 'b) \<Rightarrow> 'c \<Rightarrow>\<^isub>f 'a \<Rightarrow> 'c \<Rightarrow>\<^isub>f 'b" (infixr "\<circ>\<^isub>f" 55)
 | 
| 
 | 
   957  | 
where [code del]: "g \<circ>\<^isub>f f  = finfun_rec (\<lambda>b. (\<lambda>\<^isup>f g b)) (\<lambda>a b c. c(\<^sup>f a := g b)) f"
  | 
| 
 | 
   958  | 
  | 
| 
 | 
   959  | 
interpretation finfun_comp_aux: finfun_rec_wf_aux "(\<lambda>b. (\<lambda>\<^isup>f g b))" "(\<lambda>a b c. c(\<^sup>f a := g b))"
  | 
| 
 | 
   960  | 
by(unfold_locales)(auto simp add: finfun_upd_apply intro: finfun_ext)
  | 
| 
 | 
   961  | 
  | 
| 
 | 
   962  | 
interpretation finfun_comp: finfun_rec_wf "(\<lambda>b. (\<lambda>\<^isup>f g b))" "(\<lambda>a b c. c(\<^sup>f a := g b))"
  | 
| 
 | 
   963  | 
proof
  | 
| 
 | 
   964  | 
  fix b' b :: 'a
  | 
| 
 | 
   965  | 
  assume fin: "finite (UNIV :: 'c set)"
  | 
| 
 | 
   966  | 
  { fix A :: "'c set"
 | 
| 
 | 
   967  | 
    from fin have "finite A" by(auto intro: finite_subset)
  | 
| 
 | 
   968  | 
    hence "fold (\<lambda>(a :: 'c) c. c(\<^sup>f a := g b')) (\<lambda>\<^isup>f g b) A =
  | 
| 
 | 
   969  | 
      Abs_finfun (\<lambda>a. if a \<in> A then g b' else g b)"
  | 
| 
 | 
   970  | 
      by induct (simp_all add: finfun_const_def, auto simp add: finfun_update_def Abs_finfun_inverse_finite fun_upd_def Abs_finfun_inject_finite expand_fun_eq fin) }
  | 
| 
 | 
   971  | 
  from this[of UNIV] show "fold (\<lambda>(a :: 'c) c. c(\<^sup>f a := g b')) (\<lambda>\<^isup>f g b) UNIV = (\<lambda>\<^isup>f g b')"
  | 
| 
 | 
   972  | 
    by(simp add: finfun_const_def)
  | 
| 
 | 
   973  | 
qed
  | 
| 
 | 
   974  | 
  | 
| 
 | 
   975  | 
lemma finfun_comp_const [simp, code]:
  | 
| 
 | 
   976  | 
  "g \<circ>\<^isub>f (\<lambda>\<^isup>f c) = (\<lambda>\<^isup>f g c)"
  | 
| 
 | 
   977  | 
by(simp add: finfun_comp_def)
  | 
| 
 | 
   978  | 
  | 
| 
 | 
   979  | 
lemma finfun_comp_update [simp]: "g \<circ>\<^isub>f (f(\<^sup>f a := b)) = (g \<circ>\<^isub>f f)(\<^sup>f a := g b)"
  | 
| 
 | 
   980  | 
  and finfun_comp_update_code [code]: "g \<circ>\<^isub>f (finfun_update_code f a b) = finfun_update_code (g \<circ>\<^isub>f f) a (g b)"
  | 
| 
 | 
   981  | 
by(simp_all add: finfun_comp_def)
  | 
| 
 | 
   982  | 
  | 
| 
 | 
   983  | 
lemma finfun_comp_apply [simp]:
  | 
| 
 | 
   984  | 
  "(g \<circ>\<^isub>f f)\<^sub>f = g \<circ> f\<^sub>f"
  | 
| 
 | 
   985  | 
by(induct f rule: finfun_weak_induct)(auto simp add: finfun_upd_apply intro: ext)
  | 
| 
 | 
   986  | 
  | 
| 
 | 
   987  | 
lemma finfun_comp_comp_collapse [simp]: "f \<circ>\<^isub>f g \<circ>\<^isub>f h = (f o g) \<circ>\<^isub>f h"
  | 
| 
 | 
   988  | 
by(induct h rule: finfun_weak_induct) simp_all
  | 
| 
 | 
   989  | 
  | 
| 
 | 
   990  | 
lemma finfun_comp_const1 [simp]: "(\<lambda>x. c) \<circ>\<^isub>f f = (\<lambda>\<^isup>f c)"
  | 
| 
 | 
   991  | 
by(induct f rule: finfun_weak_induct)(auto intro: finfun_ext simp add: finfun_upd_apply)
  | 
| 
 | 
   992  | 
  | 
| 
 | 
   993  | 
lemma finfun_comp_id1 [simp]: "(\<lambda>x. x) \<circ>\<^isub>f f = f" "id \<circ>\<^isub>f f = f"
  | 
| 
 | 
   994  | 
by(induct f rule: finfun_weak_induct) auto
  | 
| 
 | 
   995  | 
  | 
| 
 | 
   996  | 
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
  | 
| 
 | 
   997  | 
  | 
| 
 | 
   998  | 
lemma finfun_comp_conv_comp: "g \<circ>\<^isub>f f = Abs_finfun (g \<circ> finfun_apply f)"
  | 
| 
 | 
   999  | 
proof -
  | 
| 
 | 
  1000  | 
  have "(\<lambda>f. g \<circ>\<^isub>f f) = (\<lambda>f. Abs_finfun (g \<circ> finfun_apply f))"
  | 
| 
 | 
  1001  | 
  proof(rule finfun_rec_unique)
  | 
| 
 | 
  1002  | 
    { fix c show "Abs_finfun (g \<circ> (\<lambda>\<^isup>f c)\<^sub>f) = (\<lambda>\<^isup>f g c)"
 | 
| 
 | 
  1003  | 
        by(simp add: finfun_comp_def o_def)(simp add: finfun_const_def) }
  | 
| 
 | 
  1004  | 
    { fix g' a b show "Abs_finfun (g \<circ> g'(\<^sup>f a := b)\<^sub>f) = (Abs_finfun (g \<circ> g'\<^sub>f))(\<^sup>f a := g b)"
 | 
| 
 | 
  1005  | 
      proof -
  | 
| 
 | 
  1006  | 
        obtain y where y: "y \<in> finfun" and g': "g' = Abs_finfun y" by(cases g')
  | 
| 
 | 
  1007  | 
        moreover hence "(g \<circ> g'\<^sub>f) \<in> finfun" by(simp add: finfun_apply_Rep_finfun finfun_left_compose)
  | 
| 
 | 
  1008  | 
        moreover have "g \<circ> y(a := b) = (g \<circ> y)(a := g b)" by(auto intro: ext)
  | 
| 
 | 
  1009  | 
        ultimately show ?thesis by(simp add: finfun_comp_def finfun_update_def finfun_apply_Rep_finfun)
  | 
| 
 | 
  1010  | 
      qed }
  | 
| 
 | 
  1011  | 
  qed auto
  | 
| 
 | 
  1012  | 
  thus ?thesis by(auto simp add: expand_fun_eq)
  | 
| 
 | 
  1013  | 
qed
  | 
| 
 | 
  1014  | 
  | 
| 
 | 
  1015  | 
declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
  | 
| 
 | 
  1016  | 
  | 
| 
 | 
  1017  | 
  | 
| 
 | 
  1018  | 
  | 
| 
 | 
  1019  | 
definition finfun_comp2 :: "'b \<Rightarrow>\<^isub>f 'c \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'c" (infixr "\<^sub>f\<circ>" 55)
 | 
| 
 | 
  1020  | 
where [code del]: "finfun_comp2 g f = Abs_finfun (Rep_finfun g \<circ> f)"
  | 
| 
 | 
  1021  | 
  | 
| 
 | 
  1022  | 
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
  | 
| 
 | 
  1023  | 
  | 
| 
 | 
  1024  | 
lemma finfun_comp2_const [code, simp]: "finfun_comp2 (\<lambda>\<^isup>f c) f = (\<lambda>\<^isup>f c)"
  | 
| 
 | 
  1025  | 
by(simp add: finfun_comp2_def finfun_const_def comp_def)
  | 
| 
 | 
  1026  | 
  | 
| 
 | 
  1027  | 
lemma finfun_comp2_update:
  | 
| 
 | 
  1028  | 
  assumes inj: "inj f"
  | 
| 
 | 
  1029  | 
  shows "finfun_comp2 (g(\<^sup>f b := c)) f = (if b \<in> range f then (finfun_comp2 g f)(\<^sup>f inv f b := c) else finfun_comp2 g f)"
  | 
| 
 | 
  1030  | 
proof(cases "b \<in> range f")
  | 
| 
 | 
  1031  | 
  case True
  | 
| 
 | 
  1032  | 
  from inj have "\<And>x. (Rep_finfun g)(f x := c) \<circ> f = (Rep_finfun g \<circ> f)(x := c)" by(auto intro!: ext dest: injD)
  | 
| 
 | 
  1033  | 
  with inj True show ?thesis by(auto simp add: finfun_comp2_def finfun_update_def finfun_right_compose)
  | 
| 
 | 
  1034  | 
next
  | 
| 
 | 
  1035  | 
  case False
  | 
| 
 | 
  1036  | 
  hence "(Rep_finfun g)(b := c) \<circ> f = Rep_finfun g \<circ> f" by(auto simp add: expand_fun_eq)
  | 
| 
 | 
  1037  | 
  with False show ?thesis by(auto simp add: finfun_comp2_def finfun_update_def)
  | 
| 
 | 
  1038  | 
qed
  | 
| 
 | 
  1039  | 
  | 
| 
 | 
  1040  | 
declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
  | 
| 
 | 
  1041  | 
  | 
| 
 | 
  1042  | 
subsection {* A type class for computing the cardinality of a type's universe *}
 | 
| 
 | 
  1043  | 
  | 
| 
 | 
  1044  | 
class card_UNIV = 
  | 
| 
 | 
  1045  | 
  fixes card_UNIV :: "'a itself \<Rightarrow> nat"
  | 
| 
 | 
  1046  | 
  assumes card_UNIV: "card_UNIV x = card (UNIV :: 'a set)"
  | 
| 
 | 
  1047  | 
begin
  | 
| 
 | 
  1048  | 
  | 
| 
 | 
  1049  | 
lemma card_UNIV_neq_0_finite_UNIV:
  | 
| 
 | 
  1050  | 
  "card_UNIV x \<noteq> 0 \<longleftrightarrow> finite (UNIV :: 'a set)"
  | 
| 
 | 
  1051  | 
by(simp add: card_UNIV card_eq_0_iff)
  | 
| 
 | 
  1052  | 
  | 
| 
 | 
  1053  | 
lemma card_UNIV_ge_0_finite_UNIV:
  | 
| 
 | 
  1054  | 
  "card_UNIV x > 0 \<longleftrightarrow> finite (UNIV :: 'a set)"
  | 
| 
 | 
  1055  | 
by(auto simp add: card_UNIV intro: card_ge_0_finite finite_UNIV_card_ge_0)
  | 
| 
 | 
  1056  | 
  | 
| 
 | 
  1057  | 
lemma card_UNIV_eq_0_infinite_UNIV:
  | 
| 
 | 
  1058  | 
  "card_UNIV x = 0 \<longleftrightarrow> infinite (UNIV :: 'a set)"
  | 
| 
 | 
  1059  | 
by(simp add: card_UNIV card_eq_0_iff)
  | 
| 
 | 
  1060  | 
  | 
| 
 | 
  1061  | 
definition is_list_UNIV :: "'a list \<Rightarrow> bool"
  | 
| 
 | 
  1062  | 
where "is_list_UNIV xs = (let c = card_UNIV (TYPE('a)) in if c = 0 then False else size (remdups xs) = c)"
 | 
| 
 | 
  1063  | 
  | 
| 
 | 
  1064  | 
lemma is_list_UNIV_iff:
  | 
| 
 | 
  1065  | 
  fixes xs :: "'a list"
  | 
| 
 | 
  1066  | 
  shows "is_list_UNIV xs \<longleftrightarrow> set xs = UNIV"
  | 
| 
 | 
  1067  | 
proof
  | 
| 
 | 
  1068  | 
  assume "is_list_UNIV xs"
  | 
| 
 | 
  1069  | 
  hence c: "card_UNIV (TYPE('a)) > 0" and xs: "size (remdups xs) = card_UNIV (TYPE('a))"
 | 
| 
 | 
  1070  | 
    unfolding is_list_UNIV_def by(simp_all add: Let_def split: split_if_asm)
  | 
| 
 | 
  1071  | 
  from c have fin: "finite (UNIV :: 'a set)" by(auto simp add: card_UNIV_ge_0_finite_UNIV)
  | 
| 
 | 
  1072  | 
  have "card (set (remdups xs)) = size (remdups xs)" by(subst distinct_card) auto
  | 
| 
 | 
  1073  | 
  also note set_remdups
  | 
| 
 | 
  1074  | 
  finally show "set xs = UNIV" using fin unfolding xs card_UNIV by-(rule card_eq_UNIV_imp_eq_UNIV)
  | 
| 
 | 
  1075  | 
next
  | 
| 
 | 
  1076  | 
  assume xs: "set xs = UNIV"
  | 
| 
 | 
  1077  | 
  from finite_set[of xs] have fin: "finite (UNIV :: 'a set)" unfolding xs .
  | 
| 
 | 
  1078  | 
  hence "card_UNIV (TYPE ('a)) \<noteq> 0" unfolding card_UNIV_neq_0_finite_UNIV .
 | 
| 
 | 
  1079  | 
  moreover have "size (remdups xs) = card (set (remdups xs))"
  | 
| 
 | 
  1080  | 
    by(subst distinct_card) auto
  | 
| 
 | 
  1081  | 
  ultimately show "is_list_UNIV xs" using xs by(simp add: is_list_UNIV_def Let_def card_UNIV)
  | 
| 
 | 
  1082  | 
qed
  | 
| 
 | 
  1083  | 
  | 
| 
 | 
  1084  | 
lemma card_UNIV_eq_0_is_list_UNIV_False:
  | 
| 
 | 
  1085  | 
  assumes cU0: "card_UNIV x = 0"
  | 
| 
 | 
  1086  | 
  shows "is_list_UNIV = (\<lambda>xs. False)"
  | 
| 
 | 
  1087  | 
proof(rule ext)
  | 
| 
 | 
  1088  | 
  fix xs :: "'a list"
  | 
| 
 | 
  1089  | 
  from cU0 have "infinite (UNIV :: 'a set)"
  | 
| 
 | 
  1090  | 
    by(auto simp only: card_UNIV_eq_0_infinite_UNIV)
  | 
| 
 | 
  1091  | 
  moreover have "finite (set xs)" by(rule finite_set)
  | 
| 
 | 
  1092  | 
  ultimately have "(UNIV :: 'a set) \<noteq> set xs" by(auto simp del: finite_set)
  | 
| 
 | 
  1093  | 
  thus "is_list_UNIV xs = False" unfolding is_list_UNIV_iff by simp
  | 
| 
 | 
  1094  | 
qed
  | 
| 
 | 
  1095  | 
  | 
| 
 | 
  1096  | 
end
  | 
| 
 | 
  1097  | 
  | 
| 
 | 
  1098  | 
subsection {* Instantiations for @{text "card_UNIV"} *}
 | 
| 
 | 
  1099  | 
  | 
| 
 | 
  1100  | 
subsubsection {* @{typ "nat"} *}
 | 
| 
 | 
  1101  | 
  | 
| 
 | 
  1102  | 
instantiation nat :: card_UNIV begin
  | 
| 
 | 
  1103  | 
  | 
| 
 | 
  1104  | 
definition card_UNIV_nat_def:
  | 
| 
 | 
  1105  | 
  "card_UNIV_class.card_UNIV = (\<lambda>a :: nat itself. 0)"
  | 
| 
 | 
  1106  | 
  | 
| 
 | 
  1107  | 
instance proof
  | 
| 
 | 
  1108  | 
  fix x :: "nat itself"
  | 
| 
 | 
  1109  | 
  show "card_UNIV x = card (UNIV :: nat set)"
  | 
| 
 | 
  1110  | 
    unfolding card_UNIV_nat_def by simp
  | 
| 
 | 
  1111  | 
qed
  | 
| 
 | 
  1112  | 
  | 
| 
 | 
  1113  | 
end
  | 
| 
 | 
  1114  | 
  | 
| 
 | 
  1115  | 
subsubsection {* @{typ "int"} *}
 | 
| 
 | 
  1116  | 
  | 
| 
 | 
  1117  | 
instantiation int :: card_UNIV begin
  | 
| 
 | 
  1118  | 
  | 
| 
 | 
  1119  | 
definition card_UNIV_int_def:
  | 
| 
 | 
  1120  | 
  "card_UNIV_class.card_UNIV = (\<lambda>a :: int itself. 0)"
  | 
| 
 | 
  1121  | 
  | 
| 
 | 
  1122  | 
instance proof
  | 
| 
 | 
  1123  | 
  fix x :: "int itself"
  | 
| 
 | 
  1124  | 
  show "card_UNIV x = card (UNIV :: int set)"
  | 
| 
 | 
  1125  | 
    unfolding card_UNIV_int_def by simp
  | 
| 
 | 
  1126  | 
qed
  | 
| 
 | 
  1127  | 
  | 
| 
 | 
  1128  | 
end
  | 
| 
 | 
  1129  | 
  | 
| 
 | 
  1130  | 
subsubsection {* @{typ "'a list"} *}
 | 
| 
 | 
  1131  | 
  | 
| 
 | 
  1132  | 
instantiation list :: (type) card_UNIV begin
  | 
| 
 | 
  1133  | 
  | 
| 
 | 
  1134  | 
definition card_UNIV_list_def:
  | 
| 
 | 
  1135  | 
  "card_UNIV_class.card_UNIV = (\<lambda>a :: 'a list itself. 0)"
  | 
| 
 | 
  1136  | 
  | 
| 
 | 
  1137  | 
instance proof
  | 
| 
 | 
  1138  | 
  fix x :: "'a list itself"
  | 
| 
 | 
  1139  | 
  show "card_UNIV x = card (UNIV :: 'a list set)"
  | 
| 
 | 
  1140  | 
    unfolding card_UNIV_list_def by(simp add: infinite_UNIV_listI)
  | 
| 
 | 
  1141  | 
qed
  | 
| 
 | 
  1142  | 
  | 
| 
 | 
  1143  | 
end
  | 
| 
 | 
  1144  | 
  | 
| 
 | 
  1145  | 
subsubsection {* @{typ "unit"} *}
 | 
| 
 | 
  1146  | 
  | 
| 
 | 
  1147  | 
lemma card_UNIV_unit: "card (UNIV :: unit set) = 1"
  | 
| 
 | 
  1148  | 
  unfolding UNIV_unit by simp
  | 
| 
 | 
  1149  | 
  | 
| 
 | 
  1150  | 
instantiation unit :: card_UNIV begin
  | 
| 
 | 
  1151  | 
  | 
| 
 | 
  1152  | 
definition card_UNIV_unit_def: 
  | 
| 
 | 
  1153  | 
  "card_UNIV_class.card_UNIV = (\<lambda>a :: unit itself. 1)"
  | 
| 
 | 
  1154  | 
  | 
| 
 | 
  1155  | 
instance proof
  | 
| 
 | 
  1156  | 
  fix x :: "unit itself"
  | 
| 
 | 
  1157  | 
  show "card_UNIV x = card (UNIV :: unit set)"
  | 
| 
 | 
  1158  | 
    by(simp add: card_UNIV_unit_def card_UNIV_unit)
  | 
| 
 | 
  1159  | 
qed
  | 
| 
 | 
  1160  | 
  | 
| 
 | 
  1161  | 
end
  | 
| 
 | 
  1162  | 
  | 
| 
 | 
  1163  | 
subsubsection {* @{typ "bool"} *}
 | 
| 
 | 
  1164  | 
  | 
| 
 | 
  1165  | 
lemma card_UNIV_bool: "card (UNIV :: bool set) = 2"
  | 
| 
 | 
  1166  | 
  unfolding UNIV_bool by simp
  | 
| 
 | 
  1167  | 
  | 
| 
 | 
  1168  | 
instantiation bool :: card_UNIV begin
  | 
| 
 | 
  1169  | 
  | 
| 
 | 
  1170  | 
definition card_UNIV_bool_def: 
  | 
| 
 | 
  1171  | 
  "card_UNIV_class.card_UNIV = (\<lambda>a :: bool itself. 2)"
  | 
| 
 | 
  1172  | 
  | 
| 
 | 
  1173  | 
instance proof
  | 
| 
 | 
  1174  | 
  fix x :: "bool itself"
  | 
| 
 | 
  1175  | 
  show "card_UNIV x = card (UNIV :: bool set)"
  | 
| 
 | 
  1176  | 
    by(simp add: card_UNIV_bool_def card_UNIV_bool)
  | 
| 
 | 
  1177  | 
qed
  | 
| 
 | 
  1178  | 
  | 
| 
 | 
  1179  | 
end
  | 
| 
 | 
  1180  | 
  | 
| 
 | 
  1181  | 
subsubsection {* @{typ "char"} *}
 | 
| 
 | 
  1182  | 
  | 
| 
 | 
  1183  | 
lemma card_UNIV_char: "card (UNIV :: char set) = 256"
  | 
| 
 | 
  1184  | 
proof -
  | 
| 
 | 
  1185  | 
  from enum_distinct
  | 
| 
 | 
  1186  | 
  have "card (set (enum :: char list)) = length (enum :: char list)"
  | 
| 
31486
 | 
  1187  | 
    by - (rule distinct_card)
  | 
| 
31379
 | 
  1188  | 
  also have "set enum = (UNIV :: char set)" by auto
  | 
| 
31486
 | 
  1189  | 
  also note enum_chars
  | 
| 
 | 
  1190  | 
  finally show ?thesis by (simp add: chars_def)
  | 
| 
31379
 | 
  1191  | 
qed
  | 
| 
 | 
  1192  | 
  | 
| 
 | 
  1193  | 
instantiation char :: card_UNIV begin
  | 
| 
 | 
  1194  | 
  | 
| 
 | 
  1195  | 
definition card_UNIV_char_def: 
  | 
| 
 | 
  1196  | 
  "card_UNIV_class.card_UNIV = (\<lambda>a :: char itself. 256)"
  | 
| 
 | 
  1197  | 
  | 
| 
 | 
  1198  | 
instance proof
  | 
| 
 | 
  1199  | 
  fix x :: "char itself"
  | 
| 
 | 
  1200  | 
  show "card_UNIV x = card (UNIV :: char set)"
  | 
| 
 | 
  1201  | 
    by(simp add: card_UNIV_char_def card_UNIV_char)
  | 
| 
 | 
  1202  | 
qed
  | 
| 
 | 
  1203  | 
  | 
| 
 | 
  1204  | 
end
  | 
| 
 | 
  1205  | 
  | 
| 
 | 
  1206  | 
subsubsection {* @{typ "'a \<times> 'b"} *}
 | 
| 
 | 
  1207  | 
  | 
| 
 | 
  1208  | 
instantiation * :: (card_UNIV, card_UNIV) card_UNIV begin
  | 
| 
 | 
  1209  | 
  | 
| 
 | 
  1210  | 
definition card_UNIV_product_def: 
  | 
| 
 | 
  1211  | 
  "card_UNIV_class.card_UNIV = (\<lambda>a :: ('a \<times> 'b) itself. card_UNIV (TYPE('a)) * card_UNIV (TYPE('b)))"
 | 
| 
 | 
  1212  | 
  | 
| 
 | 
  1213  | 
instance proof
  | 
| 
 | 
  1214  | 
  fix x :: "('a \<times> 'b) itself"
 | 
| 
 | 
  1215  | 
  show "card_UNIV x = card (UNIV :: ('a \<times> 'b) set)"
 | 
| 
 | 
  1216  | 
    by(simp add: card_UNIV_product_def card_UNIV UNIV_Times_UNIV[symmetric] card_cartesian_product del: UNIV_Times_UNIV)
  | 
| 
 | 
  1217  | 
qed
  | 
| 
 | 
  1218  | 
  | 
| 
 | 
  1219  | 
end
  | 
| 
 | 
  1220  | 
  | 
| 
 | 
  1221  | 
subsubsection {* @{typ "'a + 'b"} *}
 | 
| 
 | 
  1222  | 
  | 
| 
 | 
  1223  | 
instantiation "+" :: (card_UNIV, card_UNIV) card_UNIV begin
  | 
| 
 | 
  1224  | 
  | 
| 
 | 
  1225  | 
definition card_UNIV_sum_def: 
  | 
| 
 | 
  1226  | 
  "card_UNIV_class.card_UNIV = (\<lambda>a :: ('a + 'b) itself. let ca = card_UNIV (TYPE('a)); cb = card_UNIV (TYPE('b))
 | 
| 
 | 
  1227  | 
                           in if ca \<noteq> 0 \<and> cb \<noteq> 0 then ca + cb else 0)"
  | 
| 
 | 
  1228  | 
  | 
| 
 | 
  1229  | 
instance proof
  | 
| 
 | 
  1230  | 
  fix x :: "('a + 'b) itself"
 | 
| 
 | 
  1231  | 
  show "card_UNIV x = card (UNIV :: ('a + 'b) set)"
 | 
| 
 | 
  1232  | 
    by (auto simp add: card_UNIV_sum_def card_UNIV card_eq_0_iff UNIV_Plus_UNIV[symmetric] finite_Plus_iff Let_def card_Plus simp del: UNIV_Plus_UNIV dest!: card_ge_0_finite)
  | 
| 
 | 
  1233  | 
qed
  | 
| 
 | 
  1234  | 
  | 
| 
 | 
  1235  | 
end
  | 
| 
 | 
  1236  | 
  | 
| 
 | 
  1237  | 
subsubsection {* @{typ "'a \<Rightarrow> 'b"} *}
 | 
| 
 | 
  1238  | 
  | 
| 
 | 
  1239  | 
instantiation "fun" :: (card_UNIV, card_UNIV) card_UNIV begin
  | 
| 
 | 
  1240  | 
  | 
| 
 | 
  1241  | 
definition card_UNIV_fun_def: 
  | 
| 
 | 
  1242  | 
  "card_UNIV_class.card_UNIV = (\<lambda>a :: ('a \<Rightarrow> 'b) itself. let ca = card_UNIV (TYPE('a)); cb = card_UNIV (TYPE('b))
 | 
| 
 | 
  1243  | 
                           in if ca \<noteq> 0 \<and> cb \<noteq> 0 \<or> cb = 1 then cb ^ ca else 0)"
  | 
| 
 | 
  1244  | 
  | 
| 
 | 
  1245  | 
instance proof
  | 
| 
 | 
  1246  | 
  fix x :: "('a \<Rightarrow> 'b) itself"
 | 
| 
 | 
  1247  | 
  | 
| 
 | 
  1248  | 
  { assume "0 < card (UNIV :: 'a set)"
 | 
| 
 | 
  1249  | 
    and "0 < card (UNIV :: 'b set)"
  | 
| 
 | 
  1250  | 
    hence fina: "finite (UNIV :: 'a set)" and finb: "finite (UNIV :: 'b set)"
  | 
| 
 | 
  1251  | 
      by(simp_all only: card_ge_0_finite)
  | 
| 
 | 
  1252  | 
    from finite_distinct_list[OF finb] obtain bs 
  | 
| 
 | 
  1253  | 
      where bs: "set bs = (UNIV :: 'b set)" and distb: "distinct bs" by blast
  | 
| 
 | 
  1254  | 
    from finite_distinct_list[OF fina] obtain as
  | 
| 
 | 
  1255  | 
      where as: "set as = (UNIV :: 'a set)" and dista: "distinct as" by blast
  | 
| 
 | 
  1256  | 
    have cb: "card (UNIV :: 'b set) = length bs"
  | 
| 
 | 
  1257  | 
      unfolding bs[symmetric] distinct_card[OF distb] ..
  | 
| 
 | 
  1258  | 
    have ca: "card (UNIV :: 'a set) = length as"
  | 
| 
 | 
  1259  | 
      unfolding as[symmetric] distinct_card[OF dista] ..
  | 
| 
 | 
  1260  | 
    let ?xs = "map (\<lambda>ys. the o map_of (zip as ys)) (n_lists (length as) bs)"
  | 
| 
 | 
  1261  | 
    have "UNIV = set ?xs"
  | 
| 
 | 
  1262  | 
    proof(rule UNIV_eq_I)
  | 
| 
 | 
  1263  | 
      fix f :: "'a \<Rightarrow> 'b"
  | 
| 
 | 
  1264  | 
      from as have "f = the \<circ> map_of (zip as (map f as))"
  | 
| 
 | 
  1265  | 
        by(auto simp add: map_of_zip_map intro: ext)
  | 
| 
 | 
  1266  | 
      thus "f \<in> set ?xs" using bs by(auto simp add: set_n_lists)
  | 
| 
 | 
  1267  | 
    qed
  | 
| 
 | 
  1268  | 
    moreover have "distinct ?xs" unfolding distinct_map
  | 
| 
 | 
  1269  | 
    proof(intro conjI distinct_n_lists distb inj_onI)
  | 
| 
 | 
  1270  | 
      fix xs ys :: "'b list"
  | 
| 
 | 
  1271  | 
      assume xs: "xs \<in> set (n_lists (length as) bs)"
  | 
| 
 | 
  1272  | 
        and ys: "ys \<in> set (n_lists (length as) bs)"
  | 
| 
 | 
  1273  | 
        and eq: "the \<circ> map_of (zip as xs) = the \<circ> map_of (zip as ys)"
  | 
| 
 | 
  1274  | 
      from xs ys have [simp]: "length xs = length as" "length ys = length as"
  | 
| 
 | 
  1275  | 
        by(simp_all add: length_n_lists_elem)
  | 
| 
 | 
  1276  | 
      have "map_of (zip as xs) = map_of (zip as ys)"
  | 
| 
 | 
  1277  | 
      proof
  | 
| 
 | 
  1278  | 
        fix x
  | 
| 
 | 
  1279  | 
        from as bs have "\<exists>y. map_of (zip as xs) x = Some y" "\<exists>y. map_of (zip as ys) x = Some y"
  | 
| 
 | 
  1280  | 
          by(simp_all add: map_of_zip_is_Some[symmetric])
  | 
| 
 | 
  1281  | 
        with eq show "map_of (zip as xs) x = map_of (zip as ys) x"
  | 
| 
 | 
  1282  | 
          by(auto dest: fun_cong[where x=x])
  | 
| 
 | 
  1283  | 
      qed
  | 
| 
 | 
  1284  | 
      with dista show "xs = ys" by(simp add: map_of_zip_inject)
  | 
| 
 | 
  1285  | 
    qed
  | 
| 
 | 
  1286  | 
    hence "card (set ?xs) = length ?xs" by(simp only: distinct_card)
  | 
| 
 | 
  1287  | 
    moreover have "length ?xs = length bs ^ length as" by(simp add: length_n_lists)
  | 
| 
 | 
  1288  | 
    ultimately have "card (UNIV :: ('a \<Rightarrow> 'b) set) = card (UNIV :: 'b set) ^ card (UNIV :: 'a set)"
 | 
| 
 | 
  1289  | 
      using cb ca by simp }
  | 
| 
 | 
  1290  | 
  moreover {
 | 
| 
 | 
  1291  | 
    assume cb: "card (UNIV :: 'b set) = Suc 0"
  | 
| 
 | 
  1292  | 
    then obtain b where b: "UNIV = {b :: 'b}" by(auto simp add: card_Suc_eq)
 | 
| 
 | 
  1293  | 
    have eq: "UNIV = {\<lambda>x :: 'a. b ::'b}"
 | 
| 
 | 
  1294  | 
    proof(rule UNIV_eq_I)
  | 
| 
 | 
  1295  | 
      fix x :: "'a \<Rightarrow> 'b"
  | 
| 
 | 
  1296  | 
      { fix y
 | 
| 
 | 
  1297  | 
        have "x y \<in> UNIV" ..
  | 
| 
 | 
  1298  | 
        hence "x y = b" unfolding b by simp }
  | 
| 
 | 
  1299  | 
      thus "x \<in> {\<lambda>x. b}" by(auto intro: ext)
 | 
| 
 | 
  1300  | 
    qed
  | 
| 
 | 
  1301  | 
    have "card (UNIV :: ('a \<Rightarrow> 'b) set) = Suc 0" unfolding eq by simp }
 | 
| 
 | 
  1302  | 
  ultimately show "card_UNIV x = card (UNIV :: ('a \<Rightarrow> 'b) set)"
 | 
| 
 | 
  1303  | 
    unfolding card_UNIV_fun_def card_UNIV Let_def
  | 
| 
 | 
  1304  | 
    by(auto simp del: One_nat_def)(auto simp add: card_eq_0_iff dest: finite_fun_UNIVD2 finite_fun_UNIVD1)
  | 
| 
 | 
  1305  | 
qed
  | 
| 
 | 
  1306  | 
  | 
| 
 | 
  1307  | 
end
  | 
| 
 | 
  1308  | 
  | 
| 
 | 
  1309  | 
subsubsection {* @{typ "'a option"} *}
 | 
| 
 | 
  1310  | 
  | 
| 
 | 
  1311  | 
instantiation option :: (card_UNIV) card_UNIV
  | 
| 
 | 
  1312  | 
begin
  | 
| 
 | 
  1313  | 
  | 
| 
 | 
  1314  | 
definition card_UNIV_option_def: 
  | 
| 
 | 
  1315  | 
  "card_UNIV_class.card_UNIV = (\<lambda>a :: 'a option itself. let c = card_UNIV (TYPE('a))
 | 
| 
 | 
  1316  | 
                           in if c \<noteq> 0 then Suc c else 0)"
  | 
| 
 | 
  1317  | 
  | 
| 
 | 
  1318  | 
instance proof
  | 
| 
 | 
  1319  | 
  fix x :: "'a option itself"
  | 
| 
 | 
  1320  | 
  show "card_UNIV x = card (UNIV :: 'a option set)"
  | 
| 
 | 
  1321  | 
    unfolding UNIV_option_conv
  | 
| 
 | 
  1322  | 
    by(auto simp add: card_UNIV_option_def card_UNIV card_eq_0_iff Let_def intro: inj_Some dest: finite_imageD)
  | 
| 
 | 
  1323  | 
      (subst card_insert_disjoint, auto simp add: card_eq_0_iff card_image inj_Some intro: finite_imageI card_ge_0_finite)
  | 
| 
 | 
  1324  | 
qed
  | 
| 
 | 
  1325  | 
  | 
| 
 | 
  1326  | 
end
  | 
| 
 | 
  1327  | 
  | 
| 
 | 
  1328  | 
  | 
| 
 | 
  1329  | 
subsection {* Universal quantification *}
 | 
| 
 | 
  1330  | 
  | 
| 
 | 
  1331  | 
definition finfun_All_except :: "'a list \<Rightarrow> 'a \<Rightarrow>\<^isub>f bool \<Rightarrow> bool"
  | 
| 
 | 
  1332  | 
where [code del]: "finfun_All_except A P \<equiv> \<forall>a. a \<in> set A \<or> P\<^sub>f a"
  | 
| 
 | 
  1333  | 
  | 
| 
 | 
  1334  | 
lemma finfun_All_except_const: "finfun_All_except A (\<lambda>\<^isup>f b) \<longleftrightarrow> b \<or> set A = UNIV"
  | 
| 
 | 
  1335  | 
by(auto simp add: finfun_All_except_def)
  | 
| 
 | 
  1336  | 
  | 
| 
 | 
  1337  | 
lemma finfun_All_except_const_finfun_UNIV_code [code]:
  | 
| 
 | 
  1338  | 
  "finfun_All_except A (\<lambda>\<^isup>f b) = (b \<or> is_list_UNIV A)"
  | 
| 
 | 
  1339  | 
by(simp add: finfun_All_except_const is_list_UNIV_iff)
  | 
| 
 | 
  1340  | 
  | 
| 
 | 
  1341  | 
lemma finfun_All_except_update: 
  | 
| 
 | 
  1342  | 
  "finfun_All_except A f(\<^sup>f a := b) = ((a \<in> set A \<or> b) \<and> finfun_All_except (a # A) f)"
  | 
| 
 | 
  1343  | 
by(fastsimp simp add: finfun_All_except_def finfun_upd_apply)
  | 
| 
 | 
  1344  | 
  | 
| 
 | 
  1345  | 
lemma finfun_All_except_update_code [code]:
  | 
| 
 | 
  1346  | 
  fixes a :: "'a :: card_UNIV"
  | 
| 
 | 
  1347  | 
  shows "finfun_All_except A (finfun_update_code f a b) = ((a \<in> set A \<or> b) \<and> finfun_All_except (a # A) f)"
  | 
| 
 | 
  1348  | 
by(simp add: finfun_All_except_update)
  | 
| 
 | 
  1349  | 
  | 
| 
 | 
  1350  | 
definition finfun_All :: "'a \<Rightarrow>\<^isub>f bool \<Rightarrow> bool"
  | 
| 
 | 
  1351  | 
where "finfun_All = finfun_All_except []"
  | 
| 
 | 
  1352  | 
  | 
| 
 | 
  1353  | 
lemma finfun_All_const [simp]: "finfun_All (\<lambda>\<^isup>f b) = b"
  | 
| 
 | 
  1354  | 
by(simp add: finfun_All_def finfun_All_except_def)
  | 
| 
 | 
  1355  | 
  | 
| 
 | 
  1356  | 
lemma finfun_All_update: "finfun_All f(\<^sup>f a := b) = (b \<and> finfun_All_except [a] f)"
  | 
| 
 | 
  1357  | 
by(simp add: finfun_All_def finfun_All_except_update)
  | 
| 
 | 
  1358  | 
  | 
| 
 | 
  1359  | 
lemma finfun_All_All: "finfun_All P = All P\<^sub>f"
  | 
| 
 | 
  1360  | 
by(simp add: finfun_All_def finfun_All_except_def)
  | 
| 
 | 
  1361  | 
  | 
| 
 | 
  1362  | 
  | 
| 
 | 
  1363  | 
definition finfun_Ex :: "'a \<Rightarrow>\<^isub>f bool \<Rightarrow> bool"
  | 
| 
 | 
  1364  | 
where "finfun_Ex P = Not (finfun_All (Not \<circ>\<^isub>f P))"
  | 
| 
 | 
  1365  | 
  | 
| 
 | 
  1366  | 
lemma finfun_Ex_Ex: "finfun_Ex P = Ex P\<^sub>f"
  | 
| 
 | 
  1367  | 
unfolding finfun_Ex_def finfun_All_All by simp
  | 
| 
 | 
  1368  | 
  | 
| 
 | 
  1369  | 
lemma finfun_Ex_const [simp]: "finfun_Ex (\<lambda>\<^isup>f b) = b"
  | 
| 
 | 
  1370  | 
by(simp add: finfun_Ex_def)
  | 
| 
 | 
  1371  | 
  | 
| 
 | 
  1372  | 
  | 
| 
 | 
  1373  | 
subsection {* A diagonal operator for FinFuns *}
 | 
| 
 | 
  1374  | 
  | 
| 
 | 
  1375  | 
definition finfun_Diag :: "'a \<Rightarrow>\<^isub>f 'b \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'c \<Rightarrow> 'a \<Rightarrow>\<^isub>f ('b \<times> 'c)" ("(1'(_,/ _')\<^sup>f)" [0, 0] 1000)
 | 
| 
 | 
  1376  | 
where [code del]: "finfun_Diag f g = finfun_rec (\<lambda>b. Pair b \<circ>\<^isub>f g) (\<lambda>a b c. c(\<^sup>f a := (b, g\<^sub>f a))) f"
  | 
| 
 | 
  1377  | 
  | 
| 
 | 
  1378  | 
interpretation finfun_Diag_aux: finfun_rec_wf_aux "\<lambda>b. Pair b \<circ>\<^isub>f g" "\<lambda>a b c. c(\<^sup>f a := (b, g\<^sub>f a))"
  | 
| 
 | 
  1379  | 
by(unfold_locales)(simp_all add: expand_finfun_eq expand_fun_eq finfun_upd_apply)
  | 
| 
 | 
  1380  | 
  | 
| 
 | 
  1381  | 
interpretation finfun_Diag: finfun_rec_wf "\<lambda>b. Pair b \<circ>\<^isub>f g" "\<lambda>a b c. c(\<^sup>f a := (b, g\<^sub>f a))"
  | 
| 
 | 
  1382  | 
proof
  | 
| 
 | 
  1383  | 
  fix b' b :: 'a
  | 
| 
 | 
  1384  | 
  assume fin: "finite (UNIV :: 'c set)"
  | 
| 
 | 
  1385  | 
  { fix A :: "'c set"
 | 
| 
 | 
  1386  | 
    interpret fun_left_comm "\<lambda>a c. c(\<^sup>f a := (b', g\<^sub>f a))" by(rule finfun_Diag_aux.upd_left_comm)
  | 
| 
 | 
  1387  | 
    from fin have "finite A" by(auto intro: finite_subset)
  | 
| 
 | 
  1388  | 
    hence "fold (\<lambda>a c. c(\<^sup>f a := (b', g\<^sub>f a))) (Pair b \<circ>\<^isub>f g) A =
  | 
| 
 | 
  1389  | 
      Abs_finfun (\<lambda>a. (if a \<in> A then b' else b, g\<^sub>f a))"
  | 
| 
 | 
  1390  | 
      by(induct)(simp_all add: finfun_const_def finfun_comp_conv_comp o_def,
  | 
| 
 | 
  1391  | 
                 auto simp add: finfun_update_def Abs_finfun_inverse_finite fun_upd_def Abs_finfun_inject_finite expand_fun_eq fin) }
  | 
| 
 | 
  1392  | 
  from this[of UNIV] show "fold (\<lambda>a c. c(\<^sup>f a := (b', g\<^sub>f a))) (Pair b \<circ>\<^isub>f g) UNIV = Pair b' \<circ>\<^isub>f g"
  | 
| 
 | 
  1393  | 
    by(simp add: finfun_const_def finfun_comp_conv_comp o_def)
  | 
| 
 | 
  1394  | 
qed
  | 
| 
 | 
  1395  | 
  | 
| 
 | 
  1396  | 
lemma finfun_Diag_const1: "(\<lambda>\<^isup>f b, g)\<^sup>f = Pair b \<circ>\<^isub>f g"
  | 
| 
 | 
  1397  | 
by(simp add: finfun_Diag_def)
  | 
| 
 | 
  1398  | 
  | 
| 
 | 
  1399  | 
text {*
 | 
| 
 | 
  1400  | 
  Do not use @{thm finfun_Diag_const1} for the code generator because @{term "Pair b"} is injective, i.e. if @{term g} is free of redundant updates, there is no need to check for redundant updates as is done for @{text "\<circ>\<^isub>f"}.
 | 
| 
 | 
  1401  | 
*}
  | 
| 
 | 
  1402  | 
  | 
| 
 | 
  1403  | 
lemma finfun_Diag_const_code [code]:
  | 
| 
 | 
  1404  | 
  "(\<lambda>\<^isup>f b, \<lambda>\<^isup>f c)\<^sup>f = (\<lambda>\<^isup>f (b, c))"
  | 
| 
 | 
  1405  | 
  "(\<lambda>\<^isup>f b, g(\<^sup>f\<^sup>c a := c))\<^sup>f = (\<lambda>\<^isup>f b, g)\<^sup>f(\<^sup>f\<^sup>c a := (b, c))"
  | 
| 
 | 
  1406  | 
by(simp_all add: finfun_Diag_const1)
  | 
| 
 | 
  1407  | 
  | 
| 
 | 
  1408  | 
lemma finfun_Diag_update1: "(f(\<^sup>f a := b), g)\<^sup>f = (f, g)\<^sup>f(\<^sup>f a := (b, g\<^sub>f a))"
  | 
| 
 | 
  1409  | 
  and finfun_Diag_update1_code [code]: "(finfun_update_code f a b, g)\<^sup>f = (f, g)\<^sup>f(\<^sup>f a := (b, g\<^sub>f a))"
  | 
| 
 | 
  1410  | 
by(simp_all add: finfun_Diag_def)
  | 
| 
 | 
  1411  | 
  | 
| 
 | 
  1412  | 
lemma finfun_Diag_const2: "(f, \<lambda>\<^isup>f c)\<^sup>f = (\<lambda>b. (b, c)) \<circ>\<^isub>f f"
  | 
| 
 | 
  1413  | 
by(induct f rule: finfun_weak_induct)(auto intro!: finfun_ext simp add: finfun_upd_apply finfun_Diag_const1 finfun_Diag_update1)
  | 
| 
 | 
  1414  | 
  | 
| 
 | 
  1415  | 
lemma finfun_Diag_update2: "(f, g(\<^sup>f a := c))\<^sup>f = (f, g)\<^sup>f(\<^sup>f a := (f\<^sub>f a, c))"
  | 
| 
 | 
  1416  | 
by(induct f rule: finfun_weak_induct)(auto intro!: finfun_ext simp add: finfun_upd_apply finfun_Diag_const1 finfun_Diag_update1)
  | 
| 
 | 
  1417  | 
  | 
| 
 | 
  1418  | 
lemma finfun_Diag_const_const [simp]: "(\<lambda>\<^isup>f b, \<lambda>\<^isup>f c)\<^sup>f = (\<lambda>\<^isup>f (b, c))"
  | 
| 
 | 
  1419  | 
by(simp add: finfun_Diag_const1)
  | 
| 
 | 
  1420  | 
  | 
| 
 | 
  1421  | 
lemma finfun_Diag_const_update:
  | 
| 
 | 
  1422  | 
  "(\<lambda>\<^isup>f b, g(\<^sup>f a := c))\<^sup>f = (\<lambda>\<^isup>f b, g)\<^sup>f(\<^sup>f a := (b, c))"
  | 
| 
 | 
  1423  | 
by(simp add: finfun_Diag_const1)
  | 
| 
 | 
  1424  | 
  | 
| 
 | 
  1425  | 
lemma finfun_Diag_update_const:
  | 
| 
 | 
  1426  | 
  "(f(\<^sup>f a := b), \<lambda>\<^isup>f c)\<^sup>f = (f, \<lambda>\<^isup>f c)\<^sup>f(\<^sup>f a := (b, c))"
  | 
| 
 | 
  1427  | 
by(simp add: finfun_Diag_def)
  | 
| 
 | 
  1428  | 
  | 
| 
 | 
  1429  | 
lemma finfun_Diag_update_update:
  | 
| 
 | 
  1430  | 
  "(f(\<^sup>f a := b), g(\<^sup>f a' := c))\<^sup>f = (if a = a' then (f, g)\<^sup>f(\<^sup>f a := (b, c)) else (f, g)\<^sup>f(\<^sup>f a := (b, g\<^sub>f a))(\<^sup>f a' := (f\<^sub>f a', c)))"
  | 
| 
 | 
  1431  | 
by(auto simp add: finfun_Diag_update1 finfun_Diag_update2)
  | 
| 
 | 
  1432  | 
  | 
| 
 | 
  1433  | 
lemma finfun_Diag_apply [simp]: "(f, g)\<^sup>f\<^sub>f = (\<lambda>x. (f\<^sub>f x, g\<^sub>f x))"
  | 
| 
 | 
  1434  | 
by(induct f rule: finfun_weak_induct)(auto simp add: finfun_Diag_const1 finfun_Diag_update1 finfun_upd_apply intro: ext)
  | 
| 
 | 
  1435  | 
  | 
| 
 | 
  1436  | 
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
  | 
| 
 | 
  1437  | 
  | 
| 
 | 
  1438  | 
lemma finfun_Diag_conv_Abs_finfun:
  | 
| 
 | 
  1439  | 
  "(f, g)\<^sup>f = Abs_finfun ((\<lambda>x. (Rep_finfun f x, Rep_finfun g x)))"
  | 
| 
 | 
  1440  | 
proof -
  | 
| 
 | 
  1441  | 
  have "(\<lambda>f :: 'a \<Rightarrow>\<^isub>f 'b. (f, g)\<^sup>f) = (\<lambda>f. Abs_finfun ((\<lambda>x. (Rep_finfun f x, Rep_finfun g x))))"
  | 
| 
 | 
  1442  | 
  proof(rule finfun_rec_unique)
  | 
| 
 | 
  1443  | 
    { fix c show "Abs_finfun (\<lambda>x. (Rep_finfun (\<lambda>\<^isup>f c) x, Rep_finfun g x)) = Pair c \<circ>\<^isub>f g"
 | 
| 
 | 
  1444  | 
        by(simp add: finfun_comp_conv_comp finfun_apply_Rep_finfun o_def finfun_const_def) }
  | 
| 
 | 
  1445  | 
    { fix g' a b
 | 
| 
 | 
  1446  | 
      show "Abs_finfun (\<lambda>x. (Rep_finfun g'(\<^sup>f a := b) x, Rep_finfun g x)) =
  | 
| 
 | 
  1447  | 
            (Abs_finfun (\<lambda>x. (Rep_finfun g' x, Rep_finfun g x)))(\<^sup>f a := (b, g\<^sub>f a))"
  | 
| 
 | 
  1448  | 
        by(auto simp add: finfun_update_def expand_fun_eq finfun_apply_Rep_finfun simp del: fun_upd_apply) simp }
  | 
| 
 | 
  1449  | 
  qed(simp_all add: finfun_Diag_const1 finfun_Diag_update1)
  | 
| 
 | 
  1450  | 
  thus ?thesis by(auto simp add: expand_fun_eq)
  | 
| 
 | 
  1451  | 
qed
  | 
| 
 | 
  1452  | 
  | 
| 
 | 
  1453  | 
declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
  | 
| 
 | 
  1454  | 
  | 
| 
 | 
  1455  | 
lemma finfun_Diag_eq: "(f, g)\<^sup>f = (f', g')\<^sup>f \<longleftrightarrow> f = f' \<and> g = g'"
  | 
| 
 | 
  1456  | 
by(auto simp add: expand_finfun_eq expand_fun_eq)
  | 
| 
 | 
  1457  | 
  | 
| 
 | 
  1458  | 
definition finfun_fst :: "'a \<Rightarrow>\<^isub>f ('b \<times> 'c) \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'b"
 | 
| 
 | 
  1459  | 
where [code]: "finfun_fst f = fst \<circ>\<^isub>f f"
  | 
| 
 | 
  1460  | 
  | 
| 
 | 
  1461  | 
lemma finfun_fst_const: "finfun_fst (\<lambda>\<^isup>f bc) = (\<lambda>\<^isup>f fst bc)"
  | 
| 
 | 
  1462  | 
by(simp add: finfun_fst_def)
  | 
| 
 | 
  1463  | 
  | 
| 
 | 
  1464  | 
lemma finfun_fst_update: "finfun_fst (f(\<^sup>f a := bc)) = (finfun_fst f)(\<^sup>f a := fst bc)"
  | 
| 
 | 
  1465  | 
  and finfun_fst_update_code: "finfun_fst (finfun_update_code f a bc) = (finfun_fst f)(\<^sup>f a := fst bc)"
  | 
| 
 | 
  1466  | 
by(simp_all add: finfun_fst_def)
  | 
| 
 | 
  1467  | 
  | 
| 
 | 
  1468  | 
lemma finfun_fst_comp_conv: "finfun_fst (f \<circ>\<^isub>f g) = (fst \<circ> f) \<circ>\<^isub>f g"
  | 
| 
 | 
  1469  | 
by(simp add: finfun_fst_def)
  | 
| 
 | 
  1470  | 
  | 
| 
 | 
  1471  | 
lemma finfun_fst_conv [simp]: "finfun_fst (f, g)\<^sup>f = f"
  | 
| 
 | 
  1472  | 
by(induct f rule: finfun_weak_induct)(simp_all add: finfun_Diag_const1 finfun_fst_comp_conv o_def finfun_Diag_update1 finfun_fst_update)
  | 
| 
 | 
  1473  | 
  | 
| 
 | 
  1474  | 
lemma finfun_fst_conv_Abs_finfun: "finfun_fst = (\<lambda>f. Abs_finfun (fst o Rep_finfun f))"
  | 
| 
 | 
  1475  | 
by(simp add: finfun_fst_def_raw finfun_comp_conv_comp finfun_apply_Rep_finfun)
  | 
| 
 | 
  1476  | 
  | 
| 
 | 
  1477  | 
  | 
| 
 | 
  1478  | 
definition finfun_snd :: "'a \<Rightarrow>\<^isub>f ('b \<times> 'c) \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'c"
 | 
| 
 | 
  1479  | 
where [code]: "finfun_snd f = snd \<circ>\<^isub>f f"
  | 
| 
 | 
  1480  | 
  | 
| 
 | 
  1481  | 
lemma finfun_snd_const: "finfun_snd (\<lambda>\<^isup>f bc) = (\<lambda>\<^isup>f snd bc)"
  | 
| 
 | 
  1482  | 
by(simp add: finfun_snd_def)
  | 
| 
 | 
  1483  | 
  | 
| 
 | 
  1484  | 
lemma finfun_snd_update: "finfun_snd (f(\<^sup>f a := bc)) = (finfun_snd f)(\<^sup>f a := snd bc)"
  | 
| 
 | 
  1485  | 
  and finfun_snd_update_code [code]: "finfun_snd (finfun_update_code f a bc) = (finfun_snd f)(\<^sup>f a := snd bc)"
  | 
| 
 | 
  1486  | 
by(simp_all add: finfun_snd_def)
  | 
| 
 | 
  1487  | 
  | 
| 
 | 
  1488  | 
lemma finfun_snd_comp_conv: "finfun_snd (f \<circ>\<^isub>f g) = (snd \<circ> f) \<circ>\<^isub>f g"
  | 
| 
 | 
  1489  | 
by(simp add: finfun_snd_def)
  | 
| 
 | 
  1490  | 
  | 
| 
 | 
  1491  | 
lemma finfun_snd_conv [simp]: "finfun_snd (f, g)\<^sup>f = g"
  | 
| 
 | 
  1492  | 
apply(induct f rule: finfun_weak_induct)
  | 
| 
 | 
  1493  | 
apply(auto simp add: finfun_Diag_const1 finfun_snd_comp_conv o_def finfun_Diag_update1 finfun_snd_update finfun_upd_apply intro: finfun_ext)
  | 
| 
 | 
  1494  | 
done
  | 
| 
 | 
  1495  | 
  | 
| 
 | 
  1496  | 
lemma finfun_snd_conv_Abs_finfun: "finfun_snd = (\<lambda>f. Abs_finfun (snd o Rep_finfun f))"
  | 
| 
 | 
  1497  | 
by(simp add: finfun_snd_def_raw finfun_comp_conv_comp finfun_apply_Rep_finfun)
  | 
| 
 | 
  1498  | 
  | 
| 
 | 
  1499  | 
lemma finfun_Diag_collapse [simp]: "(finfun_fst f, finfun_snd f)\<^sup>f = f"
  | 
| 
 | 
  1500  | 
by(induct f rule: finfun_weak_induct)(simp_all add: finfun_fst_const finfun_snd_const finfun_fst_update finfun_snd_update finfun_Diag_update_update)
  | 
| 
 | 
  1501  | 
  | 
| 
 | 
  1502  | 
subsection {* Currying for FinFuns *}
 | 
| 
 | 
  1503  | 
  | 
| 
 | 
  1504  | 
definition finfun_curry :: "('a \<times> 'b) \<Rightarrow>\<^isub>f 'c \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'b \<Rightarrow>\<^isub>f 'c"
 | 
| 
 | 
  1505  | 
where [code del]: "finfun_curry = finfun_rec (finfun_const \<circ> finfun_const) (\<lambda>(a, b) c f. f(\<^sup>f a := (f\<^sub>f a)(\<^sup>f b := c)))"
  | 
| 
 | 
  1506  | 
  | 
| 
 | 
  1507  | 
interpretation finfun_curry_aux: finfun_rec_wf_aux "finfun_const \<circ> finfun_const" "\<lambda>(a, b) c f. f(\<^sup>f a := (f\<^sub>f a)(\<^sup>f b := c))"
  | 
| 
 | 
  1508  | 
apply(unfold_locales)
  | 
| 
 | 
  1509  | 
apply(auto simp add: split_def finfun_update_twist finfun_upd_apply split_paired_all finfun_update_const_same)
  | 
| 
 | 
  1510  | 
done
  | 
| 
 | 
  1511  | 
  | 
| 
 | 
  1512  | 
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
  | 
| 
 | 
  1513  | 
  | 
| 
 | 
  1514  | 
interpretation finfun_curry: finfun_rec_wf "finfun_const \<circ> finfun_const" "\<lambda>(a, b) c f. f(\<^sup>f a := (f\<^sub>f a)(\<^sup>f b := c))"
  | 
| 
 | 
  1515  | 
proof(unfold_locales)
  | 
| 
 | 
  1516  | 
  fix b' b :: 'b
  | 
| 
 | 
  1517  | 
  assume fin: "finite (UNIV :: ('c \<times> 'a) set)"
 | 
| 
 | 
  1518  | 
  hence fin1: "finite (UNIV :: 'c set)" and fin2: "finite (UNIV :: 'a set)"
  | 
| 
 | 
  1519  | 
    unfolding UNIV_Times_UNIV[symmetric]
  | 
| 
 | 
  1520  | 
    by(fastsimp dest: finite_cartesian_productD1 finite_cartesian_productD2)+
  | 
| 
 | 
  1521  | 
  note [simp] = Abs_finfun_inverse_finite[OF fin] Abs_finfun_inverse_finite[OF fin1] Abs_finfun_inverse_finite[OF fin2]
  | 
| 
 | 
  1522  | 
  { fix A :: "('c \<times> 'a) set"
 | 
| 
 | 
  1523  | 
    interpret fun_left_comm "\<lambda>a :: 'c \<times> 'a. (\<lambda>(a, b) c f. f(\<^sup>f a := (f\<^sub>f a)(\<^sup>f b := c))) a b'"
  | 
| 
 | 
  1524  | 
      by(rule finfun_curry_aux.upd_left_comm)
  | 
| 
 | 
  1525  | 
    from fin have "finite A" by(auto intro: finite_subset)
  | 
| 
 | 
  1526  | 
    hence "fold (\<lambda>a :: 'c \<times> 'a. (\<lambda>(a, b) c f. f(\<^sup>f a := (f\<^sub>f a)(\<^sup>f b := c))) a b') ((finfun_const \<circ> finfun_const) b) A = Abs_finfun (\<lambda>a. Abs_finfun (\<lambda>b''. if (a, b'') \<in> A then b' else b))"
  | 
| 
 | 
  1527  | 
      by induct (simp_all, auto simp add: finfun_update_def finfun_const_def split_def finfun_apply_Rep_finfun intro!: arg_cong[where f="Abs_finfun"] ext) }
  | 
| 
 | 
  1528  | 
  from this[of UNIV]
  | 
| 
 | 
  1529  | 
  show "fold (\<lambda>a :: 'c \<times> 'a. (\<lambda>(a, b) c f. f(\<^sup>f a := (f\<^sub>f a)(\<^sup>f b := c))) a b') ((finfun_const \<circ> finfun_const) b) UNIV = (finfun_const \<circ> finfun_const) b'"
  | 
| 
 | 
  1530  | 
    by(simp add: finfun_const_def)
  | 
| 
 | 
  1531  | 
qed
  | 
| 
 | 
  1532  | 
  | 
| 
 | 
  1533  | 
declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
  | 
| 
 | 
  1534  | 
  | 
| 
 | 
  1535  | 
lemma finfun_curry_const [simp, code]: "finfun_curry (\<lambda>\<^isup>f c) = (\<lambda>\<^isup>f \<lambda>\<^isup>f c)"
  | 
| 
 | 
  1536  | 
by(simp add: finfun_curry_def)
  | 
| 
 | 
  1537  | 
  | 
| 
 | 
  1538  | 
lemma finfun_curry_update [simp]:
  | 
| 
 | 
  1539  | 
  "finfun_curry (f(\<^sup>f (a, b) := c)) = (finfun_curry f)(\<^sup>f a := ((finfun_curry f)\<^sub>f a)(\<^sup>f b := c))"
  | 
| 
 | 
  1540  | 
  and finfun_curry_update_code [code]:
  | 
| 
 | 
  1541  | 
  "finfun_curry (f(\<^sup>f\<^sup>c (a, b) := c)) = (finfun_curry f)(\<^sup>f a := ((finfun_curry f)\<^sub>f a)(\<^sup>f b := c))"
  | 
| 
 | 
  1542  | 
by(simp_all add: finfun_curry_def)
  | 
| 
 | 
  1543  | 
  | 
| 
 | 
  1544  | 
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
  | 
| 
 | 
  1545  | 
  | 
| 
 | 
  1546  | 
lemma finfun_Abs_finfun_curry: assumes fin: "f \<in> finfun"
  | 
| 
 | 
  1547  | 
  shows "(\<lambda>a. Abs_finfun (curry f a)) \<in> finfun"
  | 
| 
 | 
  1548  | 
proof -
  | 
| 
 | 
  1549  | 
  from fin obtain c where c: "finite {ab. f ab \<noteq> c}" unfolding finfun_def by blast
 | 
| 
 | 
  1550  | 
  have "{a. \<exists>b. f (a, b) \<noteq> c} = fst ` {ab. f ab \<noteq> c}" by(force)
 | 
| 
 | 
  1551  | 
  hence "{a. curry f a \<noteq> (\<lambda>x. c)} = fst ` {ab. f ab \<noteq> c}"
 | 
| 
 | 
  1552  | 
    by(auto simp add: curry_def expand_fun_eq)
  | 
| 
 | 
  1553  | 
  with fin c have "finite {a.  Abs_finfun (curry f a) \<noteq> (\<lambda>\<^isup>f c)}"
 | 
| 
 | 
  1554  | 
    by(simp add: finfun_const_def finfun_curry)
  | 
| 
 | 
  1555  | 
  thus ?thesis unfolding finfun_def by auto
  | 
| 
 | 
  1556  | 
qed
  | 
| 
 | 
  1557  | 
  | 
| 
 | 
  1558  | 
lemma finfun_curry_conv_curry:
  | 
| 
 | 
  1559  | 
  fixes f :: "('a \<times> 'b) \<Rightarrow>\<^isub>f 'c"
 | 
| 
 | 
  1560  | 
  shows "finfun_curry f = Abs_finfun (\<lambda>a. Abs_finfun (curry (Rep_finfun f) a))"
  | 
| 
 | 
  1561  | 
proof -
  | 
| 
 | 
  1562  | 
  have "finfun_curry = (\<lambda>f :: ('a \<times> 'b) \<Rightarrow>\<^isub>f 'c. Abs_finfun (\<lambda>a. Abs_finfun (curry (Rep_finfun f) a)))"
 | 
| 
 | 
  1563  | 
  proof(rule finfun_rec_unique)
  | 
| 
 | 
  1564  | 
    { fix c show "finfun_curry (\<lambda>\<^isup>f c) = (\<lambda>\<^isup>f \<lambda>\<^isup>f c)" by simp }
 | 
| 
 | 
  1565  | 
    { fix f a c show "finfun_curry (f(\<^sup>f a := c)) = (finfun_curry f)(\<^sup>f fst a := ((finfun_curry f)\<^sub>f (fst a))(\<^sup>f snd a := c))"
 | 
| 
 | 
  1566  | 
        by(cases a) simp }
  | 
| 
 | 
  1567  | 
    { fix c show "Abs_finfun (\<lambda>a. Abs_finfun (curry (Rep_finfun (\<lambda>\<^isup>f c)) a)) = (\<lambda>\<^isup>f \<lambda>\<^isup>f c)"
 | 
| 
 | 
  1568  | 
        by(simp add: finfun_curry_def finfun_const_def curry_def) }
  | 
| 
 | 
  1569  | 
    { fix g a b
 | 
| 
 | 
  1570  | 
      show "Abs_finfun (\<lambda>aa. Abs_finfun (curry (Rep_finfun g(\<^sup>f a := b)) aa)) =
  | 
| 
 | 
  1571  | 
       (Abs_finfun (\<lambda>a. Abs_finfun (curry (Rep_finfun g) a)))(\<^sup>f
  | 
| 
 | 
  1572  | 
       fst a := ((Abs_finfun (\<lambda>a. Abs_finfun (curry (Rep_finfun g) a)))\<^sub>f (fst a))(\<^sup>f snd a := b))"
  | 
| 
 | 
  1573  | 
        by(cases a)(auto intro!: ext arg_cong[where f=Abs_finfun] simp add: finfun_curry_def finfun_update_def finfun_apply_Rep_finfun finfun_curry finfun_Abs_finfun_curry) }
  | 
| 
 | 
  1574  | 
  qed
  | 
| 
 | 
  1575  | 
  thus ?thesis by(auto simp add: expand_fun_eq)
  | 
| 
 | 
  1576  | 
qed
  | 
| 
 | 
  1577  | 
  | 
| 
 | 
  1578  | 
subsection {* Executable equality for FinFuns *}
 | 
| 
 | 
  1579  | 
  | 
| 
 | 
  1580  | 
lemma eq_finfun_All_ext: "(f = g) \<longleftrightarrow> finfun_All ((\<lambda>(x, y). x = y) \<circ>\<^isub>f (f, g)\<^sup>f)"
  | 
| 
 | 
  1581  | 
by(simp add: expand_finfun_eq expand_fun_eq finfun_All_All o_def)
  | 
| 
 | 
  1582  | 
  | 
| 
 | 
  1583  | 
instantiation finfun :: ("{card_UNIV,eq}",eq) eq begin
 | 
| 
 | 
  1584  | 
definition eq_finfun_def: "eq_class.eq f g \<longleftrightarrow> finfun_All ((\<lambda>(x, y). x = y) \<circ>\<^isub>f (f, g)\<^sup>f)"
  | 
| 
 | 
  1585  | 
instance by(intro_classes)(simp add: eq_finfun_All_ext eq_finfun_def)
  | 
| 
 | 
  1586  | 
end
  | 
| 
 | 
  1587  | 
  | 
| 
 | 
  1588  | 
subsection {* Operator that explicitly removes all redundant updates in the generated representations *}
 | 
| 
 | 
  1589  | 
  | 
| 
 | 
  1590  | 
definition finfun_clearjunk :: "'a \<Rightarrow>\<^isub>f 'b \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'b"
  | 
| 
 | 
  1591  | 
where [simp, code del]: "finfun_clearjunk = id"
  | 
| 
 | 
  1592  | 
  | 
| 
 | 
  1593  | 
lemma finfun_clearjunk_const [code]: "finfun_clearjunk (\<lambda>\<^isup>f b) = (\<lambda>\<^isup>f b)"
  | 
| 
 | 
  1594  | 
by simp
  | 
| 
 | 
  1595  | 
  | 
| 
 | 
  1596  | 
lemma finfun_clearjunk_update [code]: "finfun_clearjunk (finfun_update_code f a b) = f(\<^sup>f a := b)"
  | 
| 
 | 
  1597  | 
by simp
  | 
| 
 | 
  1598  | 
  | 
| 
 | 
  1599  | 
end  |