| author | wenzelm | 
| Tue, 26 Mar 2024 11:45:49 +0100 | |
| changeset 80004 | 31ebb6be32b0 | 
| parent 69597 | ff784d5a5bfb | 
| child 80914 | d97fdabd9e2b | 
| permissions | -rw-r--r-- | 
| 37936 | 1 | (* Title: HOL/UNITY/WFair.thy | 
| 4776 | 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 3 | Copyright 1998 University of Cambridge | |
| 4 | ||
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 5 | Conditional Fairness versions of transient, ensures, leadsTo. | 
| 4776 | 6 | |
| 7 | From Misra, "A Logic for Concurrent Programming", 1994 | |
| 8 | *) | |
| 9 | ||
| 63146 | 10 | section\<open>Progress\<close> | 
| 13798 | 11 | |
| 16417 | 12 | theory WFair imports UNITY begin | 
| 4776 | 13 | |
| 63146 | 14 | text\<open>The original version of this theory was based on weak fairness. (Thus, | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 15 | the entire UNITY development embodied this assumption, until February 2003.) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 16 | Weak fairness states that if a command is enabled continuously, then it is | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 17 | eventually executed. Ernie Cohen suggested that I instead adopt unconditional | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 18 | fairness: every command is executed infinitely often. | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 19 | |
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 20 | In fact, Misra's paper on "Progress" seems to be ambiguous about the correct | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 21 | interpretation, and says that the two forms of fairness are equivalent. They | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 22 | differ only on their treatment of partial transitions, which under | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 23 | unconditional fairness behave magically. That is because if there are partial | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 24 | transitions then there may be no fair executions, making all leads-to | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 25 | properties hold vacuously. | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 26 | |
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 27 | Unconditional fairness has some great advantages. By distinguishing partial | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 28 | transitions from total ones that are the identity on part of their domain, it | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 29 | is more expressive. Also, by simplifying the definition of the transient | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 30 | property, it simplifies many proofs. A drawback is that some laws only hold | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 31 | under the assumption that all transitions are total. The best-known of these | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 32 | is the impossibility law for leads-to. | 
| 63146 | 33 | \<close> | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 34 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32693diff
changeset | 35 | definition | 
| 4776 | 36 | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
63146diff
changeset | 37 | \<comment> \<open>This definition specifies conditional fairness. The rest of the theory | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 38 | is generic to all forms of fairness. To get weak fairness, conjoin | 
| 69597 | 39 | the inclusion below with \<^term>\<open>A \<subseteq> Domain act\<close>, which specifies | 
| 40 | that the action is enabled over all of \<^term>\<open>A\<close>.\<close> | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32693diff
changeset | 41 | transient :: "'a set => 'a program set" where | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 42 |     "transient A == {F. \<exists>act\<in>Acts F. act``A \<subseteq> -A}"
 | 
| 4776 | 43 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32693diff
changeset | 44 | definition | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32693diff
changeset | 45 | ensures :: "['a set, 'a set] => 'a program set" (infixl "ensures" 60) where | 
| 13805 | 46 | "A ensures B == (A-B co A \<union> B) \<inter> transient (A-B)" | 
| 8006 | 47 | |
| 6536 | 48 | |
| 23767 | 49 | inductive_set | 
| 6801 
9e0037839d63
renamed the underlying relation of leadsTo from "leadsto"
 paulson parents: 
6536diff
changeset | 50 |   leads :: "'a program => ('a set * 'a set) set"
 | 
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
63146diff
changeset | 51 | \<comment> \<open>LEADS-TO constant for the inductive definition\<close> | 
| 23767 | 52 | for F :: "'a program" | 
| 53 | where | |
| 4776 | 54 | |
| 13805 | 55 | Basis: "F \<in> A ensures B ==> (A,B) \<in> leads F" | 
| 4776 | 56 | |
| 23767 | 57 | | Trans: "[| (A,B) \<in> leads F; (B,C) \<in> leads F |] ==> (A,C) \<in> leads F" | 
| 4776 | 58 | |
| 23767 | 59 | | Union: "\<forall>A \<in> S. (A,B) \<in> leads F ==> (Union S, B) \<in> leads F" | 
| 4776 | 60 | |
| 5155 | 61 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32693diff
changeset | 62 | definition leadsTo :: "['a set, 'a set] => 'a program set" (infixl "leadsTo" 60) where | 
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
63146diff
changeset | 63 | \<comment> \<open>visible version of the LEADS-TO relation\<close> | 
| 13805 | 64 |     "A leadsTo B == {F. (A,B) \<in> leads F}"
 | 
| 5648 | 65 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32693diff
changeset | 66 | definition wlt :: "['a program, 'a set] => 'a set" where | 
| 69597 | 67 | \<comment> \<open>predicate transformer: the largest set that leads to \<^term>\<open>B\<close>\<close> | 
| 61952 | 68 |     "wlt F B == \<Union>{A. F \<in> A leadsTo B}"
 | 
| 4776 | 69 | |
| 60773 | 70 | notation leadsTo (infixl "\<longmapsto>" 60) | 
| 13797 | 71 | |
| 72 | ||
| 63146 | 73 | subsection\<open>transient\<close> | 
| 13797 | 74 | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 75 | lemma stable_transient: | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 76 | "[| F \<in> stable A; F \<in> transient A |] ==> \<exists>act\<in>Acts F. A \<subseteq> - (Domain act)" | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 77 | apply (simp add: stable_def constrains_def transient_def, clarify) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 78 | apply (rule rev_bexI, auto) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 79 | done | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 80 | |
| 13797 | 81 | lemma stable_transient_empty: | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 82 |     "[| F \<in> stable A; F \<in> transient A; all_total F |] ==> A = {}"
 | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 83 | apply (drule stable_transient, assumption) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 84 | apply (simp add: all_total_def) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 85 | done | 
| 13797 | 86 | |
| 87 | lemma transient_strengthen: | |
| 13805 | 88 | "[| F \<in> transient A; B \<subseteq> A |] ==> F \<in> transient B" | 
| 13797 | 89 | apply (unfold transient_def, clarify) | 
| 90 | apply (blast intro!: rev_bexI) | |
| 91 | done | |
| 92 | ||
| 93 | lemma transientI: | |
| 67613 | 94 | "[| act \<in> Acts F; act``A \<subseteq> -A |] ==> F \<in> transient A" | 
| 13797 | 95 | by (unfold transient_def, blast) | 
| 96 | ||
| 97 | lemma transientE: | |
| 13805 | 98 | "[| F \<in> transient A; | 
| 67613 | 99 | \<And>act. [| act \<in> Acts F; act``A \<subseteq> -A |] ==> P |] | 
| 13797 | 100 | ==> P" | 
| 101 | by (unfold transient_def, blast) | |
| 102 | ||
| 103 | lemma transient_empty [simp]: "transient {} = UNIV"
 | |
| 104 | by (unfold transient_def, auto) | |
| 105 | ||
| 106 | ||
| 63146 | 107 | text\<open>This equation recovers the notion of weak fairness. A totalized | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 108 | program satisfies a transient assertion just if the original program | 
| 63146 | 109 | contains a suitable action that is also enabled.\<close> | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 110 | lemma totalize_transient_iff: | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 111 | "(totalize F \<in> transient A) = (\<exists>act\<in>Acts F. A \<subseteq> Domain act & act``A \<subseteq> -A)" | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 112 | apply (simp add: totalize_def totalize_act_def transient_def | 
| 32693 | 113 | Un_Image, safe) | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 114 | apply (blast intro!: rev_bexI)+ | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 115 | done | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 116 | |
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 117 | lemma totalize_transientI: | 
| 67613 | 118 | "[| act \<in> Acts F; A \<subseteq> Domain act; act``A \<subseteq> -A |] | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 119 | ==> totalize F \<in> transient A" | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 120 | by (simp add: totalize_transient_iff, blast) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 121 | |
| 63146 | 122 | subsection\<open>ensures\<close> | 
| 13797 | 123 | |
| 124 | lemma ensuresI: | |
| 13805 | 125 | "[| F \<in> (A-B) co (A \<union> B); F \<in> transient (A-B) |] ==> F \<in> A ensures B" | 
| 13797 | 126 | by (unfold ensures_def, blast) | 
| 127 | ||
| 128 | lemma ensuresD: | |
| 13805 | 129 | "F \<in> A ensures B ==> F \<in> (A-B) co (A \<union> B) & F \<in> transient (A-B)" | 
| 13797 | 130 | by (unfold ensures_def, blast) | 
| 131 | ||
| 132 | lemma ensures_weaken_R: | |
| 13805 | 133 | "[| F \<in> A ensures A'; A'<=B' |] ==> F \<in> A ensures B'" | 
| 13797 | 134 | apply (unfold ensures_def) | 
| 135 | apply (blast intro: constrains_weaken transient_strengthen) | |
| 136 | done | |
| 137 | ||
| 63146 | 138 | text\<open>The L-version (precondition strengthening) fails, but we have this\<close> | 
| 13797 | 139 | lemma stable_ensures_Int: | 
| 13805 | 140 | "[| F \<in> stable C; F \<in> A ensures B |] | 
| 141 | ==> F \<in> (C \<inter> A) ensures (C \<inter> B)" | |
| 13797 | 142 | apply (unfold ensures_def) | 
| 143 | apply (auto simp add: ensures_def Int_Un_distrib [symmetric] Diff_Int_distrib [symmetric]) | |
| 144 | prefer 2 apply (blast intro: transient_strengthen) | |
| 145 | apply (blast intro: stable_constrains_Int constrains_weaken) | |
| 146 | done | |
| 147 | ||
| 148 | lemma stable_transient_ensures: | |
| 13805 | 149 | "[| F \<in> stable A; F \<in> transient C; A \<subseteq> B \<union> C |] ==> F \<in> A ensures B" | 
| 13797 | 150 | apply (simp add: ensures_def stable_def) | 
| 151 | apply (blast intro: constrains_weaken transient_strengthen) | |
| 152 | done | |
| 153 | ||
| 13805 | 154 | lemma ensures_eq: "(A ensures B) = (A unless B) \<inter> transient (A-B)" | 
| 13797 | 155 | by (simp (no_asm) add: ensures_def unless_def) | 
| 156 | ||
| 157 | ||
| 63146 | 158 | subsection\<open>leadsTo\<close> | 
| 13797 | 159 | |
| 13805 | 160 | lemma leadsTo_Basis [intro]: "F \<in> A ensures B ==> F \<in> A leadsTo B" | 
| 13797 | 161 | apply (unfold leadsTo_def) | 
| 162 | apply (blast intro: leads.Basis) | |
| 163 | done | |
| 164 | ||
| 165 | lemma leadsTo_Trans: | |
| 13805 | 166 | "[| F \<in> A leadsTo B; F \<in> B leadsTo C |] ==> F \<in> A leadsTo C" | 
| 13797 | 167 | apply (unfold leadsTo_def) | 
| 168 | apply (blast intro: leads.Trans) | |
| 169 | done | |
| 170 | ||
| 14112 | 171 | lemma leadsTo_Basis': | 
| 172 | "[| F \<in> A co A \<union> B; F \<in> transient A |] ==> F \<in> A leadsTo B" | |
| 173 | apply (drule_tac B = "A-B" in constrains_weaken_L) | |
| 174 | apply (drule_tac [2] B = "A-B" in transient_strengthen) | |
| 175 | apply (rule_tac [3] ensuresI [THEN leadsTo_Basis]) | |
| 176 | apply (blast+) | |
| 177 | done | |
| 178 | ||
| 13805 | 179 | lemma transient_imp_leadsTo: "F \<in> transient A ==> F \<in> A leadsTo (-A)" | 
| 13797 | 180 | by (simp (no_asm_simp) add: leadsTo_Basis ensuresI Compl_partition) | 
| 181 | ||
| 63146 | 182 | text\<open>Useful with cancellation, disjunction\<close> | 
| 13805 | 183 | lemma leadsTo_Un_duplicate: "F \<in> A leadsTo (A' \<union> A') ==> F \<in> A leadsTo A'" | 
| 13797 | 184 | by (simp add: Un_ac) | 
| 185 | ||
| 186 | lemma leadsTo_Un_duplicate2: | |
| 13805 | 187 | "F \<in> A leadsTo (A' \<union> C \<union> C) ==> F \<in> A leadsTo (A' \<union> C)" | 
| 13797 | 188 | by (simp add: Un_ac) | 
| 189 | ||
| 63146 | 190 | text\<open>The Union introduction rule as we should have liked to state it\<close> | 
| 13797 | 191 | lemma leadsTo_Union: | 
| 61952 | 192 | "(!!A. A \<in> S ==> F \<in> A leadsTo B) ==> F \<in> (\<Union>S) leadsTo B" | 
| 13797 | 193 | apply (unfold leadsTo_def) | 
| 194 | apply (blast intro: leads.Union) | |
| 195 | done | |
| 196 | ||
| 197 | lemma leadsTo_Union_Int: | |
| 61952 | 198 | "(!!A. A \<in> S ==> F \<in> (A \<inter> C) leadsTo B) ==> F \<in> (\<Union>S \<inter> C) leadsTo B" | 
| 13797 | 199 | apply (unfold leadsTo_def) | 
| 200 | apply (simp only: Int_Union_Union) | |
| 201 | apply (blast intro: leads.Union) | |
| 202 | done | |
| 203 | ||
| 204 | lemma leadsTo_UN: | |
| 13805 | 205 | "(!!i. i \<in> I ==> F \<in> (A i) leadsTo B) ==> F \<in> (\<Union>i \<in> I. A i) leadsTo B" | 
| 13797 | 206 | apply (blast intro: leadsTo_Union) | 
| 207 | done | |
| 208 | ||
| 63146 | 209 | text\<open>Binary union introduction rule\<close> | 
| 13797 | 210 | lemma leadsTo_Un: | 
| 13805 | 211 | "[| F \<in> A leadsTo C; F \<in> B leadsTo C |] ==> F \<in> (A \<union> B) leadsTo C" | 
| 44106 | 212 |   using leadsTo_Union [of "{A, B}" F C] by auto
 | 
| 13797 | 213 | |
| 214 | lemma single_leadsTo_I: | |
| 13805 | 215 |      "(!!x. x \<in> A ==> F \<in> {x} leadsTo B) ==> F \<in> A leadsTo B"
 | 
| 13797 | 216 | by (subst UN_singleton [symmetric], rule leadsTo_UN, blast) | 
| 217 | ||
| 218 | ||
| 63146 | 219 | text\<open>The INDUCTION rule as we should have liked to state it\<close> | 
| 13797 | 220 | lemma leadsTo_induct: | 
| 13805 | 221 | "[| F \<in> za leadsTo zb; | 
| 222 | !!A B. F \<in> A ensures B ==> P A B; | |
| 223 | !!A B C. [| F \<in> A leadsTo B; P A B; F \<in> B leadsTo C; P B C |] | |
| 13797 | 224 | ==> P A C; | 
| 61952 | 225 | !!B S. \<forall>A \<in> S. F \<in> A leadsTo B & P A B ==> P (\<Union>S) B | 
| 13797 | 226 | |] ==> P za zb" | 
| 227 | apply (unfold leadsTo_def) | |
| 228 | apply (drule CollectD, erule leads.induct) | |
| 229 | apply (blast+) | |
| 230 | done | |
| 231 | ||
| 232 | ||
| 13805 | 233 | lemma subset_imp_ensures: "A \<subseteq> B ==> F \<in> A ensures B" | 
| 13797 | 234 | by (unfold ensures_def constrains_def transient_def, blast) | 
| 235 | ||
| 45605 | 236 | lemmas subset_imp_leadsTo = subset_imp_ensures [THEN leadsTo_Basis] | 
| 13797 | 237 | |
| 45605 | 238 | lemmas leadsTo_refl = subset_refl [THEN subset_imp_leadsTo] | 
| 13797 | 239 | |
| 45605 | 240 | lemmas empty_leadsTo = empty_subsetI [THEN subset_imp_leadsTo, simp] | 
| 13797 | 241 | |
| 45605 | 242 | lemmas leadsTo_UNIV = subset_UNIV [THEN subset_imp_leadsTo, simp] | 
| 13797 | 243 | |
| 244 | ||
| 245 | ||
| 246 | (** Variant induction rule: on the preconditions for B **) | |
| 247 | ||
| 63146 | 248 | text\<open>Lemma is the weak version: can't see how to do it in one step\<close> | 
| 13797 | 249 | lemma leadsTo_induct_pre_lemma: | 
| 13805 | 250 | "[| F \<in> za leadsTo zb; | 
| 13797 | 251 | P zb; | 
| 13805 | 252 | !!A B. [| F \<in> A ensures B; P B |] ==> P A; | 
| 61952 | 253 | !!S. \<forall>A \<in> S. P A ==> P (\<Union>S) | 
| 13797 | 254 | |] ==> P za" | 
| 63146 | 255 | txt\<open>by induction on this formula\<close> | 
| 13797 | 256 | apply (subgoal_tac "P zb --> P za") | 
| 63146 | 257 | txt\<open>now solve first subgoal: this formula is sufficient\<close> | 
| 13797 | 258 | apply (blast intro: leadsTo_refl) | 
| 259 | apply (erule leadsTo_induct) | |
| 260 | apply (blast+) | |
| 261 | done | |
| 262 | ||
| 263 | lemma leadsTo_induct_pre: | |
| 13805 | 264 | "[| F \<in> za leadsTo zb; | 
| 13797 | 265 | P zb; | 
| 13805 | 266 | !!A B. [| F \<in> A ensures B; F \<in> B leadsTo zb; P B |] ==> P A; | 
| 61952 | 267 | !!S. \<forall>A \<in> S. F \<in> A leadsTo zb & P A ==> P (\<Union>S) | 
| 13797 | 268 | |] ==> P za" | 
| 13805 | 269 | apply (subgoal_tac "F \<in> za leadsTo zb & P za") | 
| 13797 | 270 | apply (erule conjunct2) | 
| 271 | apply (erule leadsTo_induct_pre_lemma) | |
| 272 | prefer 3 apply (blast intro: leadsTo_Union) | |
| 273 | prefer 2 apply (blast intro: leadsTo_Trans) | |
| 274 | apply (blast intro: leadsTo_refl) | |
| 275 | done | |
| 276 | ||
| 277 | ||
| 13805 | 278 | lemma leadsTo_weaken_R: "[| F \<in> A leadsTo A'; A'<=B' |] ==> F \<in> A leadsTo B'" | 
| 13797 | 279 | by (blast intro: subset_imp_leadsTo leadsTo_Trans) | 
| 280 | ||
| 45477 | 281 | lemma leadsTo_weaken_L: | 
| 13805 | 282 | "[| F \<in> A leadsTo A'; B \<subseteq> A |] ==> F \<in> B leadsTo A'" | 
| 13797 | 283 | by (blast intro: leadsTo_Trans subset_imp_leadsTo) | 
| 284 | ||
| 63146 | 285 | text\<open>Distributes over binary unions\<close> | 
| 13797 | 286 | lemma leadsTo_Un_distrib: | 
| 13805 | 287 | "F \<in> (A \<union> B) leadsTo C = (F \<in> A leadsTo C & F \<in> B leadsTo C)" | 
| 13797 | 288 | by (blast intro: leadsTo_Un leadsTo_weaken_L) | 
| 289 | ||
| 290 | lemma leadsTo_UN_distrib: | |
| 13805 | 291 | "F \<in> (\<Union>i \<in> I. A i) leadsTo B = (\<forall>i \<in> I. F \<in> (A i) leadsTo B)" | 
| 13797 | 292 | by (blast intro: leadsTo_UN leadsTo_weaken_L) | 
| 293 | ||
| 294 | lemma leadsTo_Union_distrib: | |
| 61952 | 295 | "F \<in> (\<Union>S) leadsTo B = (\<forall>A \<in> S. F \<in> A leadsTo B)" | 
| 13797 | 296 | by (blast intro: leadsTo_Union leadsTo_weaken_L) | 
| 297 | ||
| 298 | ||
| 299 | lemma leadsTo_weaken: | |
| 13805 | 300 | "[| F \<in> A leadsTo A'; B \<subseteq> A; A'<=B' |] ==> F \<in> B leadsTo B'" | 
| 13797 | 301 | by (blast intro: leadsTo_weaken_R leadsTo_weaken_L leadsTo_Trans) | 
| 302 | ||
| 303 | ||
| 63146 | 304 | text\<open>Set difference: maybe combine with \<open>leadsTo_weaken_L\<close>??\<close> | 
| 13797 | 305 | lemma leadsTo_Diff: | 
| 13805 | 306 | "[| F \<in> (A-B) leadsTo C; F \<in> B leadsTo C |] ==> F \<in> A leadsTo C" | 
| 13797 | 307 | by (blast intro: leadsTo_Un leadsTo_weaken) | 
| 308 | ||
| 309 | lemma leadsTo_UN_UN: | |
| 13805 | 310 | "(!! i. i \<in> I ==> F \<in> (A i) leadsTo (A' i)) | 
| 311 | ==> F \<in> (\<Union>i \<in> I. A i) leadsTo (\<Union>i \<in> I. A' i)" | |
| 13797 | 312 | apply (blast intro: leadsTo_Union leadsTo_weaken_R) | 
| 313 | done | |
| 314 | ||
| 63146 | 315 | text\<open>Binary union version\<close> | 
| 13797 | 316 | lemma leadsTo_Un_Un: | 
| 13805 | 317 | "[| F \<in> A leadsTo A'; F \<in> B leadsTo B' |] | 
| 318 | ==> F \<in> (A \<union> B) leadsTo (A' \<union> B')" | |
| 13797 | 319 | by (blast intro: leadsTo_Un leadsTo_weaken_R) | 
| 320 | ||
| 321 | ||
| 322 | (** The cancellation law **) | |
| 323 | ||
| 324 | lemma leadsTo_cancel2: | |
| 13805 | 325 | "[| F \<in> A leadsTo (A' \<union> B); F \<in> B leadsTo B' |] | 
| 326 | ==> F \<in> A leadsTo (A' \<union> B')" | |
| 13797 | 327 | by (blast intro: leadsTo_Un_Un subset_imp_leadsTo leadsTo_Trans) | 
| 328 | ||
| 329 | lemma leadsTo_cancel_Diff2: | |
| 13805 | 330 | "[| F \<in> A leadsTo (A' \<union> B); F \<in> (B-A') leadsTo B' |] | 
| 331 | ==> F \<in> A leadsTo (A' \<union> B')" | |
| 13797 | 332 | apply (rule leadsTo_cancel2) | 
| 333 | prefer 2 apply assumption | |
| 334 | apply (simp_all (no_asm_simp)) | |
| 335 | done | |
| 336 | ||
| 337 | lemma leadsTo_cancel1: | |
| 13805 | 338 | "[| F \<in> A leadsTo (B \<union> A'); F \<in> B leadsTo B' |] | 
| 339 | ==> F \<in> A leadsTo (B' \<union> A')" | |
| 13797 | 340 | apply (simp add: Un_commute) | 
| 341 | apply (blast intro!: leadsTo_cancel2) | |
| 342 | done | |
| 343 | ||
| 344 | lemma leadsTo_cancel_Diff1: | |
| 13805 | 345 | "[| F \<in> A leadsTo (B \<union> A'); F \<in> (B-A') leadsTo B' |] | 
| 346 | ==> F \<in> A leadsTo (B' \<union> A')" | |
| 13797 | 347 | apply (rule leadsTo_cancel1) | 
| 348 | prefer 2 apply assumption | |
| 349 | apply (simp_all (no_asm_simp)) | |
| 350 | done | |
| 351 | ||
| 352 | ||
| 63146 | 353 | text\<open>The impossibility law\<close> | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 354 | lemma leadsTo_empty: "[|F \<in> A leadsTo {}; all_total F|] ==> A={}"
 | 
| 13797 | 355 | apply (erule leadsTo_induct_pre) | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 356 | apply (simp_all add: ensures_def constrains_def transient_def all_total_def, clarify) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 357 | apply (drule bspec, assumption)+ | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 358 | apply blast | 
| 13797 | 359 | done | 
| 360 | ||
| 63146 | 361 | subsection\<open>PSP: Progress-Safety-Progress\<close> | 
| 13797 | 362 | |
| 63146 | 363 | text\<open>Special case of PSP: Misra's "stable conjunction"\<close> | 
| 13797 | 364 | lemma psp_stable: | 
| 13805 | 365 | "[| F \<in> A leadsTo A'; F \<in> stable B |] | 
| 366 | ==> F \<in> (A \<inter> B) leadsTo (A' \<inter> B)" | |
| 13797 | 367 | apply (unfold stable_def) | 
| 368 | apply (erule leadsTo_induct) | |
| 369 | prefer 3 apply (blast intro: leadsTo_Union_Int) | |
| 370 | prefer 2 apply (blast intro: leadsTo_Trans) | |
| 371 | apply (rule leadsTo_Basis) | |
| 372 | apply (simp add: ensures_def Diff_Int_distrib2 [symmetric] Int_Un_distrib2 [symmetric]) | |
| 373 | apply (blast intro: transient_strengthen constrains_Int) | |
| 374 | done | |
| 375 | ||
| 376 | lemma psp_stable2: | |
| 13805 | 377 | "[| F \<in> A leadsTo A'; F \<in> stable B |] ==> F \<in> (B \<inter> A) leadsTo (B \<inter> A')" | 
| 13797 | 378 | by (simp add: psp_stable Int_ac) | 
| 379 | ||
| 380 | lemma psp_ensures: | |
| 13805 | 381 | "[| F \<in> A ensures A'; F \<in> B co B' |] | 
| 382 | ==> F \<in> (A \<inter> B') ensures ((A' \<inter> B) \<union> (B' - B))" | |
| 13797 | 383 | apply (unfold ensures_def constrains_def, clarify) (*speeds up the proof*) | 
| 384 | apply (blast intro: transient_strengthen) | |
| 385 | done | |
| 386 | ||
| 387 | lemma psp: | |
| 13805 | 388 | "[| F \<in> A leadsTo A'; F \<in> B co B' |] | 
| 389 | ==> F \<in> (A \<inter> B') leadsTo ((A' \<inter> B) \<union> (B' - B))" | |
| 13797 | 390 | apply (erule leadsTo_induct) | 
| 391 | prefer 3 apply (blast intro: leadsTo_Union_Int) | |
| 63146 | 392 | txt\<open>Basis case\<close> | 
| 13797 | 393 | apply (blast intro: psp_ensures) | 
| 63146 | 394 | txt\<open>Transitivity case has a delicate argument involving "cancellation"\<close> | 
| 13797 | 395 | apply (rule leadsTo_Un_duplicate2) | 
| 396 | apply (erule leadsTo_cancel_Diff1) | |
| 397 | apply (simp add: Int_Diff Diff_triv) | |
| 398 | apply (blast intro: leadsTo_weaken_L dest: constrains_imp_subset) | |
| 399 | done | |
| 400 | ||
| 401 | lemma psp2: | |
| 13805 | 402 | "[| F \<in> A leadsTo A'; F \<in> B co B' |] | 
| 403 | ==> F \<in> (B' \<inter> A) leadsTo ((B \<inter> A') \<union> (B' - B))" | |
| 13797 | 404 | by (simp (no_asm_simp) add: psp Int_ac) | 
| 405 | ||
| 406 | lemma psp_unless: | |
| 13805 | 407 | "[| F \<in> A leadsTo A'; F \<in> B unless B' |] | 
| 408 | ==> F \<in> (A \<inter> B) leadsTo ((A' \<inter> B) \<union> B')" | |
| 13797 | 409 | |
| 410 | apply (unfold unless_def) | |
| 411 | apply (drule psp, assumption) | |
| 412 | apply (blast intro: leadsTo_weaken) | |
| 413 | done | |
| 414 | ||
| 415 | ||
| 63146 | 416 | subsection\<open>Proving the induction rules\<close> | 
| 13797 | 417 | |
| 418 | (** The most general rule: r is any wf relation; f is any variant function **) | |
| 419 | ||
| 420 | lemma leadsTo_wf_induct_lemma: | |
| 421 | "[| wf r; | |
| 13805 | 422 |          \<forall>m. F \<in> (A \<inter> f-`{m}) leadsTo                      
 | 
| 67613 | 423 |                     ((A \<inter> f-`(r\<inverse> `` {m})) \<union> B) |]  
 | 
| 13805 | 424 |       ==> F \<in> (A \<inter> f-`{m}) leadsTo B"
 | 
| 13797 | 425 | apply (erule_tac a = m in wf_induct) | 
| 67613 | 426 | apply (subgoal_tac "F \<in> (A \<inter> (f -` (r\<inverse> `` {x}))) leadsTo B")
 | 
| 13797 | 427 | apply (blast intro: leadsTo_cancel1 leadsTo_Un_duplicate) | 
| 428 | apply (subst vimage_eq_UN) | |
| 429 | apply (simp only: UN_simps [symmetric]) | |
| 430 | apply (blast intro: leadsTo_UN) | |
| 431 | done | |
| 432 | ||
| 433 | ||
| 434 | (** Meta or object quantifier ? **) | |
| 435 | lemma leadsTo_wf_induct: | |
| 436 | "[| wf r; | |
| 13805 | 437 |          \<forall>m. F \<in> (A \<inter> f-`{m}) leadsTo                      
 | 
| 67613 | 438 |                     ((A \<inter> f-`(r\<inverse> `` {m})) \<union> B) |]  
 | 
| 13805 | 439 | ==> F \<in> A leadsTo B" | 
| 13797 | 440 | apply (rule_tac t = A in subst) | 
| 441 | defer 1 | |
| 442 | apply (rule leadsTo_UN) | |
| 443 | apply (erule leadsTo_wf_induct_lemma) | |
| 444 | apply assumption | |
| 445 | apply fast (*Blast_tac: Function unknown's argument not a parameter*) | |
| 446 | done | |
| 447 | ||
| 448 | ||
| 449 | lemma bounded_induct: | |
| 450 | "[| wf r; | |
| 13805 | 451 |          \<forall>m \<in> I. F \<in> (A \<inter> f-`{m}) leadsTo                    
 | 
| 67613 | 452 |                       ((A \<inter> f-`(r\<inverse> `` {m})) \<union> B) |]  
 | 
| 13805 | 453 | ==> F \<in> A leadsTo ((A - (f-`I)) \<union> B)" | 
| 13797 | 454 | apply (erule leadsTo_wf_induct, safe) | 
| 13805 | 455 | apply (case_tac "m \<in> I") | 
| 13797 | 456 | apply (blast intro: leadsTo_weaken) | 
| 457 | apply (blast intro: subset_imp_leadsTo) | |
| 458 | done | |
| 459 | ||
| 460 | ||
| 13805 | 461 | (*Alternative proof is via the lemma F \<in> (A \<inter> f-`(lessThan m)) leadsTo B*) | 
| 13797 | 462 | lemma lessThan_induct: | 
| 15045 | 463 |      "[| !!m::nat. F \<in> (A \<inter> f-`{m}) leadsTo ((A \<inter> f-`{..<m}) \<union> B) |]  
 | 
| 13805 | 464 | ==> F \<in> A leadsTo B" | 
| 13797 | 465 | apply (rule wf_less_than [THEN leadsTo_wf_induct]) | 
| 466 | apply (simp (no_asm_simp)) | |
| 467 | apply blast | |
| 468 | done | |
| 469 | ||
| 470 | lemma lessThan_bounded_induct: | |
| 13805 | 471 | "!!l::nat. [| \<forall>m \<in> greaterThan l. | 
| 472 |             F \<in> (A \<inter> f-`{m}) leadsTo ((A \<inter> f-`(lessThan m)) \<union> B) |]  
 | |
| 473 | ==> F \<in> A leadsTo ((A \<inter> (f-`(atMost l))) \<union> B)" | |
| 13797 | 474 | apply (simp only: Diff_eq [symmetric] vimage_Compl Compl_greaterThan [symmetric]) | 
| 475 | apply (rule wf_less_than [THEN bounded_induct]) | |
| 476 | apply (simp (no_asm_simp)) | |
| 477 | done | |
| 478 | ||
| 479 | lemma greaterThan_bounded_induct: | |
| 13805 | 480 | "(!!l::nat. \<forall>m \<in> lessThan l. | 
| 481 |                  F \<in> (A \<inter> f-`{m}) leadsTo ((A \<inter> f-`(greaterThan m)) \<union> B))
 | |
| 482 | ==> F \<in> A leadsTo ((A \<inter> (f-`(atLeast l))) \<union> B)" | |
| 13797 | 483 | apply (rule_tac f = f and f1 = "%k. l - k" | 
| 484 | in wf_less_than [THEN wf_inv_image, THEN leadsTo_wf_induct]) | |
| 19769 
c40ce2de2020
Added [simp]-lemmas "in_inv_image" and "in_lex_prod" in the spirit of "in_measure".
 krauss parents: 
16417diff
changeset | 485 | apply (simp (no_asm) add:Image_singleton) | 
| 13797 | 486 | apply clarify | 
| 487 | apply (case_tac "m<l") | |
| 13805 | 488 | apply (blast intro: leadsTo_weaken_R diff_less_mono2) | 
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
60773diff
changeset | 489 | apply (blast intro: not_le_imp_less subset_imp_leadsTo) | 
| 13797 | 490 | done | 
| 491 | ||
| 492 | ||
| 63146 | 493 | subsection\<open>wlt\<close> | 
| 13797 | 494 | |
| 63146 | 495 | text\<open>Misra's property W3\<close> | 
| 13805 | 496 | lemma wlt_leadsTo: "F \<in> (wlt F B) leadsTo B" | 
| 13797 | 497 | apply (unfold wlt_def) | 
| 498 | apply (blast intro!: leadsTo_Union) | |
| 499 | done | |
| 500 | ||
| 13805 | 501 | lemma leadsTo_subset: "F \<in> A leadsTo B ==> A \<subseteq> wlt F B" | 
| 13797 | 502 | apply (unfold wlt_def) | 
| 503 | apply (blast intro!: leadsTo_Union) | |
| 504 | done | |
| 505 | ||
| 63146 | 506 | text\<open>Misra's property W2\<close> | 
| 13805 | 507 | lemma leadsTo_eq_subset_wlt: "F \<in> A leadsTo B = (A \<subseteq> wlt F B)" | 
| 13797 | 508 | by (blast intro!: leadsTo_subset wlt_leadsTo [THEN leadsTo_weaken_L]) | 
| 509 | ||
| 63146 | 510 | text\<open>Misra's property W4\<close> | 
| 13805 | 511 | lemma wlt_increasing: "B \<subseteq> wlt F B" | 
| 13797 | 512 | apply (simp (no_asm_simp) add: leadsTo_eq_subset_wlt [symmetric] subset_imp_leadsTo) | 
| 513 | done | |
| 514 | ||
| 515 | ||
| 63146 | 516 | text\<open>Used in the Trans case below\<close> | 
| 13797 | 517 | lemma lemma1: | 
| 13805 | 518 | "[| B \<subseteq> A2; | 
| 519 | F \<in> (A1 - B) co (A1 \<union> B); | |
| 520 | F \<in> (A2 - C) co (A2 \<union> C) |] | |
| 521 | ==> F \<in> (A1 \<union> A2 - C) co (A1 \<union> A2 \<union> C)" | |
| 13797 | 522 | by (unfold constrains_def, clarify, blast) | 
| 523 | ||
| 63146 | 524 | text\<open>Lemma (1,2,3) of Misra's draft book, Chapter 4, "Progress"\<close> | 
| 13797 | 525 | lemma leadsTo_123: | 
| 13805 | 526 | "F \<in> A leadsTo A' | 
| 527 | ==> \<exists>B. A \<subseteq> B & F \<in> B leadsTo A' & F \<in> (B-A') co (B \<union> A')" | |
| 13797 | 528 | apply (erule leadsTo_induct) | 
| 63146 | 529 | txt\<open>Basis\<close> | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 530 | apply (blast dest: ensuresD) | 
| 63146 | 531 | txt\<open>Trans\<close> | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 532 | apply clarify | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 533 | apply (rule_tac x = "Ba \<union> Bb" in exI) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 534 | apply (blast intro: lemma1 leadsTo_Un_Un leadsTo_cancel1 leadsTo_Un_duplicate) | 
| 63146 | 535 | txt\<open>Union\<close> | 
| 13797 | 536 | apply (clarify dest!: ball_conj_distrib [THEN iffD1] bchoice) | 
| 13805 | 537 | apply (rule_tac x = "\<Union>A \<in> S. f A" in exI) | 
| 13797 | 538 | apply (auto intro: leadsTo_UN) | 
| 539 | (*Blast_tac says PROOF FAILED*) | |
| 13805 | 540 | apply (rule_tac I1=S and A1="%i. f i - B" and A'1="%i. f i \<union> B" | 
| 13798 | 541 | in constrains_UN [THEN constrains_weaken], auto) | 
| 13797 | 542 | done | 
| 543 | ||
| 544 | ||
| 63146 | 545 | text\<open>Misra's property W5\<close> | 
| 13805 | 546 | lemma wlt_constrains_wlt: "F \<in> (wlt F B - B) co (wlt F B)" | 
| 13798 | 547 | proof - | 
| 548 | from wlt_leadsTo [of F B, THEN leadsTo_123] | |
| 549 | show ?thesis | |
| 550 | proof (elim exE conjE) | |
| 551 | (* assumes have to be in exactly the form as in the goal displayed at | |
| 552 | this point. Isar doesn't give you any automation. *) | |
| 553 | fix C | |
| 554 | assume wlt: "wlt F B \<subseteq> C" | |
| 555 | and lt: "F \<in> C leadsTo B" | |
| 556 | and co: "F \<in> C - B co C \<union> B" | |
| 557 | have eq: "C = wlt F B" | |
| 558 | proof - | |
| 559 | from lt and wlt show ?thesis | |
| 560 | by (blast dest: leadsTo_eq_subset_wlt [THEN iffD1]) | |
| 561 | qed | |
| 562 | from co show ?thesis by (simp add: eq wlt_increasing Un_absorb2) | |
| 563 | qed | |
| 564 | qed | |
| 13797 | 565 | |
| 566 | ||
| 63146 | 567 | subsection\<open>Completion: Binary and General Finite versions\<close> | 
| 13797 | 568 | |
| 569 | lemma completion_lemma : | |
| 13805 | 570 | "[| W = wlt F (B' \<union> C); | 
| 571 | F \<in> A leadsTo (A' \<union> C); F \<in> A' co (A' \<union> C); | |
| 572 | F \<in> B leadsTo (B' \<union> C); F \<in> B' co (B' \<union> C) |] | |
| 573 | ==> F \<in> (A \<inter> B) leadsTo ((A' \<inter> B') \<union> C)" | |
| 574 | apply (subgoal_tac "F \<in> (W-C) co (W \<union> B' \<union> C) ") | |
| 13797 | 575 | prefer 2 | 
| 576 | apply (blast intro: wlt_constrains_wlt [THEN [2] constrains_Un, | |
| 577 | THEN constrains_weaken]) | |
| 13805 | 578 | apply (subgoal_tac "F \<in> (W-C) co W") | 
| 13797 | 579 | prefer 2 | 
| 580 | apply (simp add: wlt_increasing Un_assoc Un_absorb2) | |
| 13805 | 581 | apply (subgoal_tac "F \<in> (A \<inter> W - C) leadsTo (A' \<inter> W \<union> C) ") | 
| 13797 | 582 | prefer 2 apply (blast intro: wlt_leadsTo psp [THEN leadsTo_weaken]) | 
| 583 | (** LEVEL 6 **) | |
| 13805 | 584 | apply (subgoal_tac "F \<in> (A' \<inter> W \<union> C) leadsTo (A' \<inter> B' \<union> C) ") | 
| 13797 | 585 | prefer 2 | 
| 586 | apply (rule leadsTo_Un_duplicate2) | |
| 587 | apply (blast intro: leadsTo_Un_Un wlt_leadsTo | |
| 588 | [THEN psp2, THEN leadsTo_weaken] leadsTo_refl) | |
| 589 | apply (drule leadsTo_Diff) | |
| 590 | apply (blast intro: subset_imp_leadsTo) | |
| 13805 | 591 | apply (subgoal_tac "A \<inter> B \<subseteq> A \<inter> W") | 
| 13797 | 592 | prefer 2 | 
| 593 | apply (blast dest!: leadsTo_subset intro!: subset_refl [THEN Int_mono]) | |
| 594 | apply (blast intro: leadsTo_Trans subset_imp_leadsTo) | |
| 595 | done | |
| 596 | ||
| 597 | lemmas completion = completion_lemma [OF refl] | |
| 598 | ||
| 599 | lemma finite_completion_lemma: | |
| 13805 | 600 | "finite I ==> (\<forall>i \<in> I. F \<in> (A i) leadsTo (A' i \<union> C)) --> | 
| 601 | (\<forall>i \<in> I. F \<in> (A' i) co (A' i \<union> C)) --> | |
| 602 | F \<in> (\<Inter>i \<in> I. A i) leadsTo ((\<Inter>i \<in> I. A' i) \<union> C)" | |
| 13797 | 603 | apply (erule finite_induct, auto) | 
| 604 | apply (rule completion) | |
| 605 | prefer 4 | |
| 606 | apply (simp only: INT_simps [symmetric]) | |
| 607 | apply (rule constrains_INT, auto) | |
| 608 | done | |
| 609 | ||
| 610 | lemma finite_completion: | |
| 611 | "[| finite I; | |
| 13805 | 612 | !!i. i \<in> I ==> F \<in> (A i) leadsTo (A' i \<union> C); | 
| 613 | !!i. i \<in> I ==> F \<in> (A' i) co (A' i \<union> C) |] | |
| 614 | ==> F \<in> (\<Inter>i \<in> I. A i) leadsTo ((\<Inter>i \<in> I. A' i) \<union> C)" | |
| 13797 | 615 | by (blast intro: finite_completion_lemma [THEN mp, THEN mp]) | 
| 616 | ||
| 617 | lemma stable_completion: | |
| 13805 | 618 | "[| F \<in> A leadsTo A'; F \<in> stable A'; | 
| 619 | F \<in> B leadsTo B'; F \<in> stable B' |] | |
| 620 | ==> F \<in> (A \<inter> B) leadsTo (A' \<inter> B')" | |
| 13797 | 621 | apply (unfold stable_def) | 
| 622 | apply (rule_tac C1 = "{}" in completion [THEN leadsTo_weaken_R])
 | |
| 623 | apply (force+) | |
| 624 | done | |
| 625 | ||
| 626 | lemma finite_stable_completion: | |
| 627 | "[| finite I; | |
| 13805 | 628 | !!i. i \<in> I ==> F \<in> (A i) leadsTo (A' i); | 
| 629 | !!i. i \<in> I ==> F \<in> stable (A' i) |] | |
| 630 | ==> F \<in> (\<Inter>i \<in> I. A i) leadsTo (\<Inter>i \<in> I. A' i)" | |
| 13797 | 631 | apply (unfold stable_def) | 
| 632 | apply (rule_tac C1 = "{}" in finite_completion [THEN leadsTo_weaken_R])
 | |
| 633 | apply (simp_all (no_asm_simp)) | |
| 634 | apply blast+ | |
| 635 | done | |
| 9685 | 636 | |
| 35422 | 637 | end |