src/HOL/Ring_and_Field.thy
author wenzelm
Fri, 07 Oct 2005 22:59:18 +0200
changeset 17781 32bb237158a5
parent 17085 5b57f995a179
child 18623 9a5419d5ca01
permissions -rw-r--r--
print_translation: does not handle _idtdummy;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     1
(*  Title:   HOL/Ring_and_Field.thy
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     2
    ID:      $Id$
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
     3
    Author:  Gertrud Bauer, Steven Obua, Lawrence C Paulson, and Markus Wenzel,
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
     4
             with contributions by Jeremy Avigad
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     5
*)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     6
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
     7
header {* (Ordered) Rings and Fields *}
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     8
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
     9
theory Ring_and_Field
15140
322485b816ac import -> imports
nipkow
parents: 15131
diff changeset
    10
imports OrderedGroup
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15077
diff changeset
    11
begin
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    12
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    13
text {*
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    14
  The theory of partially ordered rings is taken from the books:
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    15
  \begin{itemize}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    16
  \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    17
  \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    18
  \end{itemize}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    19
  Most of the used notions can also be looked up in 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    20
  \begin{itemize}
14770
fe9504ba63d5 removed duplicate thms;
wenzelm
parents: 14754
diff changeset
    21
  \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    22
  \item \emph{Algebra I} by van der Waerden, Springer.
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    23
  \end{itemize}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    24
*}
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    25
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    26
axclass semiring \<subseteq> ab_semigroup_add, semigroup_mult
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    27
  left_distrib: "(a + b) * c = a * c + b * c"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    28
  right_distrib: "a * (b + c) = a * b + a * c"
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    29
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    30
axclass semiring_0 \<subseteq> semiring, comm_monoid_add
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    31
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    32
axclass semiring_0_cancel \<subseteq> semiring_0, cancel_ab_semigroup_add
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    33
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    34
axclass comm_semiring \<subseteq> ab_semigroup_add, ab_semigroup_mult  
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    35
  distrib: "(a + b) * c = a * c + b * c"
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    36
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    37
instance comm_semiring \<subseteq> semiring
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    38
proof
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    39
  fix a b c :: 'a
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    40
  show "(a + b) * c = a * c + b * c" by (simp add: distrib)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    41
  have "a * (b + c) = (b + c) * a" by (simp add: mult_ac)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    42
  also have "... = b * a + c * a" by (simp only: distrib)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    43
  also have "... = a * b + a * c" by (simp add: mult_ac)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    44
  finally show "a * (b + c) = a * b + a * c" by blast
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    45
qed
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    46
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    47
axclass comm_semiring_0 \<subseteq> comm_semiring, comm_monoid_add
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    48
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    49
instance comm_semiring_0 \<subseteq> semiring_0 ..
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    50
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    51
axclass comm_semiring_0_cancel \<subseteq> comm_semiring_0, cancel_ab_semigroup_add
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    52
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    53
instance comm_semiring_0_cancel \<subseteq> semiring_0_cancel ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    54
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    55
axclass axclass_0_neq_1 \<subseteq> zero, one
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    56
  zero_neq_one [simp]: "0 \<noteq> 1"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    57
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    58
axclass semiring_1 \<subseteq> axclass_0_neq_1, semiring_0, monoid_mult
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    59
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    60
axclass comm_semiring_1 \<subseteq> axclass_0_neq_1, comm_semiring_0, comm_monoid_mult (* previously almost_semiring *)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    61
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    62
instance comm_semiring_1 \<subseteq> semiring_1 ..
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
    63
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    64
axclass axclass_no_zero_divisors \<subseteq> zero, times
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    65
  no_zero_divisors: "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a * b \<noteq> 0"
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    66
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    67
axclass semiring_1_cancel \<subseteq> semiring_1, cancel_ab_semigroup_add
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    68
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    69
instance semiring_1_cancel \<subseteq> semiring_0_cancel ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    70
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    71
axclass comm_semiring_1_cancel \<subseteq> comm_semiring_1, cancel_ab_semigroup_add (* previously semiring *)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    72
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    73
instance comm_semiring_1_cancel \<subseteq> semiring_1_cancel ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    74
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    75
instance comm_semiring_1_cancel \<subseteq> comm_semiring_0_cancel ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    76
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    77
axclass ring \<subseteq> semiring, ab_group_add
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    78
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    79
instance ring \<subseteq> semiring_0_cancel ..
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    80
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    81
axclass comm_ring \<subseteq> comm_semiring_0, ab_group_add
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    82
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    83
instance comm_ring \<subseteq> ring ..
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    84
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    85
instance comm_ring \<subseteq> comm_semiring_0_cancel ..
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    86
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    87
axclass ring_1 \<subseteq> ring, semiring_1
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    88
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    89
instance ring_1 \<subseteq> semiring_1_cancel ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    90
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    91
axclass comm_ring_1 \<subseteq> comm_ring, comm_semiring_1 (* previously ring *)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    92
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    93
instance comm_ring_1 \<subseteq> ring_1 ..
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
    94
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    95
instance comm_ring_1 \<subseteq> comm_semiring_1_cancel ..
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    96
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    97
axclass idom \<subseteq> comm_ring_1, axclass_no_zero_divisors
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
    98
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    99
axclass field \<subseteq> comm_ring_1, inverse
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   100
  left_inverse [simp]: "a \<noteq> 0 ==> inverse a * a = 1"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   101
  divide_inverse:      "a / b = a * inverse b"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   102
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   103
lemma mult_zero_left [simp]: "0 * a = (0::'a::semiring_0_cancel)"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   104
proof -
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   105
  have "0*a + 0*a = 0*a + 0"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   106
    by (simp add: left_distrib [symmetric])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   107
  thus ?thesis 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   108
    by (simp only: add_left_cancel)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   109
qed
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   110
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   111
lemma mult_zero_right [simp]: "a * 0 = (0::'a::semiring_0_cancel)"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   112
proof -
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   113
  have "a*0 + a*0 = a*0 + 0"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   114
    by (simp add: right_distrib [symmetric])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   115
  thus ?thesis 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   116
    by (simp only: add_left_cancel)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   117
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   118
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   119
lemma field_mult_eq_0_iff [simp]: "(a*b = (0::'a::field)) = (a = 0 | b = 0)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   120
proof cases
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   121
  assume "a=0" thus ?thesis by simp
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   122
next
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   123
  assume anz [simp]: "a\<noteq>0"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   124
  { assume "a * b = 0"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   125
    hence "inverse a * (a * b) = 0" by simp
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   126
    hence "b = 0"  by (simp (no_asm_use) add: mult_assoc [symmetric])}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   127
  thus ?thesis by force
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   128
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   129
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   130
instance field \<subseteq> idom
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   131
by (intro_classes, simp)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   132
  
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   133
axclass division_by_zero \<subseteq> zero, inverse
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   134
  inverse_zero [simp]: "inverse 0 = 0"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   135
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   136
subsection {* Distribution rules *}
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   137
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   138
theorems ring_distrib = right_distrib left_distrib
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   139
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   140
text{*For the @{text combine_numerals} simproc*}
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   141
lemma combine_common_factor:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   142
     "a*e + (b*e + c) = (a+b)*e + (c::'a::semiring)"
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   143
by (simp add: left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   144
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   145
lemma minus_mult_left: "- (a * b) = (-a) * (b::'a::ring)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   146
apply (rule equals_zero_I)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   147
apply (simp add: left_distrib [symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   148
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   149
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   150
lemma minus_mult_right: "- (a * b) = a * -(b::'a::ring)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   151
apply (rule equals_zero_I)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   152
apply (simp add: right_distrib [symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   153
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   154
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   155
lemma minus_mult_minus [simp]: "(- a) * (- b) = a * (b::'a::ring)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   156
  by (simp add: minus_mult_left [symmetric] minus_mult_right [symmetric])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   157
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   158
lemma minus_mult_commute: "(- a) * b = a * (- b::'a::ring)"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   159
  by (simp add: minus_mult_left [symmetric] minus_mult_right [symmetric])
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   160
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   161
lemma right_diff_distrib: "a * (b - c) = a * b - a * (c::'a::ring)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   162
by (simp add: right_distrib diff_minus 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   163
              minus_mult_left [symmetric] minus_mult_right [symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   164
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   165
lemma left_diff_distrib: "(a - b) * c = a * c - b * (c::'a::ring)"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   166
by (simp add: left_distrib diff_minus 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   167
              minus_mult_left [symmetric] minus_mult_right [symmetric]) 
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   168
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   169
axclass pordered_semiring \<subseteq> semiring_0, pordered_ab_semigroup_add 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   170
  mult_left_mono: "a <= b \<Longrightarrow> 0 <= c \<Longrightarrow> c * a <= c * b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   171
  mult_right_mono: "a <= b \<Longrightarrow> 0 <= c \<Longrightarrow> a * c <= b * c"
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   172
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   173
axclass pordered_cancel_semiring \<subseteq> pordered_semiring, cancel_ab_semigroup_add
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   174
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   175
instance pordered_cancel_semiring \<subseteq> semiring_0_cancel ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   176
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   177
axclass ordered_semiring_strict \<subseteq> semiring_0, ordered_cancel_ab_semigroup_add
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   178
  mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   179
  mult_strict_right_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> a * c < b * c"
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   180
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   181
instance ordered_semiring_strict \<subseteq> semiring_0_cancel ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   182
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   183
instance ordered_semiring_strict \<subseteq> pordered_cancel_semiring
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   184
apply intro_classes
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   185
apply (case_tac "a < b & 0 < c")
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   186
apply (auto simp add: mult_strict_left_mono order_less_le)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   187
apply (auto simp add: mult_strict_left_mono order_le_less)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   188
apply (simp add: mult_strict_right_mono)
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   189
done
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   190
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   191
axclass pordered_comm_semiring \<subseteq> comm_semiring_0, pordered_ab_semigroup_add
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   192
  mult_mono: "a <= b \<Longrightarrow> 0 <= c \<Longrightarrow> c * a <= c * b"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   193
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   194
axclass pordered_cancel_comm_semiring \<subseteq> pordered_comm_semiring, cancel_ab_semigroup_add
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   195
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   196
instance pordered_cancel_comm_semiring \<subseteq> pordered_comm_semiring ..
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   197
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   198
axclass ordered_comm_semiring_strict \<subseteq> comm_semiring_0, ordered_cancel_ab_semigroup_add
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   199
  mult_strict_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   200
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   201
instance pordered_comm_semiring \<subseteq> pordered_semiring
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   202
by (intro_classes, insert mult_mono, simp_all add: mult_commute, blast+)
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   203
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   204
instance pordered_cancel_comm_semiring \<subseteq> pordered_cancel_semiring ..
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   205
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   206
instance ordered_comm_semiring_strict \<subseteq> ordered_semiring_strict
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   207
by (intro_classes, insert mult_strict_mono, simp_all add: mult_commute, blast+)
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   208
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   209
instance ordered_comm_semiring_strict \<subseteq> pordered_cancel_comm_semiring
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   210
apply (intro_classes)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   211
apply (case_tac "a < b & 0 < c")
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   212
apply (auto simp add: mult_strict_left_mono order_less_le)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   213
apply (auto simp add: mult_strict_left_mono order_le_less)
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   214
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   215
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   216
axclass pordered_ring \<subseteq> ring, pordered_semiring 
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   217
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   218
instance pordered_ring \<subseteq> pordered_ab_group_add ..
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   219
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   220
instance pordered_ring \<subseteq> pordered_cancel_semiring ..
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   221
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   222
axclass lordered_ring \<subseteq> pordered_ring, lordered_ab_group_abs
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   223
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   224
instance lordered_ring \<subseteq> lordered_ab_group_meet ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   225
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   226
instance lordered_ring \<subseteq> lordered_ab_group_join ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   227
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   228
axclass axclass_abs_if \<subseteq> minus, ord, zero
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   229
  abs_if: "abs a = (if (a < 0) then (-a) else a)"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   230
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   231
axclass ordered_ring_strict \<subseteq> ring, ordered_semiring_strict, axclass_abs_if
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   232
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   233
instance ordered_ring_strict \<subseteq> lordered_ab_group ..
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   234
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   235
instance ordered_ring_strict \<subseteq> lordered_ring
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   236
by (intro_classes, simp add: abs_if join_eq_if)
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   237
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   238
axclass pordered_comm_ring \<subseteq> comm_ring, pordered_comm_semiring
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   239
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   240
axclass ordered_semidom \<subseteq> comm_semiring_1_cancel, ordered_comm_semiring_strict (* previously ordered_semiring *)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   241
  zero_less_one [simp]: "0 < 1"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   242
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   243
axclass ordered_idom \<subseteq> comm_ring_1, ordered_comm_semiring_strict, axclass_abs_if (* previously ordered_ring *)
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   244
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   245
instance ordered_idom \<subseteq> ordered_ring_strict ..
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   246
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   247
axclass ordered_field \<subseteq> field, ordered_idom
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   248
15923
01d5d0c1c078 fixed lin.arith
nipkow
parents: 15769
diff changeset
   249
lemmas linorder_neqE_ordered_idom =
01d5d0c1c078 fixed lin.arith
nipkow
parents: 15769
diff changeset
   250
 linorder_neqE[where 'a = "?'b::ordered_idom"]
01d5d0c1c078 fixed lin.arith
nipkow
parents: 15769
diff changeset
   251
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   252
lemma eq_add_iff1:
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   253
     "(a*e + c = b*e + d) = ((a-b)*e + c = (d::'a::ring))"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   254
apply (simp add: diff_minus left_distrib)
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   255
apply (simp add: diff_minus left_distrib add_ac)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   256
apply (simp add: compare_rls minus_mult_left [symmetric])
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   257
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   258
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   259
lemma eq_add_iff2:
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   260
     "(a*e + c = b*e + d) = (c = (b-a)*e + (d::'a::ring))"
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   261
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   262
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   263
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   264
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   265
lemma less_add_iff1:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   266
     "(a*e + c < b*e + d) = ((a-b)*e + c < (d::'a::pordered_ring))"
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   267
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   268
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   269
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   270
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   271
lemma less_add_iff2:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   272
     "(a*e + c < b*e + d) = (c < (b-a)*e + (d::'a::pordered_ring))"
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   273
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   274
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   275
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   276
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   277
lemma le_add_iff1:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   278
     "(a*e + c \<le> b*e + d) = ((a-b)*e + c \<le> (d::'a::pordered_ring))"
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   279
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   280
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   281
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   282
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   283
lemma le_add_iff2:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   284
     "(a*e + c \<le> b*e + d) = (c \<le> (b-a)*e + (d::'a::pordered_ring))"
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   285
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   286
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   287
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   288
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   289
subsection {* Ordering Rules for Multiplication *}
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   290
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   291
lemma mult_left_le_imp_le:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   292
     "[|c*a \<le> c*b; 0 < c|] ==> a \<le> (b::'a::ordered_semiring_strict)"
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   293
  by (force simp add: mult_strict_left_mono linorder_not_less [symmetric])
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   294
 
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   295
lemma mult_right_le_imp_le:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   296
     "[|a*c \<le> b*c; 0 < c|] ==> a \<le> (b::'a::ordered_semiring_strict)"
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   297
  by (force simp add: mult_strict_right_mono linorder_not_less [symmetric])
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   298
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   299
lemma mult_left_less_imp_less:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   300
     "[|c*a < c*b; 0 \<le> c|] ==> a < (b::'a::ordered_semiring_strict)"
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   301
  by (force simp add: mult_left_mono linorder_not_le [symmetric])
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   302
 
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   303
lemma mult_right_less_imp_less:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   304
     "[|a*c < b*c; 0 \<le> c|] ==> a < (b::'a::ordered_semiring_strict)"
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   305
  by (force simp add: mult_right_mono linorder_not_le [symmetric])
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   306
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   307
lemma mult_strict_left_mono_neg:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   308
     "[|b < a; c < 0|] ==> c * a < c * (b::'a::ordered_ring_strict)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   309
apply (drule mult_strict_left_mono [of _ _ "-c"])
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   310
apply (simp_all add: minus_mult_left [symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   311
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   312
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   313
lemma mult_left_mono_neg:
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   314
     "[|b \<le> a; c \<le> 0|] ==> c * a \<le>  c * (b::'a::pordered_ring)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   315
apply (drule mult_left_mono [of _ _ "-c"])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   316
apply (simp_all add: minus_mult_left [symmetric]) 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   317
done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   318
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   319
lemma mult_strict_right_mono_neg:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   320
     "[|b < a; c < 0|] ==> a * c < b * (c::'a::ordered_ring_strict)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   321
apply (drule mult_strict_right_mono [of _ _ "-c"])
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   322
apply (simp_all add: minus_mult_right [symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   323
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   324
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   325
lemma mult_right_mono_neg:
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   326
     "[|b \<le> a; c \<le> 0|] ==> a * c \<le>  (b::'a::pordered_ring) * c"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   327
apply (drule mult_right_mono [of _ _ "-c"])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   328
apply (simp)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   329
apply (simp_all add: minus_mult_right [symmetric]) 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   330
done
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   331
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   332
subsection{* Products of Signs *}
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   333
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   334
lemma mult_pos_pos: "[| (0::'a::ordered_semiring_strict) < a; 0 < b |] ==> 0 < a*b"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   335
by (drule mult_strict_left_mono [of 0 b], auto)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   336
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   337
lemma mult_nonneg_nonneg: "[| (0::'a::pordered_cancel_semiring) \<le> a; 0 \<le> b |] ==> 0 \<le> a*b"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   338
by (drule mult_left_mono [of 0 b], auto)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   339
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   340
lemma mult_pos_neg: "[| (0::'a::ordered_semiring_strict) < a; b < 0 |] ==> a*b < 0"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   341
by (drule mult_strict_left_mono [of b 0], auto)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   342
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   343
lemma mult_nonneg_nonpos: "[| (0::'a::pordered_cancel_semiring) \<le> a; b \<le> 0 |] ==> a*b \<le> 0"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   344
by (drule mult_left_mono [of b 0], auto)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   345
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   346
lemma mult_pos_neg2: "[| (0::'a::ordered_semiring_strict) < a; b < 0 |] ==> b*a < 0" 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   347
by (drule mult_strict_right_mono[of b 0], auto)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   348
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   349
lemma mult_nonneg_nonpos2: "[| (0::'a::pordered_cancel_semiring) \<le> a; b \<le> 0 |] ==> b*a \<le> 0" 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   350
by (drule mult_right_mono[of b 0], auto)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   351
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   352
lemma mult_neg_neg: "[| a < (0::'a::ordered_ring_strict); b < 0 |] ==> 0 < a*b"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   353
by (drule mult_strict_right_mono_neg, auto)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   354
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   355
lemma mult_nonpos_nonpos: "[| a \<le> (0::'a::pordered_ring); b \<le> 0 |] ==> 0 \<le> a*b"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   356
by (drule mult_right_mono_neg[of a 0 b ], auto)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   357
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   358
lemma zero_less_mult_pos:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   359
     "[| 0 < a*b; 0 < a|] ==> 0 < (b::'a::ordered_semiring_strict)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   360
apply (case_tac "b\<le>0") 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   361
 apply (auto simp add: order_le_less linorder_not_less)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   362
apply (drule_tac mult_pos_neg [of a b]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   363
 apply (auto dest: order_less_not_sym)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   364
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   365
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   366
lemma zero_less_mult_pos2:
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   367
     "[| 0 < b*a; 0 < a|] ==> 0 < (b::'a::ordered_semiring_strict)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   368
apply (case_tac "b\<le>0") 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   369
 apply (auto simp add: order_le_less linorder_not_less)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   370
apply (drule_tac mult_pos_neg2 [of a b]) 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   371
 apply (auto dest: order_less_not_sym)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   372
done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   373
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   374
lemma zero_less_mult_iff:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   375
     "((0::'a::ordered_ring_strict) < a*b) = (0 < a & 0 < b | a < 0 & b < 0)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   376
apply (auto simp add: order_le_less linorder_not_less mult_pos_pos 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   377
  mult_neg_neg)
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   378
apply (blast dest: zero_less_mult_pos) 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   379
apply (blast dest: zero_less_mult_pos2)
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   380
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   381
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   382
text{*A field has no "zero divisors", and this theorem holds without the
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   383
      assumption of an ordering.  See @{text field_mult_eq_0_iff} below.*}
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   384
lemma mult_eq_0_iff [simp]: "(a*b = (0::'a::ordered_ring_strict)) = (a = 0 | b = 0)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   385
apply (case_tac "a < 0")
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   386
apply (auto simp add: linorder_not_less order_le_less linorder_neq_iff)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   387
apply (force dest: mult_strict_right_mono_neg mult_strict_right_mono)+
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   388
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   389
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   390
lemma zero_le_mult_iff:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   391
     "((0::'a::ordered_ring_strict) \<le> a*b) = (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   392
by (auto simp add: eq_commute [of 0] order_le_less linorder_not_less
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   393
                   zero_less_mult_iff)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   394
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   395
lemma mult_less_0_iff:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   396
     "(a*b < (0::'a::ordered_ring_strict)) = (0 < a & b < 0 | a < 0 & 0 < b)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   397
apply (insert zero_less_mult_iff [of "-a" b]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   398
apply (force simp add: minus_mult_left[symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   399
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   400
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   401
lemma mult_le_0_iff:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   402
     "(a*b \<le> (0::'a::ordered_ring_strict)) = (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   403
apply (insert zero_le_mult_iff [of "-a" b]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   404
apply (force simp add: minus_mult_left[symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   405
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   406
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   407
lemma split_mult_pos_le: "(0 \<le> a & 0 \<le> b) | (a \<le> 0 & b \<le> 0) \<Longrightarrow> 0 \<le> a * (b::_::pordered_ring)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   408
by (auto simp add: mult_nonneg_nonneg mult_nonpos_nonpos)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   409
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   410
lemma split_mult_neg_le: "(0 \<le> a & b \<le> 0) | (a \<le> 0 & 0 \<le> b) \<Longrightarrow> a * b \<le> (0::_::pordered_cancel_semiring)" 
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   411
by (auto simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   412
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   413
lemma zero_le_square: "(0::'a::ordered_ring_strict) \<le> a*a"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   414
by (simp add: zero_le_mult_iff linorder_linear) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   415
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   416
text{*Proving axiom @{text zero_less_one} makes all @{text ordered_semidom}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   417
      theorems available to members of @{term ordered_idom} *}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   418
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   419
instance ordered_idom \<subseteq> ordered_semidom
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   420
proof
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   421
  have "(0::'a) \<le> 1*1" by (rule zero_le_square)
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   422
  thus "(0::'a) < 1" by (simp add: order_le_less) 
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   423
qed
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   424
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   425
instance ordered_ring_strict \<subseteq> axclass_no_zero_divisors 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   426
by (intro_classes, simp)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   427
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   428
instance ordered_idom \<subseteq> idom ..
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   429
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   430
text{*All three types of comparision involving 0 and 1 are covered.*}
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   431
17085
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
   432
lemmas one_neq_zero = zero_neq_one [THEN not_sym]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
   433
declare one_neq_zero [simp]
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   434
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   435
lemma zero_le_one [simp]: "(0::'a::ordered_semidom) \<le> 1"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   436
  by (rule zero_less_one [THEN order_less_imp_le]) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   437
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   438
lemma not_one_le_zero [simp]: "~ (1::'a::ordered_semidom) \<le> 0"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   439
by (simp add: linorder_not_le) 
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   440
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   441
lemma not_one_less_zero [simp]: "~ (1::'a::ordered_semidom) < 0"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   442
by (simp add: linorder_not_less) 
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   443
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   444
subsection{*More Monotonicity*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   445
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   446
text{*Strict monotonicity in both arguments*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   447
lemma mult_strict_mono:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   448
     "[|a<b; c<d; 0<b; 0\<le>c|] ==> a * c < b * (d::'a::ordered_semiring_strict)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   449
apply (case_tac "c=0")
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   450
 apply (simp add: mult_pos_pos) 
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   451
apply (erule mult_strict_right_mono [THEN order_less_trans])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   452
 apply (force simp add: order_le_less) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   453
apply (erule mult_strict_left_mono, assumption)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   454
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   455
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   456
text{*This weaker variant has more natural premises*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   457
lemma mult_strict_mono':
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   458
     "[| a<b; c<d; 0 \<le> a; 0 \<le> c|] ==> a * c < b * (d::'a::ordered_semiring_strict)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   459
apply (rule mult_strict_mono)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   460
apply (blast intro: order_le_less_trans)+
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   461
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   462
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   463
lemma mult_mono:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   464
     "[|a \<le> b; c \<le> d; 0 \<le> b; 0 \<le> c|] 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   465
      ==> a * c  \<le>  b * (d::'a::pordered_semiring)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   466
apply (erule mult_right_mono [THEN order_trans], assumption)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   467
apply (erule mult_left_mono, assumption)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   468
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   469
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   470
lemma less_1_mult: "[| 1 < m; 1 < n |] ==> 1 < m*(n::'a::ordered_semidom)"
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   471
apply (insert mult_strict_mono [of 1 m 1 n]) 
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   472
apply (simp add:  order_less_trans [OF zero_less_one]) 
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   473
done
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   474
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   475
lemma mult_less_le_imp_less: "(a::'a::ordered_semiring_strict) < b ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   476
    c <= d ==> 0 <= a ==> 0 < c ==> a * c < b * d"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   477
  apply (subgoal_tac "a * c < b * c")
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   478
  apply (erule order_less_le_trans)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   479
  apply (erule mult_left_mono)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   480
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   481
  apply (erule mult_strict_right_mono)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   482
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   483
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   484
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   485
lemma mult_le_less_imp_less: "(a::'a::ordered_semiring_strict) <= b ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   486
    c < d ==> 0 < a ==> 0 <= c ==> a * c < b * d"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   487
  apply (subgoal_tac "a * c <= b * c")
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   488
  apply (erule order_le_less_trans)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   489
  apply (erule mult_strict_left_mono)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   490
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   491
  apply (erule mult_right_mono)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   492
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   493
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   494
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   495
subsection{*Cancellation Laws for Relationships With a Common Factor*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   496
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   497
text{*Cancellation laws for @{term "c*a < c*b"} and @{term "a*c < b*c"},
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   498
   also with the relations @{text "\<le>"} and equality.*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   499
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   500
text{*These ``disjunction'' versions produce two cases when the comparison is
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   501
 an assumption, but effectively four when the comparison is a goal.*}
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   502
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   503
lemma mult_less_cancel_right_disj:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   504
    "(a*c < b*c) = ((0 < c & a < b) | (c < 0 & b < (a::'a::ordered_ring_strict)))"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   505
apply (case_tac "c = 0")
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   506
apply (auto simp add: linorder_neq_iff mult_strict_right_mono 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   507
                      mult_strict_right_mono_neg)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   508
apply (auto simp add: linorder_not_less 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   509
                      linorder_not_le [symmetric, of "a*c"]
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   510
                      linorder_not_le [symmetric, of a])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   511
apply (erule_tac [!] notE)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   512
apply (auto simp add: order_less_imp_le mult_right_mono 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   513
                      mult_right_mono_neg)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   514
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   515
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   516
lemma mult_less_cancel_left_disj:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   517
    "(c*a < c*b) = ((0 < c & a < b) | (c < 0 & b < (a::'a::ordered_ring_strict)))"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   518
apply (case_tac "c = 0")
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   519
apply (auto simp add: linorder_neq_iff mult_strict_left_mono 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   520
                      mult_strict_left_mono_neg)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   521
apply (auto simp add: linorder_not_less 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   522
                      linorder_not_le [symmetric, of "c*a"]
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   523
                      linorder_not_le [symmetric, of a])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   524
apply (erule_tac [!] notE)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   525
apply (auto simp add: order_less_imp_le mult_left_mono 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   526
                      mult_left_mono_neg)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   527
done
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   528
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   529
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   530
text{*The ``conjunction of implication'' lemmas produce two cases when the
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   531
comparison is a goal, but give four when the comparison is an assumption.*}
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   532
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   533
lemma mult_less_cancel_right:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   534
  fixes c :: "'a :: ordered_ring_strict"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   535
  shows      "(a*c < b*c) = ((0 \<le> c --> a < b) & (c \<le> 0 --> b < a))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   536
by (insert mult_less_cancel_right_disj [of a c b], auto)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   537
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   538
lemma mult_less_cancel_left:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   539
  fixes c :: "'a :: ordered_ring_strict"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   540
  shows      "(c*a < c*b) = ((0 \<le> c --> a < b) & (c \<le> 0 --> b < a))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   541
by (insert mult_less_cancel_left_disj [of c a b], auto)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   542
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   543
lemma mult_le_cancel_right:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   544
     "(a*c \<le> b*c) = ((0<c --> a\<le>b) & (c<0 --> b \<le> (a::'a::ordered_ring_strict)))"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   545
by (simp add: linorder_not_less [symmetric] mult_less_cancel_right_disj)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   546
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   547
lemma mult_le_cancel_left:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   548
     "(c*a \<le> c*b) = ((0<c --> a\<le>b) & (c<0 --> b \<le> (a::'a::ordered_ring_strict)))"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   549
by (simp add: linorder_not_less [symmetric] mult_less_cancel_left_disj)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   550
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   551
lemma mult_less_imp_less_left:
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   552
      assumes less: "c*a < c*b" and nonneg: "0 \<le> c"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   553
      shows "a < (b::'a::ordered_semiring_strict)"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   554
proof (rule ccontr)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   555
  assume "~ a < b"
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   556
  hence "b \<le> a" by (simp add: linorder_not_less)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   557
  hence "c*b \<le> c*a" by (rule mult_left_mono)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   558
  with this and less show False 
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   559
    by (simp add: linorder_not_less [symmetric])
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   560
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   561
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   562
lemma mult_less_imp_less_right:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   563
  assumes less: "a*c < b*c" and nonneg: "0 <= c"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   564
  shows "a < (b::'a::ordered_semiring_strict)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   565
proof (rule ccontr)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   566
  assume "~ a < b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   567
  hence "b \<le> a" by (simp add: linorder_not_less)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   568
  hence "b*c \<le> a*c" by (rule mult_right_mono)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   569
  with this and less show False 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   570
    by (simp add: linorder_not_less [symmetric])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   571
qed  
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   572
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   573
text{*Cancellation of equalities with a common factor*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   574
lemma mult_cancel_right [simp]:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   575
     "(a*c = b*c) = (c = (0::'a::ordered_ring_strict) | a=b)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   576
apply (cut_tac linorder_less_linear [of 0 c])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   577
apply (force dest: mult_strict_right_mono_neg mult_strict_right_mono
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   578
             simp add: linorder_neq_iff)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   579
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   580
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   581
text{*These cancellation theorems require an ordering. Versions are proved
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   582
      below that work for fields without an ordering.*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   583
lemma mult_cancel_left [simp]:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   584
     "(c*a = c*b) = (c = (0::'a::ordered_ring_strict) | a=b)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   585
apply (cut_tac linorder_less_linear [of 0 c])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   586
apply (force dest: mult_strict_left_mono_neg mult_strict_left_mono
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   587
             simp add: linorder_neq_iff)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   588
done
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   589
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   590
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   591
subsubsection{*Special Cancellation Simprules for Multiplication*}
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   592
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   593
text{*These also produce two cases when the comparison is a goal.*}
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   594
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   595
lemma mult_le_cancel_right1:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   596
  fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   597
  shows "(c \<le> b*c) = ((0<c --> 1\<le>b) & (c<0 --> b \<le> 1))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   598
by (insert mult_le_cancel_right [of 1 c b], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   599
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   600
lemma mult_le_cancel_right2:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   601
  fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   602
  shows "(a*c \<le> c) = ((0<c --> a\<le>1) & (c<0 --> 1 \<le> a))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   603
by (insert mult_le_cancel_right [of a c 1], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   604
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   605
lemma mult_le_cancel_left1:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   606
  fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   607
  shows "(c \<le> c*b) = ((0<c --> 1\<le>b) & (c<0 --> b \<le> 1))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   608
by (insert mult_le_cancel_left [of c 1 b], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   609
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   610
lemma mult_le_cancel_left2:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   611
  fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   612
  shows "(c*a \<le> c) = ((0<c --> a\<le>1) & (c<0 --> 1 \<le> a))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   613
by (insert mult_le_cancel_left [of c a 1], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   614
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   615
lemma mult_less_cancel_right1:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   616
  fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   617
  shows "(c < b*c) = ((0 \<le> c --> 1<b) & (c \<le> 0 --> b < 1))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   618
by (insert mult_less_cancel_right [of 1 c b], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   619
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   620
lemma mult_less_cancel_right2:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   621
  fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   622
  shows "(a*c < c) = ((0 \<le> c --> a<1) & (c \<le> 0 --> 1 < a))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   623
by (insert mult_less_cancel_right [of a c 1], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   624
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   625
lemma mult_less_cancel_left1:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   626
  fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   627
  shows "(c < c*b) = ((0 \<le> c --> 1<b) & (c \<le> 0 --> b < 1))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   628
by (insert mult_less_cancel_left [of c 1 b], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   629
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   630
lemma mult_less_cancel_left2:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   631
  fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   632
  shows "(c*a < c) = ((0 \<le> c --> a<1) & (c \<le> 0 --> 1 < a))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   633
by (insert mult_less_cancel_left [of c a 1], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   634
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   635
lemma mult_cancel_right1 [simp]:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   636
fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   637
  shows "(c = b*c) = (c = 0 | b=1)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   638
by (insert mult_cancel_right [of 1 c b], force)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   639
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   640
lemma mult_cancel_right2 [simp]:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   641
fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   642
  shows "(a*c = c) = (c = 0 | a=1)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   643
by (insert mult_cancel_right [of a c 1], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   644
 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   645
lemma mult_cancel_left1 [simp]:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   646
fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   647
  shows "(c = c*b) = (c = 0 | b=1)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   648
by (insert mult_cancel_left [of c 1 b], force)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   649
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   650
lemma mult_cancel_left2 [simp]:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   651
fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   652
  shows "(c*a = c) = (c = 0 | a=1)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   653
by (insert mult_cancel_left [of c a 1], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   654
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   655
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   656
text{*Simprules for comparisons where common factors can be cancelled.*}
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   657
lemmas mult_compare_simps =
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   658
    mult_le_cancel_right mult_le_cancel_left
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   659
    mult_le_cancel_right1 mult_le_cancel_right2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   660
    mult_le_cancel_left1 mult_le_cancel_left2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   661
    mult_less_cancel_right mult_less_cancel_left
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   662
    mult_less_cancel_right1 mult_less_cancel_right2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   663
    mult_less_cancel_left1 mult_less_cancel_left2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   664
    mult_cancel_right mult_cancel_left
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   665
    mult_cancel_right1 mult_cancel_right2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   666
    mult_cancel_left1 mult_cancel_left2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   667
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   668
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   669
text{*This list of rewrites decides ring equalities by ordered rewriting.*}
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
   670
lemmas ring_eq_simps =  
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
   671
(*  mult_ac*)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   672
  left_distrib right_distrib left_diff_distrib right_diff_distrib
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
   673
  group_eq_simps
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
   674
(*  add_ac
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   675
  add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
   676
  diff_eq_eq eq_diff_eq *)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   677
    
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   678
subsection {* Fields *}
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   679
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   680
lemma right_inverse [simp]:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   681
      assumes not0: "a \<noteq> 0" shows "a * inverse (a::'a::field) = 1"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   682
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   683
  have "a * inverse a = inverse a * a" by (simp add: mult_ac)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   684
  also have "... = 1" using not0 by simp
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   685
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   686
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   687
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   688
lemma right_inverse_eq: "b \<noteq> 0 ==> (a / b = 1) = (a = (b::'a::field))"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   689
proof
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   690
  assume neq: "b \<noteq> 0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   691
  {
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   692
    hence "a = (a / b) * b" by (simp add: divide_inverse mult_ac)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   693
    also assume "a / b = 1"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   694
    finally show "a = b" by simp
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   695
  next
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   696
    assume "a = b"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   697
    with neq show "a / b = 1" by (simp add: divide_inverse)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   698
  }
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   699
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   700
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   701
lemma nonzero_inverse_eq_divide: "a \<noteq> 0 ==> inverse (a::'a::field) = 1/a"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   702
by (simp add: divide_inverse)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   703
15228
4d332d10fa3d revised simprules for division
paulson
parents: 15197
diff changeset
   704
lemma divide_self: "a \<noteq> 0 ==> a / (a::'a::field) = 1"
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   705
  by (simp add: divide_inverse)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   706
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   707
lemma divide_zero [simp]: "a / 0 = (0::'a::{field,division_by_zero})"
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   708
by (simp add: divide_inverse)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   709
15228
4d332d10fa3d revised simprules for division
paulson
parents: 15197
diff changeset
   710
lemma divide_self_if [simp]:
4d332d10fa3d revised simprules for division
paulson
parents: 15197
diff changeset
   711
     "a / (a::'a::{field,division_by_zero}) = (if a=0 then 0 else 1)"
4d332d10fa3d revised simprules for division
paulson
parents: 15197
diff changeset
   712
  by (simp add: divide_self)
4d332d10fa3d revised simprules for division
paulson
parents: 15197
diff changeset
   713
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   714
lemma divide_zero_left [simp]: "0/a = (0::'a::field)"
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   715
by (simp add: divide_inverse)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   716
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   717
lemma inverse_eq_divide: "inverse (a::'a::field) = 1/a"
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   718
by (simp add: divide_inverse)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   719
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   720
lemma add_divide_distrib: "(a+b)/(c::'a::field) = a/c + b/c"
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   721
by (simp add: divide_inverse left_distrib) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   722
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   723
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   724
text{*Compared with @{text mult_eq_0_iff}, this version removes the requirement
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   725
      of an ordering.*}
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   726
lemma field_mult_eq_0_iff [simp]: "(a*b = (0::'a::field)) = (a = 0 | b = 0)"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   727
proof cases
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   728
  assume "a=0" thus ?thesis by simp
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   729
next
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   730
  assume anz [simp]: "a\<noteq>0"
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   731
  { assume "a * b = 0"
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   732
    hence "inverse a * (a * b) = 0" by simp
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   733
    hence "b = 0"  by (simp (no_asm_use) add: mult_assoc [symmetric])}
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   734
  thus ?thesis by force
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   735
qed
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   736
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   737
text{*Cancellation of equalities with a common factor*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   738
lemma field_mult_cancel_right_lemma:
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   739
      assumes cnz: "c \<noteq> (0::'a::field)"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   740
	  and eq:  "a*c = b*c"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   741
	 shows "a=b"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   742
proof -
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   743
  have "(a * c) * inverse c = (b * c) * inverse c"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   744
    by (simp add: eq)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   745
  thus "a=b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   746
    by (simp add: mult_assoc cnz)
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   747
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   748
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   749
lemma field_mult_cancel_right [simp]:
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   750
     "(a*c = b*c) = (c = (0::'a::field) | a=b)"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   751
proof cases
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   752
  assume "c=0" thus ?thesis by simp
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   753
next
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   754
  assume "c\<noteq>0" 
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   755
  thus ?thesis by (force dest: field_mult_cancel_right_lemma)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   756
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   757
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   758
lemma field_mult_cancel_left [simp]:
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   759
     "(c*a = c*b) = (c = (0::'a::field) | a=b)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   760
  by (simp add: mult_commute [of c] field_mult_cancel_right) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   761
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   762
lemma nonzero_imp_inverse_nonzero: "a \<noteq> 0 ==> inverse a \<noteq> (0::'a::field)"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   763
proof
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   764
  assume ianz: "inverse a = 0"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   765
  assume "a \<noteq> 0"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   766
  hence "1 = a * inverse a" by simp
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   767
  also have "... = 0" by (simp add: ianz)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   768
  finally have "1 = (0::'a::field)" .
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   769
  thus False by (simp add: eq_commute)
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   770
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   771
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   772
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   773
subsection{*Basic Properties of @{term inverse}*}
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   774
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   775
lemma inverse_zero_imp_zero: "inverse a = 0 ==> a = (0::'a::field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   776
apply (rule ccontr) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   777
apply (blast dest: nonzero_imp_inverse_nonzero) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   778
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   779
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   780
lemma inverse_nonzero_imp_nonzero:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   781
   "inverse a = 0 ==> a = (0::'a::field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   782
apply (rule ccontr) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   783
apply (blast dest: nonzero_imp_inverse_nonzero) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   784
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   785
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   786
lemma inverse_nonzero_iff_nonzero [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   787
   "(inverse a = 0) = (a = (0::'a::{field,division_by_zero}))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   788
by (force dest: inverse_nonzero_imp_nonzero) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   789
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   790
lemma nonzero_inverse_minus_eq:
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   791
      assumes [simp]: "a\<noteq>0"  shows "inverse(-a) = -inverse(a::'a::field)"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   792
proof -
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   793
  have "-a * inverse (- a) = -a * - inverse a"
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   794
    by simp
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   795
  thus ?thesis 
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   796
    by (simp only: field_mult_cancel_left, simp)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   797
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   798
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   799
lemma inverse_minus_eq [simp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   800
   "inverse(-a) = -inverse(a::'a::{field,division_by_zero})"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   801
proof cases
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   802
  assume "a=0" thus ?thesis by (simp add: inverse_zero)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   803
next
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   804
  assume "a\<noteq>0" 
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   805
  thus ?thesis by (simp add: nonzero_inverse_minus_eq)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   806
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   807
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   808
lemma nonzero_inverse_eq_imp_eq:
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   809
      assumes inveq: "inverse a = inverse b"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   810
	  and anz:  "a \<noteq> 0"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   811
	  and bnz:  "b \<noteq> 0"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   812
	 shows "a = (b::'a::field)"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   813
proof -
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   814
  have "a * inverse b = a * inverse a"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   815
    by (simp add: inveq)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   816
  hence "(a * inverse b) * b = (a * inverse a) * b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   817
    by simp
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   818
  thus "a = b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   819
    by (simp add: mult_assoc anz bnz)
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   820
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   821
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   822
lemma inverse_eq_imp_eq:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   823
     "inverse a = inverse b ==> a = (b::'a::{field,division_by_zero})"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   824
apply (case_tac "a=0 | b=0") 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   825
 apply (force dest!: inverse_zero_imp_zero
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   826
              simp add: eq_commute [of "0::'a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   827
apply (force dest!: nonzero_inverse_eq_imp_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   828
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   829
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   830
lemma inverse_eq_iff_eq [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   831
     "(inverse a = inverse b) = (a = (b::'a::{field,division_by_zero}))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   832
by (force dest!: inverse_eq_imp_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   833
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   834
lemma nonzero_inverse_inverse_eq:
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   835
      assumes [simp]: "a \<noteq> 0"  shows "inverse(inverse (a::'a::field)) = a"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   836
  proof -
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   837
  have "(inverse (inverse a) * inverse a) * a = a" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   838
    by (simp add: nonzero_imp_inverse_nonzero)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   839
  thus ?thesis
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   840
    by (simp add: mult_assoc)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   841
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   842
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   843
lemma inverse_inverse_eq [simp]:
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   844
     "inverse(inverse (a::'a::{field,division_by_zero})) = a"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   845
  proof cases
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   846
    assume "a=0" thus ?thesis by simp
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   847
  next
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   848
    assume "a\<noteq>0" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   849
    thus ?thesis by (simp add: nonzero_inverse_inverse_eq)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   850
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   851
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   852
lemma inverse_1 [simp]: "inverse 1 = (1::'a::field)"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   853
  proof -
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   854
  have "inverse 1 * 1 = (1::'a::field)" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   855
    by (rule left_inverse [OF zero_neq_one [symmetric]])
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   856
  thus ?thesis  by simp
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   857
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   858
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15010
diff changeset
   859
lemma inverse_unique: 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15010
diff changeset
   860
  assumes ab: "a*b = 1"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15010
diff changeset
   861
  shows "inverse a = (b::'a::field)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15010
diff changeset
   862
proof -
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15010
diff changeset
   863
  have "a \<noteq> 0" using ab by auto
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15010
diff changeset
   864
  moreover have "inverse a * (a * b) = inverse a" by (simp add: ab) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15010
diff changeset
   865
  ultimately show ?thesis by (simp add: mult_assoc [symmetric]) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15010
diff changeset
   866
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15010
diff changeset
   867
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   868
lemma nonzero_inverse_mult_distrib: 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   869
      assumes anz: "a \<noteq> 0"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   870
          and bnz: "b \<noteq> 0"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   871
      shows "inverse(a*b) = inverse(b) * inverse(a::'a::field)"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   872
  proof -
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   873
  have "inverse(a*b) * (a * b) * inverse(b) = inverse(b)" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   874
    by (simp add: field_mult_eq_0_iff anz bnz)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   875
  hence "inverse(a*b) * a = inverse(b)" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   876
    by (simp add: mult_assoc bnz)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   877
  hence "inverse(a*b) * a * inverse(a) = inverse(b) * inverse(a)" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   878
    by simp
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   879
  thus ?thesis
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   880
    by (simp add: mult_assoc anz)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   881
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   882
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   883
text{*This version builds in division by zero while also re-orienting
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   884
      the right-hand side.*}
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   885
lemma inverse_mult_distrib [simp]:
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   886
     "inverse(a*b) = inverse(a) * inverse(b::'a::{field,division_by_zero})"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   887
  proof cases
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   888
    assume "a \<noteq> 0 & b \<noteq> 0" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   889
    thus ?thesis  by (simp add: nonzero_inverse_mult_distrib mult_commute)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   890
  next
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   891
    assume "~ (a \<noteq> 0 & b \<noteq> 0)" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   892
    thus ?thesis  by force
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   893
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   894
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   895
text{*There is no slick version using division by zero.*}
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   896
lemma inverse_add:
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   897
     "[|a \<noteq> 0;  b \<noteq> 0|]
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   898
      ==> inverse a + inverse b = (a+b) * inverse a * inverse (b::'a::field)"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   899
apply (simp add: left_distrib mult_assoc)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   900
apply (simp add: mult_commute [of "inverse a"]) 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   901
apply (simp add: mult_assoc [symmetric] add_commute)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   902
done
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   903
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   904
lemma inverse_divide [simp]:
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   905
      "inverse (a/b) = b / (a::'a::{field,division_by_zero})"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   906
  by (simp add: divide_inverse mult_commute)
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   907
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   908
subsection {* Calculations with fractions *}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   909
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   910
lemma nonzero_mult_divide_cancel_left:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   911
  assumes [simp]: "b\<noteq>0" and [simp]: "c\<noteq>0" 
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   912
    shows "(c*a)/(c*b) = a/(b::'a::field)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   913
proof -
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   914
  have "(c*a)/(c*b) = c * a * (inverse b * inverse c)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   915
    by (simp add: field_mult_eq_0_iff divide_inverse 
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   916
                  nonzero_inverse_mult_distrib)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   917
  also have "... =  a * inverse b * (inverse c * c)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   918
    by (simp only: mult_ac)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   919
  also have "... =  a * inverse b"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   920
    by simp
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   921
    finally show ?thesis 
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   922
    by (simp add: divide_inverse)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   923
qed
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   924
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   925
lemma mult_divide_cancel_left:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   926
     "c\<noteq>0 ==> (c*a) / (c*b) = a / (b::'a::{field,division_by_zero})"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   927
apply (case_tac "b = 0")
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   928
apply (simp_all add: nonzero_mult_divide_cancel_left)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   929
done
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   930
14321
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   931
lemma nonzero_mult_divide_cancel_right:
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   932
     "[|b\<noteq>0; c\<noteq>0|] ==> (a*c) / (b*c) = a/(b::'a::field)"
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   933
by (simp add: mult_commute [of _ c] nonzero_mult_divide_cancel_left) 
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   934
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   935
lemma mult_divide_cancel_right:
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   936
     "c\<noteq>0 ==> (a*c) / (b*c) = a / (b::'a::{field,division_by_zero})"
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   937
apply (case_tac "b = 0")
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   938
apply (simp_all add: nonzero_mult_divide_cancel_right)
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   939
done
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   940
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   941
(*For ExtractCommonTerm*)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   942
lemma mult_divide_cancel_eq_if:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   943
     "(c*a) / (c*b) = 
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   944
      (if c=0 then 0 else a / (b::'a::{field,division_by_zero}))"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   945
  by (simp add: mult_divide_cancel_left)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   946
14284
f1abe67c448a re-organisation of Real/RealArith0.ML; more `Isar scripts
paulson
parents: 14277
diff changeset
   947
lemma divide_1 [simp]: "a/1 = (a::'a::field)"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   948
  by (simp add: divide_inverse)
14284
f1abe67c448a re-organisation of Real/RealArith0.ML; more `Isar scripts
paulson
parents: 14277
diff changeset
   949
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   950
lemma times_divide_eq_right: "a * (b/c) = (a*b) / (c::'a::field)"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   951
by (simp add: divide_inverse mult_assoc)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   952
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   953
lemma times_divide_eq_left: "(b/c) * a = (b*a) / (c::'a::field)"
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   954
by (simp add: divide_inverse mult_ac)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   955
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   956
lemma divide_divide_eq_right [simp]:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   957
     "a / (b/c) = (a*c) / (b::'a::{field,division_by_zero})"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   958
by (simp add: divide_inverse mult_ac)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   959
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   960
lemma divide_divide_eq_left [simp]:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   961
     "(a / b) / (c::'a::{field,division_by_zero}) = a / (b*c)"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   962
by (simp add: divide_inverse mult_assoc)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   963
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   964
lemma add_frac_eq: "(y::'a::field) ~= 0 ==> z ~= 0 ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   965
    x / y + w / z = (x * z + w * y) / (y * z)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   966
  apply (subgoal_tac "x / y = (x * z) / (y * z)")
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   967
  apply (erule ssubst)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   968
  apply (subgoal_tac "w / z = (w * y) / (y * z)")
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   969
  apply (erule ssubst)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   970
  apply (rule add_divide_distrib [THEN sym])
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   971
  apply (subst mult_commute)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   972
  apply (erule nonzero_mult_divide_cancel_left [THEN sym])
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   973
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   974
  apply (erule nonzero_mult_divide_cancel_right [THEN sym])
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   975
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   976
done
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   977
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   978
subsubsection{*Special Cancellation Simprules for Division*}
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   979
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   980
lemma mult_divide_cancel_left_if [simp]:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   981
  fixes c :: "'a :: {field,division_by_zero}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   982
  shows "(c*a) / (c*b) = (if c=0 then 0 else a/b)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   983
by (simp add: mult_divide_cancel_left)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   984
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   985
lemma mult_divide_cancel_right_if [simp]:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   986
  fixes c :: "'a :: {field,division_by_zero}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   987
  shows "(a*c) / (b*c) = (if c=0 then 0 else a/b)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   988
by (simp add: mult_divide_cancel_right)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   989
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   990
lemma mult_divide_cancel_left_if1 [simp]:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   991
  fixes c :: "'a :: {field,division_by_zero}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   992
  shows "c / (c*b) = (if c=0 then 0 else 1/b)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   993
apply (insert mult_divide_cancel_left_if [of c 1 b]) 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   994
apply (simp del: mult_divide_cancel_left_if)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   995
done
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   996
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   997
lemma mult_divide_cancel_left_if2 [simp]:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   998
  fixes c :: "'a :: {field,division_by_zero}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   999
  shows "(c*a) / c = (if c=0 then 0 else a)" 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1000
apply (insert mult_divide_cancel_left_if [of c a 1]) 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1001
apply (simp del: mult_divide_cancel_left_if)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1002
done
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1003
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1004
lemma mult_divide_cancel_right_if1 [simp]:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1005
  fixes c :: "'a :: {field,division_by_zero}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1006
  shows "c / (b*c) = (if c=0 then 0 else 1/b)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1007
apply (insert mult_divide_cancel_right_if [of 1 c b]) 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1008
apply (simp del: mult_divide_cancel_right_if)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1009
done
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1010
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1011
lemma mult_divide_cancel_right_if2 [simp]:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1012
  fixes c :: "'a :: {field,division_by_zero}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1013
  shows "(a*c) / c = (if c=0 then 0 else a)" 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1014
apply (insert mult_divide_cancel_right_if [of a c 1]) 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1015
apply (simp del: mult_divide_cancel_right_if)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1016
done
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1017
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1018
text{*Two lemmas for cancelling the denominator*}
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1019
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1020
lemma times_divide_self_right [simp]: 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1021
  fixes a :: "'a :: {field,division_by_zero}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1022
  shows "a * (b/a) = (if a=0 then 0 else b)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1023
by (simp add: times_divide_eq_right)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1024
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1025
lemma times_divide_self_left [simp]: 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1026
  fixes a :: "'a :: {field,division_by_zero}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1027
  shows "(b/a) * a = (if a=0 then 0 else b)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1028
by (simp add: times_divide_eq_left)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1029
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1030
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1031
subsection {* Division and Unary Minus *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1032
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1033
lemma nonzero_minus_divide_left: "b \<noteq> 0 ==> - (a/b) = (-a) / (b::'a::field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1034
by (simp add: divide_inverse minus_mult_left)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1035
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1036
lemma nonzero_minus_divide_right: "b \<noteq> 0 ==> - (a/b) = a / -(b::'a::field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1037
by (simp add: divide_inverse nonzero_inverse_minus_eq minus_mult_right)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1038
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1039
lemma nonzero_minus_divide_divide: "b \<noteq> 0 ==> (-a)/(-b) = a / (b::'a::field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1040
by (simp add: divide_inverse nonzero_inverse_minus_eq)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1041
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1042
lemma minus_divide_left: "- (a/b) = (-a) / (b::'a::field)"
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1043
by (simp add: divide_inverse minus_mult_left [symmetric])
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1044
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1045
lemma minus_divide_right: "- (a/b) = a / -(b::'a::{field,division_by_zero})"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1046
by (simp add: divide_inverse minus_mult_right [symmetric])
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1047
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1048
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1049
text{*The effect is to extract signs from divisions*}
17085
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1050
lemmas divide_minus_left = minus_divide_left [symmetric]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1051
lemmas divide_minus_right = minus_divide_right [symmetric]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1052
declare divide_minus_left [simp]   divide_minus_right [simp]
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1053
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
  1054
text{*Also, extract signs from products*}
17085
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1055
lemmas mult_minus_left = minus_mult_left [symmetric]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1056
lemmas mult_minus_right = minus_mult_right [symmetric]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1057
declare mult_minus_left [simp]   mult_minus_right [simp]
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
  1058
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1059
lemma minus_divide_divide [simp]:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1060
     "(-a)/(-b) = a / (b::'a::{field,division_by_zero})"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1061
apply (case_tac "b=0", simp) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1062
apply (simp add: nonzero_minus_divide_divide) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1063
done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1064
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1065
lemma diff_divide_distrib: "(a-b)/(c::'a::field) = a/c - b/c"
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
  1066
by (simp add: diff_minus add_divide_distrib) 
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
  1067
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1068
lemma diff_frac_eq: "(y::'a::field) ~= 0 ==> z ~= 0 ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1069
    x / y - w / z = (x * z - w * y) / (y * z)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1070
  apply (subst diff_def)+
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1071
  apply (subst minus_divide_left)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1072
  apply (subst add_frac_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1073
  apply simp_all
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1074
done
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1075
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1076
subsection {* Ordered Fields *}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1077
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1078
lemma positive_imp_inverse_positive: 
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
  1079
      assumes a_gt_0: "0 < a"  shows "0 < inverse (a::'a::ordered_field)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1080
  proof -
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1081
  have "0 < a * inverse a" 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1082
    by (simp add: a_gt_0 [THEN order_less_imp_not_eq2] zero_less_one)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1083
  thus "0 < inverse a" 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1084
    by (simp add: a_gt_0 [THEN order_less_not_sym] zero_less_mult_iff)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1085
  qed
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1086
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1087
lemma negative_imp_inverse_negative:
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1088
     "a < 0 ==> inverse a < (0::'a::ordered_field)"
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1089
  by (insert positive_imp_inverse_positive [of "-a"], 
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1090
      simp add: nonzero_inverse_minus_eq order_less_imp_not_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1091
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1092
lemma inverse_le_imp_le:
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
  1093
      assumes invle: "inverse a \<le> inverse b"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
  1094
	  and apos:  "0 < a"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
  1095
	 shows "b \<le> (a::'a::ordered_field)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1096
  proof (rule classical)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1097
  assume "~ b \<le> a"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1098
  hence "a < b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1099
    by (simp add: linorder_not_le)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1100
  hence bpos: "0 < b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1101
    by (blast intro: apos order_less_trans)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1102
  hence "a * inverse a \<le> a * inverse b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1103
    by (simp add: apos invle order_less_imp_le mult_left_mono)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1104
  hence "(a * inverse a) * b \<le> (a * inverse b) * b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1105
    by (simp add: bpos order_less_imp_le mult_right_mono)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1106
  thus "b \<le> a"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1107
    by (simp add: mult_assoc apos bpos order_less_imp_not_eq2)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1108
  qed
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1109
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1110
lemma inverse_positive_imp_positive:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1111
      assumes inv_gt_0: "0 < inverse a"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1112
          and [simp]:   "a \<noteq> 0"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1113
        shows "0 < (a::'a::ordered_field)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1114
  proof -
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1115
  have "0 < inverse (inverse a)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1116
    by (rule positive_imp_inverse_positive)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1117
  thus "0 < a"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1118
    by (simp add: nonzero_inverse_inverse_eq)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1119
  qed
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1120
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1121
lemma inverse_positive_iff_positive [simp]:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1122
      "(0 < inverse a) = (0 < (a::'a::{ordered_field,division_by_zero}))"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1123
apply (case_tac "a = 0", simp)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1124
apply (blast intro: inverse_positive_imp_positive positive_imp_inverse_positive)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1125
done
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1126
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1127
lemma inverse_negative_imp_negative:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1128
      assumes inv_less_0: "inverse a < 0"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1129
          and [simp]:   "a \<noteq> 0"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1130
        shows "a < (0::'a::ordered_field)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1131
  proof -
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1132
  have "inverse (inverse a) < 0"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1133
    by (rule negative_imp_inverse_negative)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1134
  thus "a < 0"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1135
    by (simp add: nonzero_inverse_inverse_eq)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1136
  qed
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1137
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1138
lemma inverse_negative_iff_negative [simp]:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1139
      "(inverse a < 0) = (a < (0::'a::{ordered_field,division_by_zero}))"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1140
apply (case_tac "a = 0", simp)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1141
apply (blast intro: inverse_negative_imp_negative negative_imp_inverse_negative)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1142
done
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1143
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1144
lemma inverse_nonnegative_iff_nonnegative [simp]:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1145
      "(0 \<le> inverse a) = (0 \<le> (a::'a::{ordered_field,division_by_zero}))"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1146
by (simp add: linorder_not_less [symmetric])
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1147
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1148
lemma inverse_nonpositive_iff_nonpositive [simp]:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1149
      "(inverse a \<le> 0) = (a \<le> (0::'a::{ordered_field,division_by_zero}))"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1150
by (simp add: linorder_not_less [symmetric])
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1151
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1152
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1153
subsection{*Anti-Monotonicity of @{term inverse}*}
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1154
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1155
lemma less_imp_inverse_less:
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
  1156
      assumes less: "a < b"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
  1157
	  and apos:  "0 < a"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
  1158
	shows "inverse b < inverse (a::'a::ordered_field)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1159
  proof (rule ccontr)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1160
  assume "~ inverse b < inverse a"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1161
  hence "inverse a \<le> inverse b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1162
    by (simp add: linorder_not_less)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1163
  hence "~ (a < b)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1164
    by (simp add: linorder_not_less inverse_le_imp_le [OF _ apos])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1165
  thus False
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1166
    by (rule notE [OF _ less])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1167
  qed
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1168
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1169
lemma inverse_less_imp_less:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1170
   "[|inverse a < inverse b; 0 < a|] ==> b < (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1171
apply (simp add: order_less_le [of "inverse a"] order_less_le [of "b"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1172
apply (force dest!: inverse_le_imp_le nonzero_inverse_eq_imp_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1173
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1174
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1175
text{*Both premises are essential. Consider -1 and 1.*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1176
lemma inverse_less_iff_less [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1177
     "[|0 < a; 0 < b|] 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1178
      ==> (inverse a < inverse b) = (b < (a::'a::ordered_field))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1179
by (blast intro: less_imp_inverse_less dest: inverse_less_imp_less) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1180
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1181
lemma le_imp_inverse_le:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1182
   "[|a \<le> b; 0 < a|] ==> inverse b \<le> inverse (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1183
  by (force simp add: order_le_less less_imp_inverse_less)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1184
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1185
lemma inverse_le_iff_le [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1186
     "[|0 < a; 0 < b|] 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1187
      ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::ordered_field))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1188
by (blast intro: le_imp_inverse_le dest: inverse_le_imp_le) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1189
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1190
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1191
text{*These results refer to both operands being negative.  The opposite-sign
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1192
case is trivial, since inverse preserves signs.*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1193
lemma inverse_le_imp_le_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1194
   "[|inverse a \<le> inverse b; b < 0|] ==> b \<le> (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1195
  apply (rule classical) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1196
  apply (subgoal_tac "a < 0") 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1197
   prefer 2 apply (force simp add: linorder_not_le intro: order_less_trans) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1198
  apply (insert inverse_le_imp_le [of "-b" "-a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1199
  apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1200
  done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1201
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1202
lemma less_imp_inverse_less_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1203
   "[|a < b; b < 0|] ==> inverse b < inverse (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1204
  apply (subgoal_tac "a < 0") 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1205
   prefer 2 apply (blast intro: order_less_trans) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1206
  apply (insert less_imp_inverse_less [of "-b" "-a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1207
  apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1208
  done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1209
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1210
lemma inverse_less_imp_less_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1211
   "[|inverse a < inverse b; b < 0|] ==> b < (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1212
  apply (rule classical) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1213
  apply (subgoal_tac "a < 0") 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1214
   prefer 2
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1215
   apply (force simp add: linorder_not_less intro: order_le_less_trans) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1216
  apply (insert inverse_less_imp_less [of "-b" "-a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1217
  apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1218
  done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1219
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1220
lemma inverse_less_iff_less_neg [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1221
     "[|a < 0; b < 0|] 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1222
      ==> (inverse a < inverse b) = (b < (a::'a::ordered_field))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1223
  apply (insert inverse_less_iff_less [of "-b" "-a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1224
  apply (simp del: inverse_less_iff_less 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1225
	      add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1226
  done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1227
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1228
lemma le_imp_inverse_le_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1229
   "[|a \<le> b; b < 0|] ==> inverse b \<le> inverse (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1230
  by (force simp add: order_le_less less_imp_inverse_less_neg)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1231
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1232
lemma inverse_le_iff_le_neg [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1233
     "[|a < 0; b < 0|] 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1234
      ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::ordered_field))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1235
by (blast intro: le_imp_inverse_le_neg dest: inverse_le_imp_le_neg) 
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  1236
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1237
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1238
subsection{*Inverses and the Number One*}
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1239
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1240
lemma one_less_inverse_iff:
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1241
    "(1 < inverse x) = (0 < x & x < (1::'a::{ordered_field,division_by_zero}))"proof cases
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1242
  assume "0 < x"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1243
    with inverse_less_iff_less [OF zero_less_one, of x]
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1244
    show ?thesis by simp
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1245
next
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1246
  assume notless: "~ (0 < x)"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1247
  have "~ (1 < inverse x)"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1248
  proof
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1249
    assume "1 < inverse x"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1250
    also with notless have "... \<le> 0" by (simp add: linorder_not_less)
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1251
    also have "... < 1" by (rule zero_less_one) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1252
    finally show False by auto
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1253
  qed
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1254
  with notless show ?thesis by simp
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1255
qed
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1256
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1257
lemma inverse_eq_1_iff [simp]:
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1258
    "(inverse x = 1) = (x = (1::'a::{field,division_by_zero}))"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1259
by (insert inverse_eq_iff_eq [of x 1], simp) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1260
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1261
lemma one_le_inverse_iff:
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1262
   "(1 \<le> inverse x) = (0 < x & x \<le> (1::'a::{ordered_field,division_by_zero}))"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1263
by (force simp add: order_le_less one_less_inverse_iff zero_less_one 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1264
                    eq_commute [of 1]) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1265
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1266
lemma inverse_less_1_iff:
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1267
   "(inverse x < 1) = (x \<le> 0 | 1 < (x::'a::{ordered_field,division_by_zero}))"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1268
by (simp add: linorder_not_le [symmetric] one_le_inverse_iff) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1269
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1270
lemma inverse_le_1_iff:
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1271
   "(inverse x \<le> 1) = (x \<le> 0 | 1 \<le> (x::'a::{ordered_field,division_by_zero}))"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1272
by (simp add: linorder_not_less [symmetric] one_less_inverse_iff) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1273
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1274
subsection{*Simplification of Inequalities Involving Literal Divisors*}
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1275
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1276
lemma pos_le_divide_eq: "0 < (c::'a::ordered_field) ==> (a \<le> b/c) = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1277
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1278
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1279
  hence "(a \<le> b/c) = (a*c \<le> (b/c)*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1280
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1281
  also have "... = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1282
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1283
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1284
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1285
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1286
lemma neg_le_divide_eq: "c < (0::'a::ordered_field) ==> (a \<le> b/c) = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1287
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1288
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1289
  hence "(a \<le> b/c) = ((b/c)*c \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1290
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1291
  also have "... = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1292
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1293
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1294
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1295
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1296
lemma le_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1297
  "(a \<le> b/c) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1298
   (if 0 < c then a*c \<le> b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1299
             else if c < 0 then b \<le> a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1300
             else  a \<le> (0::'a::{ordered_field,division_by_zero}))"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1301
apply (case_tac "c=0", simp) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1302
apply (force simp add: pos_le_divide_eq neg_le_divide_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1303
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1304
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1305
lemma pos_divide_le_eq: "0 < (c::'a::ordered_field) ==> (b/c \<le> a) = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1306
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1307
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1308
  hence "(b/c \<le> a) = ((b/c)*c \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1309
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1310
  also have "... = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1311
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1312
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1313
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1314
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1315
lemma neg_divide_le_eq: "c < (0::'a::ordered_field) ==> (b/c \<le> a) = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1316
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1317
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1318
  hence "(b/c \<le> a) = (a*c \<le> (b/c)*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1319
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1320
  also have "... = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1321
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1322
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1323
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1324
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1325
lemma divide_le_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1326
  "(b/c \<le> a) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1327
   (if 0 < c then b \<le> a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1328
             else if c < 0 then a*c \<le> b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1329
             else 0 \<le> (a::'a::{ordered_field,division_by_zero}))"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1330
apply (case_tac "c=0", simp) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1331
apply (force simp add: pos_divide_le_eq neg_divide_le_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1332
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1333
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1334
lemma pos_less_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1335
     "0 < (c::'a::ordered_field) ==> (a < b/c) = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1336
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1337
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1338
  hence "(a < b/c) = (a*c < (b/c)*c)"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1339
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1340
  also have "... = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1341
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1342
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1343
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1344
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1345
lemma neg_less_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1346
 "c < (0::'a::ordered_field) ==> (a < b/c) = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1347
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1348
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1349
  hence "(a < b/c) = ((b/c)*c < a*c)"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1350
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1351
  also have "... = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1352
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1353
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1354
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1355
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1356
lemma less_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1357
  "(a < b/c) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1358
   (if 0 < c then a*c < b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1359
             else if c < 0 then b < a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1360
             else  a < (0::'a::{ordered_field,division_by_zero}))"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1361
apply (case_tac "c=0", simp) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1362
apply (force simp add: pos_less_divide_eq neg_less_divide_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1363
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1364
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1365
lemma pos_divide_less_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1366
     "0 < (c::'a::ordered_field) ==> (b/c < a) = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1367
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1368
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1369
  hence "(b/c < a) = ((b/c)*c < a*c)"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1370
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1371
  also have "... = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1372
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1373
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1374
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1375
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1376
lemma neg_divide_less_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1377
 "c < (0::'a::ordered_field) ==> (b/c < a) = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1378
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1379
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1380
  hence "(b/c < a) = (a*c < (b/c)*c)"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1381
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1382
  also have "... = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1383
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1384
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1385
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1386
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1387
lemma divide_less_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1388
  "(b/c < a) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1389
   (if 0 < c then b < a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1390
             else if c < 0 then a*c < b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1391
             else 0 < (a::'a::{ordered_field,division_by_zero}))"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1392
apply (case_tac "c=0", simp) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1393
apply (force simp add: pos_divide_less_eq neg_divide_less_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1394
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1395
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1396
lemma nonzero_eq_divide_eq: "c\<noteq>0 ==> ((a::'a::field) = b/c) = (a*c = b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1397
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1398
  assume [simp]: "c\<noteq>0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1399
  have "(a = b/c) = (a*c = (b/c)*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1400
    by (simp add: field_mult_cancel_right)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1401
  also have "... = (a*c = b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1402
    by (simp add: divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1403
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1404
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1405
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1406
lemma eq_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1407
  "((a::'a::{field,division_by_zero}) = b/c) = (if c\<noteq>0 then a*c = b else a=0)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1408
by (simp add: nonzero_eq_divide_eq) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1409
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1410
lemma nonzero_divide_eq_eq: "c\<noteq>0 ==> (b/c = (a::'a::field)) = (b = a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1411
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1412
  assume [simp]: "c\<noteq>0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1413
  have "(b/c = a) = ((b/c)*c = a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1414
    by (simp add: field_mult_cancel_right)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1415
  also have "... = (b = a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1416
    by (simp add: divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1417
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1418
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1419
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1420
lemma divide_eq_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1421
  "(b/c = (a::'a::{field,division_by_zero})) = (if c\<noteq>0 then b = a*c else a=0)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1422
by (force simp add: nonzero_divide_eq_eq) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1423
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1424
lemma divide_eq_imp: "(c::'a::{division_by_zero,field}) ~= 0 ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1425
    b = a * c ==> b / c = a"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1426
  by (subst divide_eq_eq, simp)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1427
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1428
lemma eq_divide_imp: "(c::'a::{division_by_zero,field}) ~= 0 ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1429
    a * c = b ==> a = b / c"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1430
  by (subst eq_divide_eq, simp)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1431
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1432
lemma frac_eq_eq: "(y::'a::field) ~= 0 ==> z ~= 0 ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1433
    (x / y = w / z) = (x * z = w * y)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1434
  apply (subst nonzero_eq_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1435
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1436
  apply (subst times_divide_eq_left)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1437
  apply (erule nonzero_divide_eq_eq) 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1438
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1439
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1440
subsection{*Division and Signs*}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1441
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1442
lemma zero_less_divide_iff:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1443
     "((0::'a::{ordered_field,division_by_zero}) < a/b) = (0 < a & 0 < b | a < 0 & b < 0)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1444
by (simp add: divide_inverse zero_less_mult_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1445
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1446
lemma divide_less_0_iff:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1447
     "(a/b < (0::'a::{ordered_field,division_by_zero})) = 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1448
      (0 < a & b < 0 | a < 0 & 0 < b)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1449
by (simp add: divide_inverse mult_less_0_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1450
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1451
lemma zero_le_divide_iff:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1452
     "((0::'a::{ordered_field,division_by_zero}) \<le> a/b) =
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1453
      (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1454
by (simp add: divide_inverse zero_le_mult_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1455
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1456
lemma divide_le_0_iff:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1457
     "(a/b \<le> (0::'a::{ordered_field,division_by_zero})) =
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1458
      (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1459
by (simp add: divide_inverse mult_le_0_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1460
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1461
lemma divide_eq_0_iff [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1462
     "(a/b = 0) = (a=0 | b=(0::'a::{field,division_by_zero}))"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1463
by (simp add: divide_inverse field_mult_eq_0_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1464
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1465
lemma divide_pos_pos: "0 < (x::'a::ordered_field) ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1466
    0 < y ==> 0 < x / y"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1467
  apply (subst pos_less_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1468
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1469
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1470
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1471
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1472
lemma divide_nonneg_pos: "0 <= (x::'a::ordered_field) ==> 0 < y ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1473
    0 <= x / y"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1474
  apply (subst pos_le_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1475
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1476
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1477
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1478
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1479
lemma divide_neg_pos: "(x::'a::ordered_field) < 0 ==> 0 < y ==> x / y < 0"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1480
  apply (subst pos_divide_less_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1481
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1482
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1483
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1484
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1485
lemma divide_nonpos_pos: "(x::'a::ordered_field) <= 0 ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1486
    0 < y ==> x / y <= 0"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1487
  apply (subst pos_divide_le_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1488
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1489
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1490
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1491
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1492
lemma divide_pos_neg: "0 < (x::'a::ordered_field) ==> y < 0 ==> x / y < 0"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1493
  apply (subst neg_divide_less_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1494
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1495
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1496
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1497
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1498
lemma divide_nonneg_neg: "0 <= (x::'a::ordered_field) ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1499
    y < 0 ==> x / y <= 0"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1500
  apply (subst neg_divide_le_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1501
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1502
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1503
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1504
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1505
lemma divide_neg_neg: "(x::'a::ordered_field) < 0 ==> y < 0 ==> 0 < x / y"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1506
  apply (subst neg_less_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1507
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1508
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1509
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1510
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1511
lemma divide_nonpos_neg: "(x::'a::ordered_field) <= 0 ==> y < 0 ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1512
    0 <= x / y"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1513
  apply (subst neg_le_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1514
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1515
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1516
done
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1517
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1518
subsection{*Cancellation Laws for Division*}
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1519
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1520
lemma divide_cancel_right [simp]:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1521
     "(a/c = b/c) = (c = 0 | a = (b::'a::{field,division_by_zero}))"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1522
apply (case_tac "c=0", simp) 
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1523
apply (simp add: divide_inverse field_mult_cancel_right) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1524
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1525
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1526
lemma divide_cancel_left [simp]:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1527
     "(c/a = c/b) = (c = 0 | a = (b::'a::{field,division_by_zero}))" 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1528
apply (case_tac "c=0", simp) 
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1529
apply (simp add: divide_inverse field_mult_cancel_left) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1530
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1531
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1532
subsection {* Division and the Number One *}
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1533
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1534
text{*Simplify expressions equated with 1*}
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1535
lemma divide_eq_1_iff [simp]:
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1536
     "(a/b = 1) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1537
apply (case_tac "b=0", simp) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1538
apply (simp add: right_inverse_eq) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1539
done
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1540
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1541
lemma one_eq_divide_iff [simp]:
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1542
     "(1 = a/b) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1543
by (simp add: eq_commute [of 1])  
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1544
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1545
lemma zero_eq_1_divide_iff [simp]:
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1546
     "((0::'a::{ordered_field,division_by_zero}) = 1/a) = (a = 0)"
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1547
apply (case_tac "a=0", simp) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1548
apply (auto simp add: nonzero_eq_divide_eq) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1549
done
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1550
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1551
lemma one_divide_eq_0_iff [simp]:
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1552
     "(1/a = (0::'a::{ordered_field,division_by_zero})) = (a = 0)"
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1553
apply (case_tac "a=0", simp) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1554
apply (insert zero_neq_one [THEN not_sym]) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1555
apply (auto simp add: nonzero_divide_eq_eq) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1556
done
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1557
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1558
text{*Simplify expressions such as @{text "0 < 1/x"} to @{text "0 < x"}*}
17085
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1559
lemmas zero_less_divide_1_iff = zero_less_divide_iff [of "1"]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1560
lemmas divide_less_0_1_iff = divide_less_0_iff [of "1"]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1561
lemmas zero_le_divide_1_iff = zero_le_divide_iff [of "1"]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1562
lemmas divide_le_0_1_iff = divide_le_0_iff [of "1"]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1563
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1564
declare zero_less_divide_1_iff [simp]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1565
declare divide_less_0_1_iff [simp]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1566
declare zero_le_divide_1_iff [simp]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1567
declare divide_le_0_1_iff [simp]
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1568
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1569
subsection {* Ordering Rules for Division *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1570
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1571
lemma divide_strict_right_mono:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1572
     "[|a < b; 0 < c|] ==> a / c < b / (c::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1573
by (simp add: order_less_imp_not_eq2 divide_inverse mult_strict_right_mono 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1574
              positive_imp_inverse_positive) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1575
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1576
lemma divide_right_mono:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1577
     "[|a \<le> b; 0 \<le> c|] ==> a/c \<le> b/(c::'a::{ordered_field,division_by_zero})"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1578
  by (force simp add: divide_strict_right_mono order_le_less) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1579
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1580
lemma divide_right_mono_neg: "(a::'a::{division_by_zero,ordered_field}) <= b 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1581
    ==> c <= 0 ==> b / c <= a / c"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1582
  apply (drule divide_right_mono [of _ _ "- c"])
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1583
  apply auto
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1584
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1585
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1586
lemma divide_strict_right_mono_neg:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1587
     "[|b < a; c < 0|] ==> a / c < b / (c::'a::ordered_field)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1588
apply (drule divide_strict_right_mono [of _ _ "-c"], simp) 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1589
apply (simp add: order_less_imp_not_eq nonzero_minus_divide_right [symmetric]) 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1590
done
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1591
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1592
text{*The last premise ensures that @{term a} and @{term b} 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1593
      have the same sign*}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1594
lemma divide_strict_left_mono:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1595
       "[|b < a; 0 < c; 0 < a*b|] ==> c / a < c / (b::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1596
by (force simp add: zero_less_mult_iff divide_inverse mult_strict_left_mono 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1597
      order_less_imp_not_eq order_less_imp_not_eq2  
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1598
      less_imp_inverse_less less_imp_inverse_less_neg) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1599
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1600
lemma divide_left_mono:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1601
     "[|b \<le> a; 0 \<le> c; 0 < a*b|] ==> c / a \<le> c / (b::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1602
  apply (subgoal_tac "a \<noteq> 0 & b \<noteq> 0") 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1603
   prefer 2 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1604
   apply (force simp add: zero_less_mult_iff order_less_imp_not_eq) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1605
  apply (case_tac "c=0", simp add: divide_inverse)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1606
  apply (force simp add: divide_strict_left_mono order_le_less) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1607
  done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1608
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1609
lemma divide_left_mono_neg: "(a::'a::{division_by_zero,ordered_field}) <= b 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1610
    ==> c <= 0 ==> 0 < a * b ==> c / a <= c / b"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1611
  apply (drule divide_left_mono [of _ _ "- c"])
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1612
  apply (auto simp add: mult_commute)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1613
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1614
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1615
lemma divide_strict_left_mono_neg:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1616
     "[|a < b; c < 0; 0 < a*b|] ==> c / a < c / (b::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1617
  apply (subgoal_tac "a \<noteq> 0 & b \<noteq> 0") 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1618
   prefer 2 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1619
   apply (force simp add: zero_less_mult_iff order_less_imp_not_eq) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1620
  apply (drule divide_strict_left_mono [of _ _ "-c"]) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1621
   apply (simp_all add: mult_commute nonzero_minus_divide_left [symmetric]) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1622
  done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1623
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1624
text{*Simplify quotients that are compared with the value 1.*}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1625
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1626
lemma le_divide_eq_1:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1627
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1628
  shows "(1 \<le> b / a) = ((0 < a & a \<le> b) | (a < 0 & b \<le> a))"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1629
by (auto simp add: le_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1630
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1631
lemma divide_le_eq_1:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1632
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1633
  shows "(b / a \<le> 1) = ((0 < a & b \<le> a) | (a < 0 & a \<le> b) | a=0)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1634
by (auto simp add: divide_le_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1635
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1636
lemma less_divide_eq_1:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1637
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1638
  shows "(1 < b / a) = ((0 < a & a < b) | (a < 0 & b < a))"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1639
by (auto simp add: less_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1640
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1641
lemma divide_less_eq_1:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1642
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1643
  shows "(b / a < 1) = ((0 < a & b < a) | (a < 0 & a < b) | a=0)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1644
by (auto simp add: divide_less_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1645
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1646
subsection{*Conditional Simplification Rules: No Case Splits*}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1647
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1648
lemma le_divide_eq_1_pos [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1649
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1650
  shows "0 < a \<Longrightarrow> (1 \<le> b / a) = (a \<le> b)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1651
by (auto simp add: le_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1652
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1653
lemma le_divide_eq_1_neg [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1654
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1655
  shows "a < 0 \<Longrightarrow> (1 \<le> b / a) = (b \<le> a)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1656
by (auto simp add: le_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1657
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1658
lemma divide_le_eq_1_pos [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1659
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1660
  shows "0 < a \<Longrightarrow> (b / a \<le> 1) = (b \<le> a)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1661
by (auto simp add: divide_le_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1662
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1663
lemma divide_le_eq_1_neg [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1664
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1665
  shows "a < 0 \<Longrightarrow> (b / a \<le> 1) = (a \<le> b)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1666
by (auto simp add: divide_le_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1667
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1668
lemma less_divide_eq_1_pos [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1669
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1670
  shows "0 < a \<Longrightarrow> (1 < b / a) = (a < b)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1671
by (auto simp add: less_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1672
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1673
lemma less_divide_eq_1_neg [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1674
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1675
  shows "a < 0 \<Longrightarrow> (1 < b / a) = (b < a)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1676
by (auto simp add: less_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1677
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1678
lemma divide_less_eq_1_pos [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1679
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1680
  shows "0 < a \<Longrightarrow> (b / a < 1) = (b < a)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1681
by (auto simp add: divide_less_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1682
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1683
lemma eq_divide_eq_1 [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1684
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1685
  shows "(1 = b / a) = ((a \<noteq> 0 & a = b))"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1686
by (auto simp add: eq_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1687
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1688
lemma divide_eq_eq_1 [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1689
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1690
  shows "(b / a = 1) = ((a \<noteq> 0 & a = b))"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1691
by (auto simp add: divide_eq_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1692
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1693
subsection {* Reasoning about inequalities with division *}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1694
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1695
lemma mult_right_le_one_le: "0 <= (x::'a::ordered_idom) ==> 0 <= y ==> y <= 1
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1696
    ==> x * y <= x"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1697
  by (auto simp add: mult_compare_simps);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1698
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1699
lemma mult_left_le_one_le: "0 <= (x::'a::ordered_idom) ==> 0 <= y ==> y <= 1
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1700
    ==> y * x <= x"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1701
  by (auto simp add: mult_compare_simps);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1702
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1703
lemma mult_imp_div_pos_le: "0 < (y::'a::ordered_field) ==> x <= z * y ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1704
    x / y <= z";
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1705
  by (subst pos_divide_le_eq, assumption+);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1706
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1707
lemma mult_imp_le_div_pos: "0 < (y::'a::ordered_field) ==> z * y <= x ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1708
    z <= x / y";
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1709
  by (subst pos_le_divide_eq, assumption+)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1710
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1711
lemma mult_imp_div_pos_less: "0 < (y::'a::ordered_field) ==> x < z * y ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1712
    x / y < z"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1713
  by (subst pos_divide_less_eq, assumption+)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1714
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1715
lemma mult_imp_less_div_pos: "0 < (y::'a::ordered_field) ==> z * y < x ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1716
    z < x / y"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1717
  by (subst pos_less_divide_eq, assumption+)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1718
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1719
lemma frac_le: "(0::'a::ordered_field) <= x ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1720
    x <= y ==> 0 < w ==> w <= z  ==> x / z <= y / w"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1721
  apply (rule mult_imp_div_pos_le)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1722
  apply simp;
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1723
  apply (subst times_divide_eq_left);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1724
  apply (rule mult_imp_le_div_pos, assumption)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1725
  apply (rule mult_mono)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1726
  apply simp_all
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1727
done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1728
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1729
lemma frac_less: "(0::'a::ordered_field) <= x ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1730
    x < y ==> 0 < w ==> w <= z  ==> x / z < y / w"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1731
  apply (rule mult_imp_div_pos_less)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1732
  apply simp;
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1733
  apply (subst times_divide_eq_left);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1734
  apply (rule mult_imp_less_div_pos, assumption)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1735
  apply (erule mult_less_le_imp_less)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1736
  apply simp_all
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1737
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1738
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1739
lemma frac_less2: "(0::'a::ordered_field) < x ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1740
    x <= y ==> 0 < w ==> w < z  ==> x / z < y / w"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1741
  apply (rule mult_imp_div_pos_less)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1742
  apply simp_all
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1743
  apply (subst times_divide_eq_left);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1744
  apply (rule mult_imp_less_div_pos, assumption)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1745
  apply (erule mult_le_less_imp_less)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1746
  apply simp_all
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1747
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1748
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1749
lemmas times_divide_eq = times_divide_eq_right times_divide_eq_left
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1750
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1751
text{*It's not obvious whether these should be simprules or not. 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1752
  Their effect is to gather terms into one big fraction, like
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1753
  a*b*c / x*y*z. The rationale for that is unclear, but many proofs 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1754
  seem to need them.*}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1755
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1756
declare times_divide_eq [simp]
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1757
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1758
subsection {* Ordered Fields are Dense *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1759
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1760
lemma less_add_one: "a < (a+1::'a::ordered_semidom)"
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1761
proof -
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1762
  have "a+0 < (a+1::'a::ordered_semidom)"
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1763
    by (blast intro: zero_less_one add_strict_left_mono) 
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1764
  thus ?thesis by simp
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1765
qed
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1766
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1767
lemma zero_less_two: "0 < (1+1::'a::ordered_semidom)"
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1768
  by (blast intro: order_less_trans zero_less_one less_add_one) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1769
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1770
lemma less_half_sum: "a < b ==> a < (a+b) / (1+1::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1771
by (simp add: zero_less_two pos_less_divide_eq right_distrib) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1772
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1773
lemma gt_half_sum: "a < b ==> (a+b)/(1+1::'a::ordered_field) < b"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1774
by (simp add: zero_less_two pos_divide_less_eq right_distrib) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1775
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1776
lemma dense: "a < b ==> \<exists>r::'a::ordered_field. a < r & r < b"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1777
by (blast intro!: less_half_sum gt_half_sum)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1778
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1779
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1780
subsection {* Absolute Value *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1781
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1782
lemma abs_one [simp]: "abs 1 = (1::'a::ordered_idom)"
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1783
  by (simp add: abs_if zero_less_one [THEN order_less_not_sym]) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1784
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1785
lemma abs_le_mult: "abs (a * b) \<le> (abs a) * (abs (b::'a::lordered_ring))" 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1786
proof -
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1787
  let ?x = "pprt a * pprt b - pprt a * nprt b - nprt a * pprt b + nprt a * nprt b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1788
  let ?y = "pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1789
  have a: "(abs a) * (abs b) = ?x"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1790
    by (simp only: abs_prts[of a] abs_prts[of b] ring_eq_simps)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1791
  {
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1792
    fix u v :: 'a
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15234
diff changeset
  1793
    have bh: "\<lbrakk>u = a; v = b\<rbrakk> \<Longrightarrow> 
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15234
diff changeset
  1794
              u * v = pprt a * pprt b + pprt a * nprt b + 
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15234
diff changeset
  1795
                      nprt a * pprt b + nprt a * nprt b"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1796
      apply (subst prts[of u], subst prts[of v])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1797
      apply (simp add: left_distrib right_distrib add_ac) 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1798
      done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1799
  }
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1800
  note b = this[OF refl[of a] refl[of b]]
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1801
  note addm = add_mono[of "0::'a" _ "0::'a", simplified]
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1802
  note addm2 = add_mono[of _ "0::'a" _ "0::'a", simplified]
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1803
  have xy: "- ?x <= ?y"
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1804
    apply (simp)
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1805
    apply (rule_tac y="0::'a" in order_trans)
16568
e02fe7ae212b Changes due to new abel_cancel.ML
nipkow
parents: 15923
diff changeset
  1806
    apply (rule addm2)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1807
    apply (simp_all add: mult_nonneg_nonneg mult_nonpos_nonpos)
16568
e02fe7ae212b Changes due to new abel_cancel.ML
nipkow
parents: 15923
diff changeset
  1808
    apply (rule addm)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1809
    apply (simp_all add: mult_nonneg_nonneg mult_nonpos_nonpos)
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1810
    done
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1811
  have yx: "?y <= ?x"
16568
e02fe7ae212b Changes due to new abel_cancel.ML
nipkow
parents: 15923
diff changeset
  1812
    apply (simp add:diff_def)
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1813
    apply (rule_tac y=0 in order_trans)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1814
    apply (rule addm2, (simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)+)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1815
    apply (rule addm, (simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)+)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1816
    done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1817
  have i1: "a*b <= abs a * abs b" by (simp only: a b yx)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1818
  have i2: "- (abs a * abs b) <= a*b" by (simp only: a b xy)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1819
  show ?thesis
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1820
    apply (rule abs_leI)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1821
    apply (simp add: i1)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1822
    apply (simp add: i2[simplified minus_le_iff])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1823
    done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1824
qed
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1825
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1826
lemma abs_eq_mult: 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1827
  assumes "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1828
  shows "abs (a*b) = abs a * abs (b::'a::lordered_ring)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1829
proof -
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1830
  have s: "(0 <= a*b) | (a*b <= 0)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1831
    apply (auto)    
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1832
    apply (rule_tac split_mult_pos_le)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1833
    apply (rule_tac contrapos_np[of "a*b <= 0"])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1834
    apply (simp)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1835
    apply (rule_tac split_mult_neg_le)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1836
    apply (insert prems)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1837
    apply (blast)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1838
    done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1839
  have mulprts: "a * b = (pprt a + nprt a) * (pprt b + nprt b)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1840
    by (simp add: prts[symmetric])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1841
  show ?thesis
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1842
  proof cases
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1843
    assume "0 <= a * b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1844
    then show ?thesis
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1845
      apply (simp_all add: mulprts abs_prts)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1846
      apply (insert prems)
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1847
      apply (auto simp add: 
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1848
	ring_eq_simps 
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1849
	iff2imp[OF zero_le_iff_zero_nprt] iff2imp[OF le_zero_iff_zero_pprt]
15197
19e735596e51 Added antisymmetry simproc
nipkow
parents: 15178
diff changeset
  1850
	iff2imp[OF le_zero_iff_pprt_id] iff2imp[OF zero_le_iff_nprt_id])
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1851
	apply(drule (1) mult_nonneg_nonpos[of a b], simp)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1852
	apply(drule (1) mult_nonneg_nonpos2[of b a], simp)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1853
      done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1854
  next
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1855
    assume "~(0 <= a*b)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1856
    with s have "a*b <= 0" by simp
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1857
    then show ?thesis
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1858
      apply (simp_all add: mulprts abs_prts)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1859
      apply (insert prems)
15580
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  1860
      apply (auto simp add: ring_eq_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1861
      apply(drule (1) mult_nonneg_nonneg[of a b],simp)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1862
      apply(drule (1) mult_nonpos_nonpos[of a b],simp)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1863
      done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1864
  qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1865
qed
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1866
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1867
lemma abs_mult: "abs (a * b) = abs a * abs (b::'a::ordered_idom)" 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1868
by (simp add: abs_eq_mult linorder_linear)
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1869
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1870
lemma abs_mult_self: "abs a * abs a = a * (a::'a::ordered_idom)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1871
by (simp add: abs_if) 
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1872
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1873
lemma nonzero_abs_inverse:
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1874
     "a \<noteq> 0 ==> abs (inverse (a::'a::ordered_field)) = inverse (abs a)"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1875
apply (auto simp add: linorder_neq_iff abs_if nonzero_inverse_minus_eq 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1876
                      negative_imp_inverse_negative)
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1877
apply (blast intro: positive_imp_inverse_positive elim: order_less_asym) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1878
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1879
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1880
lemma abs_inverse [simp]:
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1881
     "abs (inverse (a::'a::{ordered_field,division_by_zero})) = 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1882
      inverse (abs a)"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1883
apply (case_tac "a=0", simp) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1884
apply (simp add: nonzero_abs_inverse) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1885
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1886
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1887
lemma nonzero_abs_divide:
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1888
     "b \<noteq> 0 ==> abs (a / (b::'a::ordered_field)) = abs a / abs b"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1889
by (simp add: divide_inverse abs_mult nonzero_abs_inverse) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1890
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1891
lemma abs_divide [simp]:
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1892
     "abs (a / (b::'a::{ordered_field,division_by_zero})) = abs a / abs b"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1893
apply (case_tac "b=0", simp) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1894
apply (simp add: nonzero_abs_divide) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1895
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1896
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1897
lemma abs_mult_less:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1898
     "[| abs a < c; abs b < d |] ==> abs a * abs b < c*(d::'a::ordered_idom)"
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1899
proof -
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1900
  assume ac: "abs a < c"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1901
  hence cpos: "0<c" by (blast intro: order_le_less_trans abs_ge_zero)
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1902
  assume "abs b < d"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1903
  thus ?thesis by (simp add: ac cpos mult_strict_mono) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1904
qed
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1905
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1906
lemma eq_minus_self_iff: "(a = -a) = (a = (0::'a::ordered_idom))"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1907
by (force simp add: order_eq_iff le_minus_self_iff minus_le_self_iff)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1908
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1909
lemma less_minus_self_iff: "(a < -a) = (a < (0::'a::ordered_idom))"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1910
by (simp add: order_less_le le_minus_self_iff eq_minus_self_iff)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1911
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1912
lemma abs_less_iff: "(abs a < b) = (a < b & -a < (b::'a::ordered_idom))" 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1913
apply (simp add: order_less_le abs_le_iff)  
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1914
apply (auto simp add: abs_if minus_le_self_iff eq_minus_self_iff)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1915
apply (simp add: le_minus_self_iff linorder_neq_iff) 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1916
done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1917
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1918
lemma abs_mult_pos: "(0::'a::ordered_idom) <= x ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1919
    (abs y) * x = abs (y * x)";
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1920
  apply (subst abs_mult);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1921
  apply simp;
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1922
done;
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1923
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1924
lemma abs_div_pos: "(0::'a::{division_by_zero,ordered_field}) < y ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1925
    abs x / y = abs (x / y)";
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1926
  apply (subst abs_divide);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1927
  apply (simp add: order_less_imp_le);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1928
done;
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1929
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1930
subsection {* Miscellaneous *}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1931
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1932
lemma linprog_dual_estimate:
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1933
  assumes
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1934
  "A * x \<le> (b::'a::lordered_ring)"
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1935
  "0 \<le> y"
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1936
  "abs (A - A') \<le> \<delta>A"
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1937
  "b \<le> b'"
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1938
  "abs (c - c') \<le> \<delta>c"
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1939
  "abs x \<le> r"
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1940
  shows
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1941
  "c * x \<le> y * b' + (y * \<delta>A + abs (y * A' - c') + \<delta>c) * r"
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1942
proof -
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1943
  from prems have 1: "y * b <= y * b'" by (simp add: mult_left_mono)
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1944
  from prems have 2: "y * (A * x) <= y * b" by (simp add: mult_left_mono) 
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1945
  have 3: "y * (A * x) = c * x + (y * (A - A') + (y * A' - c') + (c'-c)) * x" by (simp add: ring_eq_simps)  
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1946
  from 1 2 3 have 4: "c * x + (y * (A - A') + (y * A' - c') + (c'-c)) * x <= y * b'" by simp
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1947
  have 5: "c * x <= y * b' + abs((y * (A - A') + (y * A' - c') + (c'-c)) * x)"
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1948
    by (simp only: 4 estimate_by_abs)  
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1949
  have 6: "abs((y * (A - A') + (y * A' - c') + (c'-c)) * x) <= abs (y * (A - A') + (y * A' - c') + (c'-c)) * abs x"
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1950
    by (simp add: abs_le_mult)
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1951
  have 7: "(abs (y * (A - A') + (y * A' - c') + (c'-c))) * abs x <= (abs (y * (A-A') + (y*A'-c')) + abs(c'-c)) * abs x"
16568
e02fe7ae212b Changes due to new abel_cancel.ML
nipkow
parents: 15923
diff changeset
  1952
    by(rule abs_triangle_ineq [THEN mult_right_mono]) simp
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1953
  have 8: " (abs (y * (A-A') + (y*A'-c')) + abs(c'-c)) * abs x <=  (abs (y * (A-A')) + abs (y*A'-c') + abs(c'-c)) * abs x"
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1954
    by (simp add: abs_triangle_ineq mult_right_mono)    
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1955
  have 9: "(abs (y * (A-A')) + abs (y*A'-c') + abs(c'-c)) * abs x <= (abs y * abs (A-A') + abs (y*A'-c') + abs (c'-c)) * abs x"
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1956
    by (simp add: abs_le_mult mult_right_mono)  
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1957
  have 10: "c'-c = -(c-c')" by (simp add: ring_eq_simps)
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1958
  have 11: "abs (c'-c) = abs (c-c')" 
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1959
    by (subst 10, subst abs_minus_cancel, simp)
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1960
  have 12: "(abs y * abs (A-A') + abs (y*A'-c') + abs (c'-c)) * abs x <= (abs y * abs (A-A') + abs (y*A'-c') + \<delta>c) * abs x"
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1961
    by (simp add: 11 prems mult_right_mono)
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1962
  have 13: "(abs y * abs (A-A') + abs (y*A'-c') + \<delta>c) * abs x <= (abs y * \<delta>A + abs (y*A'-c') + \<delta>c) * abs x"
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1963
    by (simp add: prems mult_right_mono mult_left_mono)  
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1964
  have r: "(abs y * \<delta>A + abs (y*A'-c') + \<delta>c) * abs x <=  (abs y * \<delta>A + abs (y*A'-c') + \<delta>c) * r"
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1965
    apply (rule mult_left_mono)
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1966
    apply (simp add: prems)
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1967
    apply (rule_tac add_mono[of "0::'a" _ "0", simplified])+
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1968
    apply (rule mult_left_mono[of "0" "\<delta>A", simplified])
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1969
    apply (simp_all)
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1970
    apply (rule order_trans[where y="abs (A-A')"], simp_all add: prems)
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1971
    apply (rule order_trans[where y="abs (c-c')"], simp_all add: prems)
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1972
    done    
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1973
  from 6 7 8 9 12 13 r have 14:" abs((y * (A - A') + (y * A' - c') + (c'-c)) * x) <=(abs y * \<delta>A + abs (y*A'-c') + \<delta>c) * r"     
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1974
    by (simp)
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1975
  show ?thesis 
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1976
    apply (rule_tac le_add_right_mono[of _ _ "abs((y * (A - A') + (y * A' - c') + (c'-c)) * x)"])
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1977
    apply (simp_all only: 5 14[simplified abs_of_nonneg[of y, simplified prems]])
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1978
    done
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1979
qed
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1980
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1981
lemma le_ge_imp_abs_diff_1:
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1982
  assumes
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1983
  "A1 <= (A::'a::lordered_ring)"
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1984
  "A <= A2" 
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1985
  shows "abs (A-A1) <= A2-A1"
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1986
proof -
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1987
  have "0 <= A - A1"    
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1988
  proof -
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1989
    have 1: "A - A1 = A + (- A1)" by simp
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1990
    show ?thesis by (simp only: 1 add_right_mono[of A1 A "-A1", simplified, simplified prems])
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1991
  qed
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1992
  then have "abs (A-A1) = A-A1" by (rule abs_of_nonneg)
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1993
  with prems show "abs (A-A1) <= (A2-A1)" by simp
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1994
qed
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1995
15580
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  1996
lemma mult_le_prts:
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  1997
  assumes
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  1998
  "a1 <= (a::'a::lordered_ring)"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  1999
  "a <= a2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2000
  "b1 <= b"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2001
  "b <= b2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2002
  shows
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2003
  "a * b <= pprt a2 * pprt b2 + pprt a1 * nprt b2 + nprt a2 * pprt b1 + nprt a1 * nprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2004
proof - 
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2005
  have "a * b = (pprt a + nprt a) * (pprt b + nprt b)" 
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2006
    apply (subst prts[symmetric])+
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2007
    apply simp
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2008
    done
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2009
  then have "a * b = pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2010
    by (simp add: ring_eq_simps)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2011
  moreover have "pprt a * pprt b <= pprt a2 * pprt b2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2012
    by (simp_all add: prems mult_mono)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2013
  moreover have "pprt a * nprt b <= pprt a1 * nprt b2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2014
  proof -
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2015
    have "pprt a * nprt b <= pprt a * nprt b2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2016
      by (simp add: mult_left_mono prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2017
    moreover have "pprt a * nprt b2 <= pprt a1 * nprt b2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2018
      by (simp add: mult_right_mono_neg prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2019
    ultimately show ?thesis
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2020
      by simp
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2021
  qed
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2022
  moreover have "nprt a * pprt b <= nprt a2 * pprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2023
  proof - 
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2024
    have "nprt a * pprt b <= nprt a2 * pprt b"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2025
      by (simp add: mult_right_mono prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2026
    moreover have "nprt a2 * pprt b <= nprt a2 * pprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2027
      by (simp add: mult_left_mono_neg prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2028
    ultimately show ?thesis
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2029
      by simp
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2030
  qed
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2031
  moreover have "nprt a * nprt b <= nprt a1 * nprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2032
  proof -
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2033
    have "nprt a * nprt b <= nprt a * nprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2034
      by (simp add: mult_left_mono_neg prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2035
    moreover have "nprt a * nprt b1 <= nprt a1 * nprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2036
      by (simp add: mult_right_mono_neg prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2037
    ultimately show ?thesis
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2038
      by simp
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2039
  qed
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2040
  ultimately show ?thesis
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2041
    by - (rule add_mono | simp)+
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2042
qed
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2043
    
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2044
lemma mult_le_dual_prts: 
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2045
  assumes
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2046
  "A * x \<le> (b::'a::lordered_ring)"
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2047
  "0 \<le> y"
15580
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2048
  "A1 \<le> A"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2049
  "A \<le> A2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2050
  "c1 \<le> c"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2051
  "c \<le> c2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2052
  "r1 \<le> x"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2053
  "x \<le> r2"
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2054
  shows
15580
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2055
  "c * x \<le> y * b + (let s1 = c1 - y * A2; s2 = c2 - y * A1 in pprt s2 * pprt r2 + pprt s1 * nprt r2 + nprt s2 * pprt r1 + nprt s1 * nprt r1)"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2056
  (is "_ <= _ + ?C")
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2057
proof -
15580
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2058
  from prems have "y * (A * x) <= y * b" by (simp add: mult_left_mono) 
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2059
  moreover have "y * (A * x) = c * x + (y * A - c) * x" by (simp add: ring_eq_simps)  
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2060
  ultimately have "c * x + (y * A - c) * x <= y * b" by simp
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2061
  then have "c * x <= y * b - (y * A - c) * x" by (simp add: le_diff_eq)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2062
  then have cx: "c * x <= y * b + (c - y * A) * x" by (simp add: ring_eq_simps)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2063
  have s2: "c - y * A <= c2 - y * A1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2064
    by (simp add: diff_def prems add_mono mult_left_mono)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2065
  have s1: "c1 - y * A2 <= c - y * A"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2066
    by (simp add: diff_def prems add_mono mult_left_mono)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2067
  have prts: "(c - y * A) * x <= ?C"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2068
    apply (simp add: Let_def)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2069
    apply (rule mult_le_prts)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2070
    apply (simp_all add: prems s1 s2)
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2071
    done
15580
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2072
  then have "y * b + (c - y * A) * x <= y * b + ?C"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2073
    by simp
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2074
  with cx show ?thesis
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2075
    by(simp only:)
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2076
qed
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2077
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2078
ML {*
14334
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14331
diff changeset
  2079
val left_distrib = thm "left_distrib";
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2080
val right_distrib = thm "right_distrib";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2081
val mult_commute = thm "mult_commute";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2082
val distrib = thm "distrib";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2083
val zero_neq_one = thm "zero_neq_one";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2084
val no_zero_divisors = thm "no_zero_divisors";
14331
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  2085
val left_inverse = thm "left_inverse";
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2086
val divide_inverse = thm "divide_inverse";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2087
val mult_zero_left = thm "mult_zero_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2088
val mult_zero_right = thm "mult_zero_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2089
val field_mult_eq_0_iff = thm "field_mult_eq_0_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2090
val inverse_zero = thm "inverse_zero";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2091
val ring_distrib = thms "ring_distrib";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2092
val combine_common_factor = thm "combine_common_factor";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2093
val minus_mult_left = thm "minus_mult_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2094
val minus_mult_right = thm "minus_mult_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2095
val minus_mult_minus = thm "minus_mult_minus";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2096
val minus_mult_commute = thm "minus_mult_commute";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2097
val right_diff_distrib = thm "right_diff_distrib";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2098
val left_diff_distrib = thm "left_diff_distrib";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2099
val mult_left_mono = thm "mult_left_mono";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2100
val mult_right_mono = thm "mult_right_mono";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2101
val mult_strict_left_mono = thm "mult_strict_left_mono";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2102
val mult_strict_right_mono = thm "mult_strict_right_mono";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2103
val mult_mono = thm "mult_mono";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2104
val mult_strict_mono = thm "mult_strict_mono";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2105
val abs_if = thm "abs_if";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2106
val zero_less_one = thm "zero_less_one";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2107
val eq_add_iff1 = thm "eq_add_iff1";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2108
val eq_add_iff2 = thm "eq_add_iff2";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2109
val less_add_iff1 = thm "less_add_iff1";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2110
val less_add_iff2 = thm "less_add_iff2";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2111
val le_add_iff1 = thm "le_add_iff1";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2112
val le_add_iff2 = thm "le_add_iff2";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2113
val mult_left_le_imp_le = thm "mult_left_le_imp_le";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2114
val mult_right_le_imp_le = thm "mult_right_le_imp_le";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2115
val mult_left_less_imp_less = thm "mult_left_less_imp_less";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2116
val mult_right_less_imp_less = thm "mult_right_less_imp_less";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2117
val mult_strict_left_mono_neg = thm "mult_strict_left_mono_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2118
val mult_left_mono_neg = thm "mult_left_mono_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2119
val mult_strict_right_mono_neg = thm "mult_strict_right_mono_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2120
val mult_right_mono_neg = thm "mult_right_mono_neg";
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2121
(*
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2122
val mult_pos = thm "mult_pos";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2123
val mult_pos_le = thm "mult_pos_le";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2124
val mult_pos_neg = thm "mult_pos_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2125
val mult_pos_neg_le = thm "mult_pos_neg_le";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2126
val mult_pos_neg2 = thm "mult_pos_neg2";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2127
val mult_pos_neg2_le = thm "mult_pos_neg2_le";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2128
val mult_neg = thm "mult_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2129
val mult_neg_le = thm "mult_neg_le";
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2130
*)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2131
val zero_less_mult_pos = thm "zero_less_mult_pos";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2132
val zero_less_mult_pos2 = thm "zero_less_mult_pos2";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2133
val zero_less_mult_iff = thm "zero_less_mult_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2134
val mult_eq_0_iff = thm "mult_eq_0_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2135
val zero_le_mult_iff = thm "zero_le_mult_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2136
val mult_less_0_iff = thm "mult_less_0_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2137
val mult_le_0_iff = thm "mult_le_0_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2138
val split_mult_pos_le = thm "split_mult_pos_le";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2139
val split_mult_neg_le = thm "split_mult_neg_le";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2140
val zero_le_square = thm "zero_le_square";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2141
val zero_le_one = thm "zero_le_one";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2142
val not_one_le_zero = thm "not_one_le_zero";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2143
val not_one_less_zero = thm "not_one_less_zero";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2144
val mult_left_mono_neg = thm "mult_left_mono_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2145
val mult_right_mono_neg = thm "mult_right_mono_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2146
val mult_strict_mono = thm "mult_strict_mono";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2147
val mult_strict_mono' = thm "mult_strict_mono'";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2148
val mult_mono = thm "mult_mono";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2149
val less_1_mult = thm "less_1_mult";
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  2150
val mult_less_cancel_right_disj = thm "mult_less_cancel_right_disj";
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  2151
val mult_less_cancel_left_disj = thm "mult_less_cancel_left_disj";
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2152
val mult_less_cancel_right = thm "mult_less_cancel_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2153
val mult_less_cancel_left = thm "mult_less_cancel_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2154
val mult_le_cancel_right = thm "mult_le_cancel_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2155
val mult_le_cancel_left = thm "mult_le_cancel_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2156
val mult_less_imp_less_left = thm "mult_less_imp_less_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2157
val mult_less_imp_less_right = thm "mult_less_imp_less_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2158
val mult_cancel_right = thm "mult_cancel_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2159
val mult_cancel_left = thm "mult_cancel_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2160
val ring_eq_simps = thms "ring_eq_simps";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2161
val right_inverse = thm "right_inverse";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2162
val right_inverse_eq = thm "right_inverse_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2163
val nonzero_inverse_eq_divide = thm "nonzero_inverse_eq_divide";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2164
val divide_self = thm "divide_self";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2165
val divide_zero = thm "divide_zero";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2166
val divide_zero_left = thm "divide_zero_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2167
val inverse_eq_divide = thm "inverse_eq_divide";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2168
val add_divide_distrib = thm "add_divide_distrib";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2169
val field_mult_eq_0_iff = thm "field_mult_eq_0_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2170
val field_mult_cancel_right_lemma = thm "field_mult_cancel_right_lemma";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2171
val field_mult_cancel_right = thm "field_mult_cancel_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2172
val field_mult_cancel_left = thm "field_mult_cancel_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2173
val nonzero_imp_inverse_nonzero = thm "nonzero_imp_inverse_nonzero";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2174
val inverse_zero_imp_zero = thm "inverse_zero_imp_zero";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2175
val inverse_nonzero_imp_nonzero = thm "inverse_nonzero_imp_nonzero";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2176
val inverse_nonzero_iff_nonzero = thm "inverse_nonzero_iff_nonzero";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2177
val nonzero_inverse_minus_eq = thm "nonzero_inverse_minus_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2178
val inverse_minus_eq = thm "inverse_minus_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2179
val nonzero_inverse_eq_imp_eq = thm "nonzero_inverse_eq_imp_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2180
val inverse_eq_imp_eq = thm "inverse_eq_imp_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2181
val inverse_eq_iff_eq = thm "inverse_eq_iff_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2182
val nonzero_inverse_inverse_eq = thm "nonzero_inverse_inverse_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2183
val inverse_inverse_eq = thm "inverse_inverse_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2184
val inverse_1 = thm "inverse_1";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2185
val nonzero_inverse_mult_distrib = thm "nonzero_inverse_mult_distrib";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2186
val inverse_mult_distrib = thm "inverse_mult_distrib";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2187
val inverse_add = thm "inverse_add";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2188
val inverse_divide = thm "inverse_divide";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2189
val nonzero_mult_divide_cancel_left = thm "nonzero_mult_divide_cancel_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2190
val mult_divide_cancel_left = thm "mult_divide_cancel_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2191
val nonzero_mult_divide_cancel_right = thm "nonzero_mult_divide_cancel_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2192
val mult_divide_cancel_right = thm "mult_divide_cancel_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2193
val mult_divide_cancel_eq_if = thm "mult_divide_cancel_eq_if";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2194
val divide_1 = thm "divide_1";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2195
val times_divide_eq_right = thm "times_divide_eq_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2196
val times_divide_eq_left = thm "times_divide_eq_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2197
val divide_divide_eq_right = thm "divide_divide_eq_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2198
val divide_divide_eq_left = thm "divide_divide_eq_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2199
val nonzero_minus_divide_left = thm "nonzero_minus_divide_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2200
val nonzero_minus_divide_right = thm "nonzero_minus_divide_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2201
val nonzero_minus_divide_divide = thm "nonzero_minus_divide_divide";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2202
val minus_divide_left = thm "minus_divide_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2203
val minus_divide_right = thm "minus_divide_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2204
val minus_divide_divide = thm "minus_divide_divide";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2205
val diff_divide_distrib = thm "diff_divide_distrib";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2206
val positive_imp_inverse_positive = thm "positive_imp_inverse_positive";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2207
val negative_imp_inverse_negative = thm "negative_imp_inverse_negative";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2208
val inverse_le_imp_le = thm "inverse_le_imp_le";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2209
val inverse_positive_imp_positive = thm "inverse_positive_imp_positive";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2210
val inverse_positive_iff_positive = thm "inverse_positive_iff_positive";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2211
val inverse_negative_imp_negative = thm "inverse_negative_imp_negative";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2212
val inverse_negative_iff_negative = thm "inverse_negative_iff_negative";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2213
val inverse_nonnegative_iff_nonnegative = thm "inverse_nonnegative_iff_nonnegative";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2214
val inverse_nonpositive_iff_nonpositive = thm "inverse_nonpositive_iff_nonpositive";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2215
val less_imp_inverse_less = thm "less_imp_inverse_less";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2216
val inverse_less_imp_less = thm "inverse_less_imp_less";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2217
val inverse_less_iff_less = thm "inverse_less_iff_less";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2218
val le_imp_inverse_le = thm "le_imp_inverse_le";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2219
val inverse_le_iff_le = thm "inverse_le_iff_le";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2220
val inverse_le_imp_le_neg = thm "inverse_le_imp_le_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2221
val less_imp_inverse_less_neg = thm "less_imp_inverse_less_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2222
val inverse_less_imp_less_neg = thm "inverse_less_imp_less_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2223
val inverse_less_iff_less_neg = thm "inverse_less_iff_less_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2224
val le_imp_inverse_le_neg = thm "le_imp_inverse_le_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2225
val inverse_le_iff_le_neg = thm "inverse_le_iff_le_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2226
val one_less_inverse_iff = thm "one_less_inverse_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2227
val inverse_eq_1_iff = thm "inverse_eq_1_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2228
val one_le_inverse_iff = thm "one_le_inverse_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2229
val inverse_less_1_iff = thm "inverse_less_1_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2230
val inverse_le_1_iff = thm "inverse_le_1_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2231
val zero_less_divide_iff = thm "zero_less_divide_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2232
val divide_less_0_iff = thm "divide_less_0_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2233
val zero_le_divide_iff = thm "zero_le_divide_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2234
val divide_le_0_iff = thm "divide_le_0_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2235
val divide_eq_0_iff = thm "divide_eq_0_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2236
val pos_le_divide_eq = thm "pos_le_divide_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2237
val neg_le_divide_eq = thm "neg_le_divide_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2238
val le_divide_eq = thm "le_divide_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2239
val pos_divide_le_eq = thm "pos_divide_le_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2240
val neg_divide_le_eq = thm "neg_divide_le_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2241
val divide_le_eq = thm "divide_le_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2242
val pos_less_divide_eq = thm "pos_less_divide_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2243
val neg_less_divide_eq = thm "neg_less_divide_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2244
val less_divide_eq = thm "less_divide_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2245
val pos_divide_less_eq = thm "pos_divide_less_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2246
val neg_divide_less_eq = thm "neg_divide_less_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2247
val divide_less_eq = thm "divide_less_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2248
val nonzero_eq_divide_eq = thm "nonzero_eq_divide_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2249
val eq_divide_eq = thm "eq_divide_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2250
val nonzero_divide_eq_eq = thm "nonzero_divide_eq_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2251
val divide_eq_eq = thm "divide_eq_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2252
val divide_cancel_right = thm "divide_cancel_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2253
val divide_cancel_left = thm "divide_cancel_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2254
val divide_eq_1_iff = thm "divide_eq_1_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2255
val one_eq_divide_iff = thm "one_eq_divide_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2256
val zero_eq_1_divide_iff = thm "zero_eq_1_divide_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2257
val one_divide_eq_0_iff = thm "one_divide_eq_0_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2258
val divide_strict_right_mono = thm "divide_strict_right_mono";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2259
val divide_right_mono = thm "divide_right_mono";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2260
val divide_strict_left_mono = thm "divide_strict_left_mono";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2261
val divide_left_mono = thm "divide_left_mono";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2262
val divide_strict_left_mono_neg = thm "divide_strict_left_mono_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2263
val divide_strict_right_mono_neg = thm "divide_strict_right_mono_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2264
val less_add_one = thm "less_add_one";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2265
val zero_less_two = thm "zero_less_two";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2266
val less_half_sum = thm "less_half_sum";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2267
val gt_half_sum = thm "gt_half_sum";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2268
val dense = thm "dense";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2269
val abs_one = thm "abs_one";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2270
val abs_le_mult = thm "abs_le_mult";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2271
val abs_eq_mult = thm "abs_eq_mult";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2272
val abs_mult = thm "abs_mult";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2273
val abs_mult_self = thm "abs_mult_self";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2274
val nonzero_abs_inverse = thm "nonzero_abs_inverse";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2275
val abs_inverse = thm "abs_inverse";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2276
val nonzero_abs_divide = thm "nonzero_abs_divide";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2277
val abs_divide = thm "abs_divide";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2278
val abs_mult_less = thm "abs_mult_less";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2279
val eq_minus_self_iff = thm "eq_minus_self_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2280
val less_minus_self_iff = thm "less_minus_self_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2281
val abs_less_iff = thm "abs_less_iff";
14331
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  2282
*}
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  2283
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  2284
end