| 
0
 | 
     1  | 
(*  Title: 	ZF/qpair.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1993  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Quine-inspired ordered pairs and disjoint sums, for non-well-founded data
  | 
| 
 | 
     7  | 
structures in ZF.  Does not precisely follow Quine's construction.  Thanks
  | 
| 
 | 
     8  | 
to Thomas Forster for suggesting this approach!
  | 
| 
 | 
     9  | 
  | 
| 
 | 
    10  | 
W. V. Quine, On Ordered Pairs and Relations, in Selected Logic Papers,
  | 
| 
 | 
    11  | 
1966.
  | 
| 
 | 
    12  | 
*)
  | 
| 
 | 
    13  | 
  | 
| 
124
 | 
    14  | 
QPair = Sum + "simpdata" +
  | 
| 
0
 | 
    15  | 
consts
  | 
| 
 | 
    16  | 
  QPair     :: "[i, i] => i"               	("<(_;/ _)>")
 | 
| 
 | 
    17  | 
  qsplit    :: "[[i,i] => i, i] => i"
  | 
| 
 | 
    18  | 
  qfsplit   :: "[[i,i] => o, i] => o"
  | 
| 
 | 
    19  | 
  qconverse :: "i => i"
  | 
| 
 | 
    20  | 
  "@QSUM"   :: "[idt, i, i] => i"               ("(3QSUM _:_./ _)" 10)
 | 
| 
 | 
    21  | 
  " <*>"    :: "[i, i] => i"         		("(_ <*>/ _)" [81, 80] 80)
 | 
| 
 | 
    22  | 
  QSigma    :: "[i, i => i] => i"
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
  "<+>"     :: "[i,i]=>i"      			(infixr 65)
  | 
| 
 | 
    25  | 
  QInl,QInr :: "i=>i"
  | 
| 
 | 
    26  | 
  qcase     :: "[i=>i, i=>i, i]=>i"
  | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
translations
  | 
| 
 | 
    29  | 
  "QSUM x:A. B"  => "QSigma(A, %x. B)"
  | 
| 
44
 | 
    30  | 
  "A <*> B"      => "QSigma(A, _K(B))"
  | 
| 
0
 | 
    31  | 
  | 
| 
 | 
    32  | 
rules
  | 
| 
 | 
    33  | 
  QPair_def       "<a;b> == a+b"
  | 
| 
120
 | 
    34  | 
  qsplit_def      "qsplit(c,p)  == THE y. EX a b. p=<a;b> & y=c(a,b)"
  | 
| 
0
 | 
    35  | 
  qfsplit_def     "qfsplit(R,z) == EX x y. z=<x;y> & R(x,y)"
  | 
| 
 | 
    36  | 
  qconverse_def   "qconverse(r) == {z. w:r, EX x y. w=<x;y> & z=<y;x>}"
 | 
| 
 | 
    37  | 
  QSigma_def      "QSigma(A,B)  ==  UN x:A. UN y:B(x). {<x;y>}"
 | 
| 
 | 
    38  | 
  | 
| 
120
 | 
    39  | 
  qsum_def        "A <+> B      == ({0} <*> A) Un ({1} <*> B)"
 | 
| 
0
 | 
    40  | 
  QInl_def        "QInl(a)      == <0;a>"
  | 
| 
 | 
    41  | 
  QInr_def        "QInr(b)      == <1;b>"
  | 
| 
 | 
    42  | 
  qcase_def       "qcase(c,d)   == qsplit(%y z. cond(y, d(z), c(z)))"
  | 
| 
 | 
    43  | 
end
  | 
| 
 | 
    44  | 
  | 
| 
 | 
    45  | 
ML
  | 
| 
 | 
    46  | 
  | 
| 
 | 
    47  | 
val print_translation =
  | 
| 
 | 
    48  | 
  [("QSigma", dependent_tr' ("@QSUM", " <*>"))];
 |