src/HOLCF/Ssum1.ML
author wenzelm
Mon, 20 Oct 1997 11:22:29 +0200
changeset 3946 34152864655c
parent 3323 194ae2e0c193
child 4535 f24cebc299e4
permissions -rw-r--r--
tuned; adapted to qualified names;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 1461
diff changeset
     1
(*  Title:      HOLCF/Ssum1.ML
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     2
    ID:         $Id$
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
     3
    Author:     Franz Regensburger
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     4
    Copyright   1993  Technische Universitaet Muenchen
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     5
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 1461
diff changeset
     6
Lemmas for theory Ssum1.thy
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     7
*)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     8
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     9
open Ssum1;
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    10
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    11
local 
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    12
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    13
fun eq_left s1 s2 = 
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    14
        (
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    15
        (res_inst_tac [("s",s1),("t",s2)] (inject_Isinl RS subst) 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    16
        THEN    (rtac trans 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    17
        THEN    (atac 2)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    18
        THEN    (etac sym 1));
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    19
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    20
fun eq_right s1 s2 = 
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    21
        (
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    22
        (res_inst_tac [("s",s1),("t",s2)] (inject_Isinr RS subst) 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    23
        THEN    (rtac trans 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    24
        THEN    (atac 2)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    25
        THEN    (etac sym 1));
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    26
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    27
fun UU_left s1 = 
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    28
        (
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    29
        (res_inst_tac [("t",s1)](noteq_IsinlIsinr RS conjunct1 RS ssubst)1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    30
        THEN (rtac trans 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    31
        THEN (atac 2)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    32
        THEN (etac sym 1));
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    33
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    34
fun UU_right s1 = 
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    35
        (
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    36
        (res_inst_tac [("t",s1)](noteq_IsinlIsinr RS conjunct2 RS ssubst)1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    37
        THEN (rtac trans 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    38
        THEN (atac 2)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    39
        THEN (etac sym 1))
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    40
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    41
in
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    42
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 1461
diff changeset
    43
val less_ssum1a = prove_goalw thy [less_ssum_def]
3323
194ae2e0c193 eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents: 2640
diff changeset
    44
"[|s1=Isinl(x::'a); s2=Isinl(y::'a)|] ==> s1 << s2 = (x << y)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    45
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    46
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    47
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    48
        (rtac  select_equality 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    49
        (dtac conjunct1 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    50
        (dtac spec 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    51
        (dtac spec 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    52
        (etac mp 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    53
        (fast_tac HOL_cs 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    54
        (rtac conjI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    55
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    56
        (etac conjE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    57
        (eq_left "x" "u"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    58
        (eq_left "y" "xa"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    59
        (rtac refl 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    60
        (rtac conjI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    61
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    62
        (etac conjE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    63
        (UU_left "x"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    64
        (UU_right "v"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    65
        (Simp_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    66
        (rtac conjI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    67
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    68
        (etac conjE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    69
        (eq_left "x" "u"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    70
        (UU_left "y"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    71
        (rtac iffI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    72
        (etac UU_I 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    73
        (res_inst_tac [("s","x"),("t","UU::'a")] subst 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    74
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    75
        (rtac refl_less 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    76
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    77
        (etac conjE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    78
        (UU_left "x"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    79
        (UU_right "v"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    80
        (Simp_tac 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    81
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    82
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    83
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 1461
diff changeset
    84
val less_ssum1b = prove_goalw thy [less_ssum_def]
3323
194ae2e0c193 eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents: 2640
diff changeset
    85
"[|s1=Isinr(x::'b); s2=Isinr(y::'b)|] ==> s1 << s2 = (x << y)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    86
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    87
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    88
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    89
        (rtac  select_equality 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    90
        (dtac conjunct2 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    91
        (dtac conjunct1 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    92
        (dtac spec 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    93
        (dtac spec 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    94
        (etac mp 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    95
        (fast_tac HOL_cs 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    96
        (rtac conjI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    97
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    98
        (etac conjE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    99
        (UU_right "x"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   100
        (UU_left "u"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   101
        (Simp_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   102
        (rtac conjI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   103
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   104
        (etac conjE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   105
        (eq_right "x" "v"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   106
        (eq_right "y" "ya"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   107
        (rtac refl 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   108
        (rtac conjI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   109
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   110
        (etac conjE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   111
        (UU_right "x"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   112
        (UU_left "u"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   113
        (Simp_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   114
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   115
        (etac conjE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   116
        (eq_right "x" "v"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   117
        (UU_right "y"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   118
        (rtac iffI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   119
        (etac UU_I 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   120
        (res_inst_tac [("s","UU::'b"),("t","x")] subst 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   121
        (etac sym 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   122
        (rtac refl_less 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   123
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   124
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   125
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 1461
diff changeset
   126
val less_ssum1c = prove_goalw thy [less_ssum_def]
3323
194ae2e0c193 eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents: 2640
diff changeset
   127
"[|s1=Isinl(x::'a); s2=Isinr(y::'b)|] ==> s1 << s2 = ((x::'a) = UU)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   128
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   129
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   130
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   131
        (rtac  select_equality 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   132
        (rtac conjI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   133
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   134
        (etac conjE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   135
        (eq_left  "x" "u"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   136
        (UU_left "xa"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   137
        (rtac iffI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   138
        (res_inst_tac [("s","x"),("t","UU::'a")] subst 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   139
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   140
        (rtac refl_less 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   141
        (etac UU_I 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   142
        (rtac conjI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   143
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   144
        (etac conjE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   145
        (UU_left "x"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   146
        (UU_right "v"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   147
        (Simp_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   148
        (rtac conjI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   149
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   150
        (etac conjE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   151
        (eq_left  "x" "u"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   152
        (rtac refl 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   153
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   154
        (etac conjE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   155
        (UU_left "x"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   156
        (UU_right "v"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   157
        (Simp_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   158
        (dtac conjunct2 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   159
        (dtac conjunct2 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   160
        (dtac conjunct1 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   161
        (dtac spec 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   162
        (dtac spec 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   163
        (etac mp 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   164
        (fast_tac HOL_cs 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   165
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   166
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   167
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 1461
diff changeset
   168
val less_ssum1d = prove_goalw thy [less_ssum_def]
3323
194ae2e0c193 eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents: 2640
diff changeset
   169
"[|s1=Isinr(x); s2=Isinl(y)|] ==> s1 << s2 = (x = UU)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   170
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   171
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   172
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   173
        (rtac  select_equality 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   174
        (dtac conjunct2 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   175
        (dtac conjunct2 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   176
        (dtac conjunct2 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   177
        (dtac spec 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   178
        (dtac spec 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   179
        (etac mp 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   180
        (fast_tac HOL_cs 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   181
        (rtac conjI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   182
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   183
        (etac conjE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   184
        (UU_right "x"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   185
        (UU_left "u"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   186
        (Simp_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   187
        (rtac conjI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   188
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   189
        (etac conjE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   190
        (UU_right "ya"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   191
        (eq_right "x" "v"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   192
        (rtac iffI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   193
        (etac UU_I 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   194
        (res_inst_tac [("s","UU"),("t","x")] subst 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   195
        (etac sym 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   196
        (rtac refl_less 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   197
        (rtac conjI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   198
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   199
        (etac conjE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   200
        (UU_right "x"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   201
        (UU_left "u"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   202
        (Simp_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   203
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   204
        (etac conjE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   205
        (eq_right "x" "v"),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   206
        (rtac refl 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   207
        ])
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   208
end;
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   209
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   210
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   211
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   212
(* optimize lemmas about less_ssum                                          *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   213
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   214
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 1461
diff changeset
   215
qed_goal "less_ssum2a" thy 
3323
194ae2e0c193 eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents: 2640
diff changeset
   216
        "(Isinl x) << (Isinl y) = (x << y)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   217
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   218
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   219
        (rtac less_ssum1a 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   220
        (rtac refl 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   221
        (rtac refl 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   222
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   223
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 1461
diff changeset
   224
qed_goal "less_ssum2b" thy 
3323
194ae2e0c193 eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents: 2640
diff changeset
   225
        "(Isinr x) << (Isinr y) = (x << y)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   226
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   227
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   228
        (rtac less_ssum1b 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   229
        (rtac refl 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   230
        (rtac refl 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   231
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   232
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 1461
diff changeset
   233
qed_goal "less_ssum2c" thy 
3323
194ae2e0c193 eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents: 2640
diff changeset
   234
        "(Isinl x) << (Isinr y) = (x = UU)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   235
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   236
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   237
        (rtac less_ssum1c 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   238
        (rtac refl 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   239
        (rtac refl 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   240
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   241
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 1461
diff changeset
   242
qed_goal "less_ssum2d" thy 
3323
194ae2e0c193 eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents: 2640
diff changeset
   243
        "(Isinr x) << (Isinl y) = (x = UU)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   244
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   245
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   246
        (rtac less_ssum1d 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   247
        (rtac refl 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   248
        (rtac refl 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   249
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   250
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   251
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   252
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   253
(* less_ssum is a partial order on ++                                     *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   254
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   255
3323
194ae2e0c193 eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents: 2640
diff changeset
   256
qed_goal "refl_less_ssum" thy "(p::'a++'b) << p"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   257
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   258
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   259
        (res_inst_tac [("p","p")] IssumE2 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   260
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   261
        (rtac (less_ssum2a RS iffD2) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   262
        (rtac refl_less 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   263
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   264
        (rtac (less_ssum2b RS iffD2) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   265
        (rtac refl_less 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   266
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   267
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 1461
diff changeset
   268
qed_goal "antisym_less_ssum" thy 
3323
194ae2e0c193 eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents: 2640
diff changeset
   269
 "[|(p1::'a++'b) << p2; p2 << p1|] ==> p1=p2"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   270
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   271
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   272
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   273
        (res_inst_tac [("p","p1")] IssumE2 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   274
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   275
        (res_inst_tac [("p","p2")] IssumE2 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   276
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   277
        (res_inst_tac [("f","Isinl")] arg_cong 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   278
        (rtac antisym_less 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   279
        (etac (less_ssum2a RS iffD1) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   280
        (etac (less_ssum2a RS iffD1) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   281
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   282
        (etac (less_ssum2d RS iffD1 RS ssubst) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   283
        (etac (less_ssum2c RS iffD1 RS ssubst) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   284
        (rtac strict_IsinlIsinr 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   285
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   286
        (res_inst_tac [("p","p2")] IssumE2 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   287
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   288
        (etac (less_ssum2c RS iffD1 RS ssubst) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   289
        (etac (less_ssum2d RS iffD1 RS ssubst) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   290
        (rtac (strict_IsinlIsinr RS sym) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   291
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   292
        (res_inst_tac [("f","Isinr")] arg_cong 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   293
        (rtac antisym_less 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   294
        (etac (less_ssum2b RS iffD1) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   295
        (etac (less_ssum2b RS iffD1) 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   296
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   297
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 1461
diff changeset
   298
qed_goal "trans_less_ssum" thy 
3323
194ae2e0c193 eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents: 2640
diff changeset
   299
 "[|(p1::'a++'b) << p2; p2 << p3|] ==> p1 << p3"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   300
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   301
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   302
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   303
        (res_inst_tac [("p","p1")] IssumE2 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   304
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   305
        (res_inst_tac [("p","p3")] IssumE2 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   306
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   307
        (rtac (less_ssum2a RS iffD2) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   308
        (res_inst_tac [("p","p2")] IssumE2 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   309
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   310
        (rtac trans_less 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   311
        (etac (less_ssum2a RS iffD1) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   312
        (etac (less_ssum2a RS iffD1) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   313
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   314
        (etac (less_ssum2c RS iffD1 RS ssubst) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   315
        (rtac minimal 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   316
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   317
        (rtac (less_ssum2c RS iffD2) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   318
        (res_inst_tac [("p","p2")] IssumE2 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   319
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   320
        (rtac UU_I 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   321
        (rtac trans_less 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   322
        (etac (less_ssum2a RS iffD1) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   323
        (rtac (antisym_less_inverse RS conjunct1) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   324
        (etac (less_ssum2c RS iffD1) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   325
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   326
        (etac (less_ssum2c RS iffD1) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   327
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   328
        (res_inst_tac [("p","p3")] IssumE2 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   329
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   330
        (rtac (less_ssum2d RS iffD2) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   331
        (res_inst_tac [("p","p2")] IssumE2 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   332
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   333
        (etac (less_ssum2d RS iffD1) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   334
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   335
        (rtac UU_I 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   336
        (rtac trans_less 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   337
        (etac (less_ssum2b RS iffD1) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   338
        (rtac (antisym_less_inverse RS conjunct1) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   339
        (etac (less_ssum2d RS iffD1) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   340
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   341
        (rtac (less_ssum2b RS iffD2) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   342
        (res_inst_tac [("p","p2")] IssumE2 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   343
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   344
        (etac (less_ssum2d RS iffD1 RS ssubst) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   345
        (rtac minimal 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   346
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   347
        (rtac trans_less 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   348
        (etac (less_ssum2b RS iffD1) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   349
        (etac (less_ssum2b RS iffD1) 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   350
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   351
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   352
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   353