author | wenzelm |
Mon, 20 Oct 1997 11:22:29 +0200 | |
changeset 3946 | 34152864655c |
parent 3323 | 194ae2e0c193 |
child 4535 | f24cebc299e4 |
permissions | -rw-r--r-- |
2640 | 1 |
(* Title: HOLCF/Ssum1.ML |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
2 |
ID: $Id$ |
1461 | 3 |
Author: Franz Regensburger |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
4 |
Copyright 1993 Technische Universitaet Muenchen |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
5 |
|
2640 | 6 |
Lemmas for theory Ssum1.thy |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
7 |
*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
8 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
9 |
open Ssum1; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
10 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
11 |
local |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
12 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
13 |
fun eq_left s1 s2 = |
1461 | 14 |
( |
15 |
(res_inst_tac [("s",s1),("t",s2)] (inject_Isinl RS subst) 1) |
|
16 |
THEN (rtac trans 1) |
|
17 |
THEN (atac 2) |
|
18 |
THEN (etac sym 1)); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
19 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
20 |
fun eq_right s1 s2 = |
1461 | 21 |
( |
22 |
(res_inst_tac [("s",s1),("t",s2)] (inject_Isinr RS subst) 1) |
|
23 |
THEN (rtac trans 1) |
|
24 |
THEN (atac 2) |
|
25 |
THEN (etac sym 1)); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
26 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
27 |
fun UU_left s1 = |
1461 | 28 |
( |
29 |
(res_inst_tac [("t",s1)](noteq_IsinlIsinr RS conjunct1 RS ssubst)1) |
|
30 |
THEN (rtac trans 1) |
|
31 |
THEN (atac 2) |
|
32 |
THEN (etac sym 1)); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
33 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
34 |
fun UU_right s1 = |
1461 | 35 |
( |
36 |
(res_inst_tac [("t",s1)](noteq_IsinlIsinr RS conjunct2 RS ssubst)1) |
|
37 |
THEN (rtac trans 1) |
|
38 |
THEN (atac 2) |
|
39 |
THEN (etac sym 1)) |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
40 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
41 |
in |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
42 |
|
2640 | 43 |
val less_ssum1a = prove_goalw thy [less_ssum_def] |
3323
194ae2e0c193
eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents:
2640
diff
changeset
|
44 |
"[|s1=Isinl(x::'a); s2=Isinl(y::'a)|] ==> s1 << s2 = (x << y)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
45 |
(fn prems => |
1461 | 46 |
[ |
47 |
(cut_facts_tac prems 1), |
|
48 |
(rtac select_equality 1), |
|
49 |
(dtac conjunct1 2), |
|
50 |
(dtac spec 2), |
|
51 |
(dtac spec 2), |
|
52 |
(etac mp 2), |
|
53 |
(fast_tac HOL_cs 2), |
|
54 |
(rtac conjI 1), |
|
55 |
(strip_tac 1), |
|
56 |
(etac conjE 1), |
|
57 |
(eq_left "x" "u"), |
|
58 |
(eq_left "y" "xa"), |
|
59 |
(rtac refl 1), |
|
60 |
(rtac conjI 1), |
|
61 |
(strip_tac 1), |
|
62 |
(etac conjE 1), |
|
63 |
(UU_left "x"), |
|
64 |
(UU_right "v"), |
|
65 |
(Simp_tac 1), |
|
66 |
(rtac conjI 1), |
|
67 |
(strip_tac 1), |
|
68 |
(etac conjE 1), |
|
69 |
(eq_left "x" "u"), |
|
70 |
(UU_left "y"), |
|
71 |
(rtac iffI 1), |
|
72 |
(etac UU_I 1), |
|
73 |
(res_inst_tac [("s","x"),("t","UU::'a")] subst 1), |
|
74 |
(atac 1), |
|
75 |
(rtac refl_less 1), |
|
76 |
(strip_tac 1), |
|
77 |
(etac conjE 1), |
|
78 |
(UU_left "x"), |
|
79 |
(UU_right "v"), |
|
80 |
(Simp_tac 1) |
|
81 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
82 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
83 |
|
2640 | 84 |
val less_ssum1b = prove_goalw thy [less_ssum_def] |
3323
194ae2e0c193
eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents:
2640
diff
changeset
|
85 |
"[|s1=Isinr(x::'b); s2=Isinr(y::'b)|] ==> s1 << s2 = (x << y)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
86 |
(fn prems => |
1461 | 87 |
[ |
88 |
(cut_facts_tac prems 1), |
|
89 |
(rtac select_equality 1), |
|
90 |
(dtac conjunct2 2), |
|
91 |
(dtac conjunct1 2), |
|
92 |
(dtac spec 2), |
|
93 |
(dtac spec 2), |
|
94 |
(etac mp 2), |
|
95 |
(fast_tac HOL_cs 2), |
|
96 |
(rtac conjI 1), |
|
97 |
(strip_tac 1), |
|
98 |
(etac conjE 1), |
|
99 |
(UU_right "x"), |
|
100 |
(UU_left "u"), |
|
101 |
(Simp_tac 1), |
|
102 |
(rtac conjI 1), |
|
103 |
(strip_tac 1), |
|
104 |
(etac conjE 1), |
|
105 |
(eq_right "x" "v"), |
|
106 |
(eq_right "y" "ya"), |
|
107 |
(rtac refl 1), |
|
108 |
(rtac conjI 1), |
|
109 |
(strip_tac 1), |
|
110 |
(etac conjE 1), |
|
111 |
(UU_right "x"), |
|
112 |
(UU_left "u"), |
|
113 |
(Simp_tac 1), |
|
114 |
(strip_tac 1), |
|
115 |
(etac conjE 1), |
|
116 |
(eq_right "x" "v"), |
|
117 |
(UU_right "y"), |
|
118 |
(rtac iffI 1), |
|
119 |
(etac UU_I 1), |
|
120 |
(res_inst_tac [("s","UU::'b"),("t","x")] subst 1), |
|
121 |
(etac sym 1), |
|
122 |
(rtac refl_less 1) |
|
123 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
124 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
125 |
|
2640 | 126 |
val less_ssum1c = prove_goalw thy [less_ssum_def] |
3323
194ae2e0c193
eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents:
2640
diff
changeset
|
127 |
"[|s1=Isinl(x::'a); s2=Isinr(y::'b)|] ==> s1 << s2 = ((x::'a) = UU)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
128 |
(fn prems => |
1461 | 129 |
[ |
130 |
(cut_facts_tac prems 1), |
|
131 |
(rtac select_equality 1), |
|
132 |
(rtac conjI 1), |
|
133 |
(strip_tac 1), |
|
134 |
(etac conjE 1), |
|
135 |
(eq_left "x" "u"), |
|
136 |
(UU_left "xa"), |
|
137 |
(rtac iffI 1), |
|
138 |
(res_inst_tac [("s","x"),("t","UU::'a")] subst 1), |
|
139 |
(atac 1), |
|
140 |
(rtac refl_less 1), |
|
141 |
(etac UU_I 1), |
|
142 |
(rtac conjI 1), |
|
143 |
(strip_tac 1), |
|
144 |
(etac conjE 1), |
|
145 |
(UU_left "x"), |
|
146 |
(UU_right "v"), |
|
147 |
(Simp_tac 1), |
|
148 |
(rtac conjI 1), |
|
149 |
(strip_tac 1), |
|
150 |
(etac conjE 1), |
|
151 |
(eq_left "x" "u"), |
|
152 |
(rtac refl 1), |
|
153 |
(strip_tac 1), |
|
154 |
(etac conjE 1), |
|
155 |
(UU_left "x"), |
|
156 |
(UU_right "v"), |
|
157 |
(Simp_tac 1), |
|
158 |
(dtac conjunct2 1), |
|
159 |
(dtac conjunct2 1), |
|
160 |
(dtac conjunct1 1), |
|
161 |
(dtac spec 1), |
|
162 |
(dtac spec 1), |
|
163 |
(etac mp 1), |
|
164 |
(fast_tac HOL_cs 1) |
|
165 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
166 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
167 |
|
2640 | 168 |
val less_ssum1d = prove_goalw thy [less_ssum_def] |
3323
194ae2e0c193
eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents:
2640
diff
changeset
|
169 |
"[|s1=Isinr(x); s2=Isinl(y)|] ==> s1 << s2 = (x = UU)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
170 |
(fn prems => |
1461 | 171 |
[ |
172 |
(cut_facts_tac prems 1), |
|
173 |
(rtac select_equality 1), |
|
174 |
(dtac conjunct2 2), |
|
175 |
(dtac conjunct2 2), |
|
176 |
(dtac conjunct2 2), |
|
177 |
(dtac spec 2), |
|
178 |
(dtac spec 2), |
|
179 |
(etac mp 2), |
|
180 |
(fast_tac HOL_cs 2), |
|
181 |
(rtac conjI 1), |
|
182 |
(strip_tac 1), |
|
183 |
(etac conjE 1), |
|
184 |
(UU_right "x"), |
|
185 |
(UU_left "u"), |
|
186 |
(Simp_tac 1), |
|
187 |
(rtac conjI 1), |
|
188 |
(strip_tac 1), |
|
189 |
(etac conjE 1), |
|
190 |
(UU_right "ya"), |
|
191 |
(eq_right "x" "v"), |
|
192 |
(rtac iffI 1), |
|
193 |
(etac UU_I 2), |
|
194 |
(res_inst_tac [("s","UU"),("t","x")] subst 1), |
|
195 |
(etac sym 1), |
|
196 |
(rtac refl_less 1), |
|
197 |
(rtac conjI 1), |
|
198 |
(strip_tac 1), |
|
199 |
(etac conjE 1), |
|
200 |
(UU_right "x"), |
|
201 |
(UU_left "u"), |
|
202 |
(Simp_tac 1), |
|
203 |
(strip_tac 1), |
|
204 |
(etac conjE 1), |
|
205 |
(eq_right "x" "v"), |
|
206 |
(rtac refl 1) |
|
207 |
]) |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
208 |
end; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
209 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
210 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
211 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
212 |
(* optimize lemmas about less_ssum *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
213 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
214 |
|
2640 | 215 |
qed_goal "less_ssum2a" thy |
3323
194ae2e0c193
eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents:
2640
diff
changeset
|
216 |
"(Isinl x) << (Isinl y) = (x << y)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
217 |
(fn prems => |
1461 | 218 |
[ |
219 |
(rtac less_ssum1a 1), |
|
220 |
(rtac refl 1), |
|
221 |
(rtac refl 1) |
|
222 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
223 |
|
2640 | 224 |
qed_goal "less_ssum2b" thy |
3323
194ae2e0c193
eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents:
2640
diff
changeset
|
225 |
"(Isinr x) << (Isinr y) = (x << y)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
226 |
(fn prems => |
1461 | 227 |
[ |
228 |
(rtac less_ssum1b 1), |
|
229 |
(rtac refl 1), |
|
230 |
(rtac refl 1) |
|
231 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
232 |
|
2640 | 233 |
qed_goal "less_ssum2c" thy |
3323
194ae2e0c193
eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents:
2640
diff
changeset
|
234 |
"(Isinl x) << (Isinr y) = (x = UU)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
235 |
(fn prems => |
1461 | 236 |
[ |
237 |
(rtac less_ssum1c 1), |
|
238 |
(rtac refl 1), |
|
239 |
(rtac refl 1) |
|
240 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
241 |
|
2640 | 242 |
qed_goal "less_ssum2d" thy |
3323
194ae2e0c193
eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents:
2640
diff
changeset
|
243 |
"(Isinr x) << (Isinl y) = (x = UU)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
244 |
(fn prems => |
1461 | 245 |
[ |
246 |
(rtac less_ssum1d 1), |
|
247 |
(rtac refl 1), |
|
248 |
(rtac refl 1) |
|
249 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
250 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
251 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
252 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
253 |
(* less_ssum is a partial order on ++ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
254 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
255 |
|
3323
194ae2e0c193
eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents:
2640
diff
changeset
|
256 |
qed_goal "refl_less_ssum" thy "(p::'a++'b) << p" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
257 |
(fn prems => |
1461 | 258 |
[ |
259 |
(res_inst_tac [("p","p")] IssumE2 1), |
|
260 |
(hyp_subst_tac 1), |
|
261 |
(rtac (less_ssum2a RS iffD2) 1), |
|
262 |
(rtac refl_less 1), |
|
263 |
(hyp_subst_tac 1), |
|
264 |
(rtac (less_ssum2b RS iffD2) 1), |
|
265 |
(rtac refl_less 1) |
|
266 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
267 |
|
2640 | 268 |
qed_goal "antisym_less_ssum" thy |
3323
194ae2e0c193
eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents:
2640
diff
changeset
|
269 |
"[|(p1::'a++'b) << p2; p2 << p1|] ==> p1=p2" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
270 |
(fn prems => |
1461 | 271 |
[ |
272 |
(cut_facts_tac prems 1), |
|
273 |
(res_inst_tac [("p","p1")] IssumE2 1), |
|
274 |
(hyp_subst_tac 1), |
|
275 |
(res_inst_tac [("p","p2")] IssumE2 1), |
|
276 |
(hyp_subst_tac 1), |
|
277 |
(res_inst_tac [("f","Isinl")] arg_cong 1), |
|
278 |
(rtac antisym_less 1), |
|
279 |
(etac (less_ssum2a RS iffD1) 1), |
|
280 |
(etac (less_ssum2a RS iffD1) 1), |
|
281 |
(hyp_subst_tac 1), |
|
282 |
(etac (less_ssum2d RS iffD1 RS ssubst) 1), |
|
283 |
(etac (less_ssum2c RS iffD1 RS ssubst) 1), |
|
284 |
(rtac strict_IsinlIsinr 1), |
|
285 |
(hyp_subst_tac 1), |
|
286 |
(res_inst_tac [("p","p2")] IssumE2 1), |
|
287 |
(hyp_subst_tac 1), |
|
288 |
(etac (less_ssum2c RS iffD1 RS ssubst) 1), |
|
289 |
(etac (less_ssum2d RS iffD1 RS ssubst) 1), |
|
290 |
(rtac (strict_IsinlIsinr RS sym) 1), |
|
291 |
(hyp_subst_tac 1), |
|
292 |
(res_inst_tac [("f","Isinr")] arg_cong 1), |
|
293 |
(rtac antisym_less 1), |
|
294 |
(etac (less_ssum2b RS iffD1) 1), |
|
295 |
(etac (less_ssum2b RS iffD1) 1) |
|
296 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
297 |
|
2640 | 298 |
qed_goal "trans_less_ssum" thy |
3323
194ae2e0c193
eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents:
2640
diff
changeset
|
299 |
"[|(p1::'a++'b) << p2; p2 << p3|] ==> p1 << p3" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
300 |
(fn prems => |
1461 | 301 |
[ |
302 |
(cut_facts_tac prems 1), |
|
303 |
(res_inst_tac [("p","p1")] IssumE2 1), |
|
304 |
(hyp_subst_tac 1), |
|
305 |
(res_inst_tac [("p","p3")] IssumE2 1), |
|
306 |
(hyp_subst_tac 1), |
|
307 |
(rtac (less_ssum2a RS iffD2) 1), |
|
308 |
(res_inst_tac [("p","p2")] IssumE2 1), |
|
309 |
(hyp_subst_tac 1), |
|
310 |
(rtac trans_less 1), |
|
311 |
(etac (less_ssum2a RS iffD1) 1), |
|
312 |
(etac (less_ssum2a RS iffD1) 1), |
|
313 |
(hyp_subst_tac 1), |
|
314 |
(etac (less_ssum2c RS iffD1 RS ssubst) 1), |
|
315 |
(rtac minimal 1), |
|
316 |
(hyp_subst_tac 1), |
|
317 |
(rtac (less_ssum2c RS iffD2) 1), |
|
318 |
(res_inst_tac [("p","p2")] IssumE2 1), |
|
319 |
(hyp_subst_tac 1), |
|
320 |
(rtac UU_I 1), |
|
321 |
(rtac trans_less 1), |
|
322 |
(etac (less_ssum2a RS iffD1) 1), |
|
323 |
(rtac (antisym_less_inverse RS conjunct1) 1), |
|
324 |
(etac (less_ssum2c RS iffD1) 1), |
|
325 |
(hyp_subst_tac 1), |
|
326 |
(etac (less_ssum2c RS iffD1) 1), |
|
327 |
(hyp_subst_tac 1), |
|
328 |
(res_inst_tac [("p","p3")] IssumE2 1), |
|
329 |
(hyp_subst_tac 1), |
|
330 |
(rtac (less_ssum2d RS iffD2) 1), |
|
331 |
(res_inst_tac [("p","p2")] IssumE2 1), |
|
332 |
(hyp_subst_tac 1), |
|
333 |
(etac (less_ssum2d RS iffD1) 1), |
|
334 |
(hyp_subst_tac 1), |
|
335 |
(rtac UU_I 1), |
|
336 |
(rtac trans_less 1), |
|
337 |
(etac (less_ssum2b RS iffD1) 1), |
|
338 |
(rtac (antisym_less_inverse RS conjunct1) 1), |
|
339 |
(etac (less_ssum2d RS iffD1) 1), |
|
340 |
(hyp_subst_tac 1), |
|
341 |
(rtac (less_ssum2b RS iffD2) 1), |
|
342 |
(res_inst_tac [("p","p2")] IssumE2 1), |
|
343 |
(hyp_subst_tac 1), |
|
344 |
(etac (less_ssum2d RS iffD1 RS ssubst) 1), |
|
345 |
(rtac minimal 1), |
|
346 |
(hyp_subst_tac 1), |
|
347 |
(rtac trans_less 1), |
|
348 |
(etac (less_ssum2b RS iffD1) 1), |
|
349 |
(etac (less_ssum2b RS iffD1) 1) |
|
350 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
351 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
352 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
353 |