| author | wenzelm | 
| Mon, 02 Nov 2015 09:43:20 +0100 | |
| changeset 61536 | 346aa2c5447f | 
| parent 61424 | c3658c18b7bc | 
| child 61605 | 1bf7b186542e | 
| permissions | -rw-r--r-- | 
| 58197 | 1 | (* Author: Florian Haftmann, TU Muenchen *) | 
| 2 | ||
| 58881 | 3 | section \<open>Big sum and product over function bodies\<close> | 
| 58197 | 4 | |
| 5 | theory Groups_Big_Fun | |
| 6 | imports | |
| 7 | Main | |
| 8 | "~~/src/Tools/Permanent_Interpretation" | |
| 9 | begin | |
| 10 | ||
| 11 | subsection \<open>Abstract product\<close> | |
| 12 | ||
| 13 | no_notation times (infixl "*" 70) | |
| 14 | no_notation Groups.one ("1")
 | |
| 15 | ||
| 16 | locale comm_monoid_fun = comm_monoid | |
| 17 | begin | |
| 18 | ||
| 19 | definition G :: "('b \<Rightarrow> 'a) \<Rightarrow> 'a"
 | |
| 20 | where | |
| 21 |   expand_set: "G g = comm_monoid_set.F f 1 g {a. g a \<noteq> 1}"
 | |
| 22 | ||
| 23 | interpretation F!: comm_monoid_set f 1 | |
| 24 | .. | |
| 25 | ||
| 26 | lemma expand_superset: | |
| 27 |   assumes "finite A" and "{a. g a \<noteq> 1} \<subseteq> A"
 | |
| 28 | shows "G g = F.F g A" | |
| 29 | apply (simp add: expand_set) | |
| 30 | apply (rule F.same_carrierI [of A]) | |
| 31 | apply (simp_all add: assms) | |
| 32 | done | |
| 33 | ||
| 34 | lemma conditionalize: | |
| 35 | assumes "finite A" | |
| 36 | shows "F.F g A = G (\<lambda>a. if a \<in> A then g a else 1)" | |
| 37 | using assms | |
| 38 | apply (simp add: expand_set) | |
| 39 | apply (rule F.same_carrierI [of A]) | |
| 40 | apply auto | |
| 41 | done | |
| 42 | ||
| 43 | lemma neutral [simp]: | |
| 44 | "G (\<lambda>a. 1) = 1" | |
| 45 | by (simp add: expand_set) | |
| 46 | ||
| 47 | lemma update [simp]: | |
| 48 |   assumes "finite {a. g a \<noteq> 1}"
 | |
| 49 | assumes "g a = 1" | |
| 50 | shows "G (g(a := b)) = b * G g" | |
| 51 | proof (cases "b = 1") | |
| 60500 | 52 | case True with \<open>g a = 1\<close> show ?thesis | 
| 58197 | 53 | by (simp add: expand_set) (rule F.cong, auto) | 
| 54 | next | |
| 55 | case False | |
| 56 |   moreover have "{a'. a' \<noteq> a \<longrightarrow> g a' \<noteq> 1} = insert a {a. g a \<noteq> 1}"
 | |
| 57 | by auto | |
| 60500 | 58 |   moreover from \<open>g a = 1\<close> have "a \<notin> {a. g a \<noteq> 1}"
 | 
| 58197 | 59 | by simp | 
| 60 |   moreover have "F.F (\<lambda>a'. if a' = a then b else g a') {a. g a \<noteq> 1} = F.F g {a. g a \<noteq> 1}"
 | |
| 60500 | 61 | by (rule F.cong) (auto simp add: \<open>g a = 1\<close>) | 
| 62 |   ultimately show ?thesis using \<open>finite {a. g a \<noteq> 1}\<close> by (simp add: expand_set)
 | |
| 58197 | 63 | qed | 
| 64 | ||
| 65 | lemma infinite [simp]: | |
| 66 |   "\<not> finite {a. g a \<noteq> 1} \<Longrightarrow> G g = 1"
 | |
| 67 | by (simp add: expand_set) | |
| 68 | ||
| 69 | lemma cong: | |
| 70 | assumes "\<And>a. g a = h a" | |
| 71 | shows "G g = G h" | |
| 72 | using assms by (simp add: expand_set) | |
| 73 | ||
| 74 | lemma strong_cong [cong]: | |
| 75 | assumes "\<And>a. g a = h a" | |
| 76 | shows "G (\<lambda>a. g a) = G (\<lambda>a. h a)" | |
| 77 | using assms by (fact cong) | |
| 78 | ||
| 79 | lemma not_neutral_obtains_not_neutral: | |
| 80 | assumes "G g \<noteq> 1" | |
| 81 | obtains a where "g a \<noteq> 1" | |
| 82 | using assms by (auto elim: F.not_neutral_contains_not_neutral simp add: expand_set) | |
| 83 | ||
| 84 | lemma reindex_cong: | |
| 85 | assumes "bij l" | |
| 86 | assumes "g \<circ> l = h" | |
| 87 | shows "G g = G h" | |
| 88 | proof - | |
| 89 | from assms have unfold: "h = g \<circ> l" by simp | |
| 60500 | 90 | from \<open>bij l\<close> have "inj l" by (rule bij_is_inj) | 
| 58197 | 91 |   then have "inj_on l {a. h a \<noteq> 1}" by (rule subset_inj_on) simp
 | 
| 60500 | 92 |   moreover from \<open>bij l\<close> have "{a. g a \<noteq> 1} = l ` {a. h a \<noteq> 1}"
 | 
| 58197 | 93 | by (auto simp add: image_Collect unfold elim: bij_pointE) | 
| 94 |   moreover have "\<And>x. x \<in> {a. h a \<noteq> 1} \<Longrightarrow> g (l x) = h x"
 | |
| 95 | by (simp add: unfold) | |
| 96 |   ultimately have "F.F g {a. g a \<noteq> 1} = F.F h {a. h a \<noteq> 1}"
 | |
| 97 | by (rule F.reindex_cong) | |
| 98 | then show ?thesis by (simp add: expand_set) | |
| 99 | qed | |
| 100 | ||
| 101 | lemma distrib: | |
| 102 |   assumes "finite {a. g a \<noteq> 1}" and "finite {a. h a \<noteq> 1}"
 | |
| 103 | shows "G (\<lambda>a. g a * h a) = G g * G h" | |
| 104 | proof - | |
| 105 |   from assms have "finite ({a. g a \<noteq> 1} \<union> {a. h a \<noteq> 1})" by simp
 | |
| 106 |   moreover have "{a. g a * h a \<noteq> 1} \<subseteq> {a. g a \<noteq> 1} \<union> {a. h a \<noteq> 1}"
 | |
| 107 | by auto (drule sym, simp) | |
| 108 | ultimately show ?thesis | |
| 109 | using assms | |
| 110 |     by (simp add: expand_superset [of "{a. g a \<noteq> 1} \<union> {a. h a \<noteq> 1}"] F.distrib)
 | |
| 111 | qed | |
| 112 | ||
| 113 | lemma commute: | |
| 114 | assumes "finite C" | |
| 115 |   assumes subset: "{a. \<exists>b. g a b \<noteq> 1} \<times> {b. \<exists>a. g a b \<noteq> 1} \<subseteq> C" (is "?A \<times> ?B \<subseteq> C")
 | |
| 116 | shows "G (\<lambda>a. G (g a)) = G (\<lambda>b. G (\<lambda>a. g a b))" | |
| 117 | proof - | |
| 60500 | 118 | from \<open>finite C\<close> subset | 
| 58197 | 119 |     have "finite ({a. \<exists>b. g a b \<noteq> 1} \<times> {b. \<exists>a. g a b \<noteq> 1})"
 | 
| 120 | by (rule rev_finite_subset) | |
| 121 | then have fins: | |
| 122 |     "finite {b. \<exists>a. g a b \<noteq> 1}" "finite {a. \<exists>b. g a b \<noteq> 1}"
 | |
| 123 | by (auto simp add: finite_cartesian_product_iff) | |
| 124 |   have subsets: "\<And>a. {b. g a b \<noteq> 1} \<subseteq> {b. \<exists>a. g a b \<noteq> 1}"
 | |
| 125 |     "\<And>b. {a. g a b \<noteq> 1} \<subseteq> {a. \<exists>b. g a b \<noteq> 1}"
 | |
| 126 |     "{a. F.F (g a) {b. \<exists>a. g a b \<noteq> 1} \<noteq> 1} \<subseteq> {a. \<exists>b. g a b \<noteq> 1}"
 | |
| 127 |     "{a. F.F (\<lambda>aa. g aa a) {a. \<exists>b. g a b \<noteq> 1} \<noteq> 1} \<subseteq> {b. \<exists>a. g a b \<noteq> 1}"
 | |
| 128 | by (auto elim: F.not_neutral_contains_not_neutral) | |
| 129 | from F.commute have | |
| 130 |     "F.F (\<lambda>a. F.F (g a) {b. \<exists>a. g a b \<noteq> 1}) {a. \<exists>b. g a b \<noteq> 1} =
 | |
| 131 |       F.F (\<lambda>b. F.F (\<lambda>a. g a b) {a. \<exists>b. g a b \<noteq> 1}) {b. \<exists>a. g a b \<noteq> 1}" .
 | |
| 132 |   with subsets fins have "G (\<lambda>a. F.F (g a) {b. \<exists>a. g a b \<noteq> 1}) =
 | |
| 133 |     G (\<lambda>b. F.F (\<lambda>a. g a b) {a. \<exists>b. g a b \<noteq> 1})"
 | |
| 134 |     by (auto simp add: expand_superset [of "{b. \<exists>a. g a b \<noteq> 1}"]
 | |
| 135 |       expand_superset [of "{a. \<exists>b. g a b \<noteq> 1}"])
 | |
| 136 | with subsets fins show ?thesis | |
| 137 |     by (auto simp add: expand_superset [of "{b. \<exists>a. g a b \<noteq> 1}"]
 | |
| 138 |       expand_superset [of "{a. \<exists>b. g a b \<noteq> 1}"])
 | |
| 139 | qed | |
| 140 | ||
| 141 | lemma cartesian_product: | |
| 142 | assumes "finite C" | |
| 143 |   assumes subset: "{a. \<exists>b. g a b \<noteq> 1} \<times> {b. \<exists>a. g a b \<noteq> 1} \<subseteq> C" (is "?A \<times> ?B \<subseteq> C")
 | |
| 144 | shows "G (\<lambda>a. G (g a)) = G (\<lambda>(a, b). g a b)" | |
| 145 | proof - | |
| 60500 | 146 | from subset \<open>finite C\<close> have fin_prod: "finite (?A \<times> ?B)" | 
| 58197 | 147 | by (rule finite_subset) | 
| 148 | from fin_prod have "finite ?A" and "finite ?B" | |
| 149 | by (auto simp add: finite_cartesian_product_iff) | |
| 150 | have *: "G (\<lambda>a. G (g a)) = | |
| 151 |     (F.F (\<lambda>a. F.F (g a) {b. \<exists>a. g a b \<noteq> 1}) {a. \<exists>b. g a b \<noteq> 1})"
 | |
| 152 | apply (subst expand_superset [of "?B"]) | |
| 60500 | 153 | apply (rule \<open>finite ?B\<close>) | 
| 58197 | 154 | apply auto | 
| 155 | apply (subst expand_superset [of "?A"]) | |
| 60500 | 156 | apply (rule \<open>finite ?A\<close>) | 
| 58197 | 157 | apply auto | 
| 158 | apply (erule F.not_neutral_contains_not_neutral) | |
| 159 | apply auto | |
| 160 | done | |
| 161 |   have "{p. (case p of (a, b) \<Rightarrow> g a b) \<noteq> 1} \<subseteq> ?A \<times> ?B"
 | |
| 162 | by auto | |
| 163 |   with subset have **: "{p. (case p of (a, b) \<Rightarrow> g a b) \<noteq> 1} \<subseteq> C"
 | |
| 164 | by blast | |
| 165 | show ?thesis | |
| 166 | apply (simp add: *) | |
| 167 | apply (simp add: F.cartesian_product) | |
| 168 | apply (subst expand_superset [of C]) | |
| 60500 | 169 | apply (rule \<open>finite C\<close>) | 
| 58197 | 170 | apply (simp_all add: **) | 
| 171 | apply (rule F.same_carrierI [of C]) | |
| 60500 | 172 | apply (rule \<open>finite C\<close>) | 
| 58197 | 173 | apply (simp_all add: subset) | 
| 174 | apply auto | |
| 175 | done | |
| 176 | qed | |
| 177 | ||
| 178 | lemma cartesian_product2: | |
| 179 | assumes fin: "finite D" | |
| 180 |   assumes subset: "{(a, b). \<exists>c. g a b c \<noteq> 1} \<times> {c. \<exists>a b. g a b c \<noteq> 1} \<subseteq> D" (is "?AB \<times> ?C \<subseteq> D")
 | |
| 181 | shows "G (\<lambda>(a, b). G (g a b)) = G (\<lambda>(a, b, c). g a b c)" | |
| 182 | proof - | |
| 183 | have bij: "bij (\<lambda>(a, b, c). ((a, b), c))" | |
| 184 | by (auto intro!: bijI injI simp add: image_def) | |
| 185 |   have "{p. \<exists>c. g (fst p) (snd p) c \<noteq> 1} \<times> {c. \<exists>p. g (fst p) (snd p) c \<noteq> 1} \<subseteq> D"
 | |
| 61424 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 haftmann parents: 
61378diff
changeset | 186 | by auto (insert subset, blast) | 
| 58197 | 187 | with fin have "G (\<lambda>p. G (g (fst p) (snd p))) = G (\<lambda>(p, c). g (fst p) (snd p) c)" | 
| 188 | by (rule cartesian_product) | |
| 189 | then have "G (\<lambda>(a, b). G (g a b)) = G (\<lambda>((a, b), c). g a b c)" | |
| 190 | by (auto simp add: split_def) | |
| 191 | also have "G (\<lambda>((a, b), c). g a b c) = G (\<lambda>(a, b, c). g a b c)" | |
| 192 | using bij by (rule reindex_cong [of "\<lambda>(a, b, c). ((a, b), c)"]) (simp add: fun_eq_iff) | |
| 193 | finally show ?thesis . | |
| 194 | qed | |
| 195 | ||
| 196 | lemma delta [simp]: | |
| 197 | "G (\<lambda>b. if b = a then g b else 1) = g a" | |
| 198 | proof - | |
| 199 |   have "{b. (if b = a then g b else 1) \<noteq> 1} \<subseteq> {a}" by auto
 | |
| 200 |   then show ?thesis by (simp add: expand_superset [of "{a}"])
 | |
| 201 | qed | |
| 202 | ||
| 203 | lemma delta' [simp]: | |
| 204 | "G (\<lambda>b. if a = b then g b else 1) = g a" | |
| 205 | proof - | |
| 206 | have "(\<lambda>b. if a = b then g b else 1) = (\<lambda>b. if b = a then g b else 1)" | |
| 207 | by (simp add: fun_eq_iff) | |
| 208 | then have "G (\<lambda>b. if a = b then g b else 1) = G (\<lambda>b. if b = a then g b else 1)" | |
| 209 | by (simp cong del: strong_cong) | |
| 210 | then show ?thesis by simp | |
| 211 | qed | |
| 212 | ||
| 213 | end | |
| 214 | ||
| 215 | notation times (infixl "*" 70) | |
| 216 | notation Groups.one ("1")
 | |
| 217 | ||
| 218 | ||
| 219 | subsection \<open>Concrete sum\<close> | |
| 220 | ||
| 221 | context comm_monoid_add | |
| 222 | begin | |
| 223 | ||
| 224 | definition Sum_any :: "('b \<Rightarrow> 'a) \<Rightarrow> 'a"
 | |
| 225 | where | |
| 226 | "Sum_any = comm_monoid_fun.G plus 0" | |
| 227 | ||
| 228 | permanent_interpretation Sum_any!: comm_monoid_fun plus 0 | |
| 229 | where | |
| 230 | "comm_monoid_fun.G plus 0 = Sum_any" and | |
| 231 | "comm_monoid_set.F plus 0 = setsum" | |
| 232 | proof - | |
| 233 | show "comm_monoid_fun plus 0" .. | |
| 234 | then interpret Sum_any!: comm_monoid_fun plus 0 . | |
| 235 | from Sum_any_def show "comm_monoid_fun.G plus 0 = Sum_any" by rule | |
| 236 | from setsum_def show "comm_monoid_set.F plus 0 = setsum" by rule | |
| 237 | qed | |
| 238 | ||
| 239 | end | |
| 240 | ||
| 241 | syntax | |
| 242 |   "_Sum_any" :: "pttrn \<Rightarrow> 'a \<Rightarrow> 'a::comm_monoid_add"    ("(3SUM _. _)" [0, 10] 10)
 | |
| 243 | syntax (xsymbols) | |
| 244 |   "_Sum_any" :: "pttrn \<Rightarrow> 'a \<Rightarrow> 'a::comm_monoid_add"    ("(3\<Sum>_. _)" [0, 10] 10)
 | |
| 245 | translations | |
| 246 | "\<Sum>a. b" == "CONST Sum_any (\<lambda>a. b)" | |
| 247 | ||
| 248 | lemma Sum_any_left_distrib: | |
| 249 | fixes r :: "'a :: semiring_0" | |
| 250 |   assumes "finite {a. g a \<noteq> 0}"
 | |
| 251 | shows "Sum_any g * r = (\<Sum>n. g n * r)" | |
| 252 | proof - | |
| 253 | note assms | |
| 254 |   moreover have "{a. g a * r \<noteq> 0} \<subseteq> {a. g a \<noteq> 0}" by auto
 | |
| 255 | ultimately show ?thesis | |
| 256 |     by (simp add: setsum_left_distrib Sum_any.expand_superset [of "{a. g a \<noteq> 0}"])
 | |
| 257 | qed | |
| 258 | ||
| 259 | lemma Sum_any_right_distrib: | |
| 260 | fixes r :: "'a :: semiring_0" | |
| 261 |   assumes "finite {a. g a \<noteq> 0}"
 | |
| 262 | shows "r * Sum_any g = (\<Sum>n. r * g n)" | |
| 263 | proof - | |
| 264 | note assms | |
| 265 |   moreover have "{a. r * g a \<noteq> 0} \<subseteq> {a. g a \<noteq> 0}" by auto
 | |
| 266 | ultimately show ?thesis | |
| 267 |     by (simp add: setsum_right_distrib Sum_any.expand_superset [of "{a. g a \<noteq> 0}"])
 | |
| 268 | qed | |
| 269 | ||
| 270 | lemma Sum_any_product: | |
| 271 | fixes f g :: "'b \<Rightarrow> 'a::semiring_0" | |
| 272 |   assumes "finite {a. f a \<noteq> 0}" and "finite {b. g b \<noteq> 0}"
 | |
| 273 | shows "Sum_any f * Sum_any g = (\<Sum>a. \<Sum>b. f a * g b)" | |
| 274 | proof - | |
| 275 |   have subset_f: "{a. (\<Sum>b. f a * g b) \<noteq> 0} \<subseteq> {a. f a \<noteq> 0}"
 | |
| 276 | by rule (simp, rule, auto) | |
| 277 |   moreover have subset_g: "\<And>a. {b. f a * g b \<noteq> 0} \<subseteq> {b. g b \<noteq> 0}"
 | |
| 278 | by rule (simp, rule, auto) | |
| 279 | ultimately show ?thesis using assms | |
| 280 | by (auto simp add: Sum_any.expand_set [of f] Sum_any.expand_set [of g] | |
| 281 |       Sum_any.expand_superset [of "{a. f a \<noteq> 0}"] Sum_any.expand_superset [of "{b. g b \<noteq> 0}"]
 | |
| 282 | setsum_product) | |
| 283 | qed | |
| 284 | ||
| 58437 | 285 | lemma Sum_any_eq_zero_iff [simp]: | 
| 286 | fixes f :: "'a \<Rightarrow> nat" | |
| 287 |   assumes "finite {a. f a \<noteq> 0}"
 | |
| 288 | shows "Sum_any f = 0 \<longleftrightarrow> f = (\<lambda>_. 0)" | |
| 289 | using assms by (simp add: Sum_any.expand_set fun_eq_iff) | |
| 290 | ||
| 58197 | 291 | |
| 292 | subsection \<open>Concrete product\<close> | |
| 293 | ||
| 294 | context comm_monoid_mult | |
| 295 | begin | |
| 296 | ||
| 297 | definition Prod_any :: "('b \<Rightarrow> 'a) \<Rightarrow> 'a"
 | |
| 298 | where | |
| 299 | "Prod_any = comm_monoid_fun.G times 1" | |
| 300 | ||
| 301 | permanent_interpretation Prod_any!: comm_monoid_fun times 1 | |
| 302 | where | |
| 303 | "comm_monoid_fun.G times 1 = Prod_any" and | |
| 304 | "comm_monoid_set.F times 1 = setprod" | |
| 305 | proof - | |
| 306 | show "comm_monoid_fun times 1" .. | |
| 307 | then interpret Prod_any!: comm_monoid_fun times 1 . | |
| 308 | from Prod_any_def show "comm_monoid_fun.G times 1 = Prod_any" by rule | |
| 309 | from setprod_def show "comm_monoid_set.F times 1 = setprod" by rule | |
| 310 | qed | |
| 311 | ||
| 312 | end | |
| 313 | ||
| 314 | syntax | |
| 315 |   "_Prod_any" :: "pttrn \<Rightarrow> 'a \<Rightarrow> 'a::comm_monoid_mult"    ("(3PROD _. _)" [0, 10] 10)
 | |
| 316 | syntax (xsymbols) | |
| 317 |   "_Prod_any" :: "pttrn \<Rightarrow> 'a \<Rightarrow> 'a::comm_monoid_mult"    ("(3\<Prod>_. _)" [0, 10] 10)
 | |
| 318 | translations | |
| 319 | "\<Prod>a. b" == "CONST Prod_any (\<lambda>a. b)" | |
| 320 | ||
| 321 | lemma Prod_any_zero: | |
| 322 | fixes f :: "'b \<Rightarrow> 'a :: comm_semiring_1" | |
| 323 |   assumes "finite {a. f a \<noteq> 1}"
 | |
| 324 | assumes "f a = 0" | |
| 325 | shows "(\<Prod>a. f a) = 0" | |
| 326 | proof - | |
| 60500 | 327 | from \<open>f a = 0\<close> have "f a \<noteq> 1" by simp | 
| 328 | with \<open>f a = 0\<close> have "\<exists>a. f a \<noteq> 1 \<and> f a = 0" by blast | |
| 329 |   with \<open>finite {a. f a \<noteq> 1}\<close> show ?thesis
 | |
| 58197 | 330 | by (simp add: Prod_any.expand_set setprod_zero) | 
| 331 | qed | |
| 332 | ||
| 333 | lemma Prod_any_not_zero: | |
| 334 | fixes f :: "'b \<Rightarrow> 'a :: comm_semiring_1" | |
| 335 |   assumes "finite {a. f a \<noteq> 1}"
 | |
| 336 | assumes "(\<Prod>a. f a) \<noteq> 0" | |
| 337 | shows "f a \<noteq> 0" | |
| 338 | using assms Prod_any_zero [of f] by blast | |
| 339 | ||
| 58437 | 340 | lemma power_Sum_any: | 
| 341 |   assumes "finite {a. f a \<noteq> 0}"
 | |
| 342 | shows "c ^ (\<Sum>a. f a) = (\<Prod>a. c ^ f a)" | |
| 343 | proof - | |
| 344 |   have "{a. c ^ f a \<noteq> 1} \<subseteq> {a. f a \<noteq> 0}"
 | |
| 345 | by (auto intro: ccontr) | |
| 346 | with assms show ?thesis | |
| 347 | by (simp add: Sum_any.expand_set Prod_any.expand_superset power_setsum) | |
| 348 | qed | |
| 349 | ||
| 58197 | 350 | end | 
| 58437 | 351 |